SlideShare une entreprise Scribd logo
1  sur  30
Bee Technologies
http://www.bee-tech.info/
Design Kit
Flyback Converter using PWM IC
LTspice Version
1Copyright (C) Siam Bee Technologies 2015
02JUL2015
Contents
1. 50W Off-Line Adapter Circuit (VIN=85Vac)
1.1) Input Waveform
1.2) Output Waveform
1.3) Output Power
1.4) Gate Drive Output and Oscillator Timing (IC)
2. 50W Off-Line Adapter Circuit (VIN=110Vac)
2.1) Input Waveform
2.2) Output Waveform
2.3) Output Power
2.4) Gate Drive Output and Oscillator Timing (IC)
3. 50W Off-Line Adapter Circuit (VIN=265Vac)
3.1) Input Waveform
3.2) Output Waveform
3.3) Output Power
3.4) Gate Drive Output and Oscillator Timing (IC)
4. Transformer Specification
5. Operation Waveform (VIN=110Vac, Example)
5.1) Transformer Turn Ratio
5.2) Transformer Primary Side Inductance (LP)
5.3) VCC Output Waveform
5.4) MOSFET Switching Device (UQ101)
5.5) Output Rectifier Diode (D201 - D202)
5.6) Current Sensing and Feedback Circuit
Conclusion
Simulation Details
Appendix A - Initial Condition Settings
Appendix B - Bill of Materials
Simulation Index
2Copyright (C) Siam Bee Technologies 2015
1. 50W Off-Line Adapter Circuit (VIN=85Vac)
- Simulation Circuit
3Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
 Initial condition are set ,so the simulation starts near the steady state.
VIN=85Vac
V(Out) starts from 11V
by the initial condition
V(Vcc) starts from 12V
1.1) Input Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 4
Time [sec]
VDC,AVG = 104.33V
VAC = 85Vrms
VDC, MIN = 85.8V
1.2) Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 5
The output voltage is regulated at 12.12V
Time [sec]
The output current is 4.04A (RL=3)
V(Out) starts from 11V
by the initial condition
1.3) Output Power
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 6
Time [sec]
The simulation result shows the output power is 48.90W
1.4) Gate Drive Output and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 7
Time [sec]
VOSC
Oscillator frequency = 105kHz
PW = 3.877us
2. 50W Off-Line Adapter Circuit (VIN=110Vac)
- Simulation Circuit
8Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
 Initial condition are set ,so the simulation starts near the steady state.
VIN=110Vac
V(Vcc) starts from 12V
V(Out) starts from 11V
by the initial condition
2.1) Input Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 9
Time [sec]
VDC,AVG = 142.41V
VAC = 110Vrms
VDC, MIN = 128.621V
2.2) Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 10
The output voltage is regulated at 12.118V
Time [sec]
The output current is 4.039A (RL=3)
V(Out) starts from 11V
by the initial condition
2.3) Output Power
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 11
Time [sec]
The simulation result shows the output power is 48.95W
2.4) Gate Drive Output and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 12
Time [sec]
PW = 3.282us
VOSC
Oscillator frequency = 105kHz
3. 50W Off-Line Adapter Circuit (VIN=265Vac)
- Simulation Circuit
13Copyright (C) Siam Bee Technologies 2015
.tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
 Initial condition are set ,so the simulation starts near the steady state.
VIN=265Vac
V(Vcc) starts from 12V
V(Out) starts from 11V
by the initial condition
3.1) Input Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 14
Time [sec]
VDC,AVG = 367.58V
VAC = 265Vrms
VDC, MIN = 361.264V
3.2) Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 15
The output voltage is regulated at 12.075V
Time [sec]
The output current is 4.025A (RL=3)
V(Out) starts from 11V
by the initial condition
3.3) Output Power
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 16
Time [sec]
The simulation result shows the output power is 48.70W
3.4) Gate Drive Output and Oscillator Timing (IC)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 17
Time [sec]
PW = 1.706us
VOSC
Oscillator frequency = 105kHz
4. Transformer Specification
Copyright (C) Siam Bee Technologies 2015 18
NP NS
NSUB
Pin (S--F) Turns
NP 1 → 3 54
NS 9 → 12 10
NSUB 5 → 6 10
Winding Specification
Pin Value
Inductance 1 - 3 600uH
Leakage 1 - 3 15uH
Electrical Specification
 To model the transformer (or coupled inductors), we can use the SPICE primitive k,
which describes the coupling ratio between a primary and a secondary.
5. Operation Waveform (VIN=110Vac, Example)
- Simulation Circuit
19Copyright (C) Siam Bee Technologies 2015
+
VDS
-
ID
- +
VKA
IF
The system parameter are as follows:
- Maximum output power : 50W
- Input voltage : 110Vrms
- AC line frequency : 50Hz
- Switching frequency : 100kHz
VIN=110Vac
+
VCC
-
V(Out) starts from 11V
V(Vcc) starts from 12V
5.1) Transformer Turn Ratio
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 20
Time [sec]
VP
VS
VCC
 This figure shows the waveforms of the voltages at each side of the transformer.
 This figure shows the waveforms of ID(UQ101) and IF(D201, D202) in the CCM mode.
 The primary-side inductance (LP) of the transformer determines the converter operation mode.
5.2) Transformer Primary Side Inductance (LP)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 21
Time [sec]
ΟNΤ
Τ
IF(D201, D202)
VPWM
ID(UQ101)
5.3) VCC Output Waveform
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 22
Time [sec]
VCC = 12.367V
5.4) MOSFET Switching Device (UQ101)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 23
Time [sec]
VDS(t)
ID(t)
Switching
loss (turn-off)
Switching loss
(turn-on)
Conduction loss
(VDS x ID)
5.5) Output Rectifier Diode (D201 - D202)
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 24
Time [sec]
VKA(t) IF(t)
Peak magnitude
current
Conduction loss
(VF,AK x IF)
PLOSS_(D201, 202) (t)
5.6) Current Sensing and Feedback Circuit
- Simulation Result
Copyright (C) Siam Bee Technologies 2015 25
Time [sec]
1V Comparator
VCS
Conclusion
Copyright (C) Siam Bee Technologies 2015 26
Input voltage Output power Oscillator frequency PW
85Vac 48.95 W 105 kHz 3.877 us
110Vac 48.95 W 105 kHz 3.278 us
265Vac 48.70 W 105 kHz 1.706 us
Simulation Results
Simulation Details
Analysis directives:
.Tran 0 50m 0 10n
.Option Gmin=75E-9
.Option Abstol=1.0E-9
.Option Vntol=1.0u
.Option Trtol=1000
.Option Method=Gear
* Engine Solver: Alternate
Libraries:
.LIB 2sk4101ls.lib
.LIB an1431t.lib
.LIB pc817c.lib
.LIB d2sba60.lib
.LIB mbrf20100ct.lib
.LIB era91-02.lib
.LIB 1n5408.lib
.LIB fan7601.lib
27Copyright (C) Siam Bee Technologies 2015
Appendix A
- Initial Condition Settings
Copyright (C) Siam Bee Technologies 2015 28
Initial phase= 90
.IC V(Vdc_in)= {Vac*√2}
.IC V(Vcc)= 12V
.IC V(Out) = 11V
.IC V(Cs)= 0V
.IC V(Rt_Ct)= 0V
.IC V(Ls)= 2V
Appendix B
- Bill of Materials
Copyright (C) Siam Bee Technologies 2015 29
Designator Manufacturer Part Number Comment Designator Manufacturer Part Number Comment
R1 - 10Ω - C109 - 0.47uF -
R103 - 56kΩ - C112 - 0.1uF -
R105 - 100Ω - C201 - 1000uF -
R107 - 0.5Ω - C202 - 1000uF -
R108 - 1kΩ - C203 - 1nF -
R109 - 8kΩ - C222 - 2.2nF -
R110 - 3.9kΩ - D1 Fairchild 1N5408 Spice model
R201 - 3.3kΩ - D101 Fairchild 1N5408 Spice model
R202 - 1.2kΩ - D102 Fairchild 1N5408 Spice model
R204 - 27kΩ - D103 Fuji Electric ERA91-02 Spice model
R205 - 7kΩ - D201 ON Semi. MBRF20100CT Spice model
R206 - 10Ω - D202 ON Semi. MBRF20100CT Spice model
C1 - 1nF - U1 Shindengen D2SBA60 Spice model
C103 - 150uF - U101 Fairchild FAN7601 Spice model
C105 - 10pF - UQ101 Sanyo 2SK4101LS Spice model
C106 - 2.7nF - U201 Panasonic AN1431T Spice model
C107 - 47uF - U301 Sharp PC817C Spice model
C108 - 0.01uF -
Simulation Index
30
Simulations Folder name
1. 50W Off-Line Adapter Circuit (VIN=85Vac)................
2. 50W Off-Line Adapter Circuit (VIN=110Vac)..............
3. 50W Off-Line Adapter Circuit (VIN=85Vac)................
4. Operation Waveform (VIN=110Vac, Example)...........
../Simulation data/VIN_85VAC
../Simulation data/VIN_110VAC
../Simulation data/VIN_265VAC
../Simulation data/Operation Waveform
Copyright (C) Siam Bee Technologies 2015

Contenu connexe

Tendances

Electronique de puissance
Electronique de puissanceElectronique de puissance
Electronique de puissance
badr zaimi
 
Variateur de vitesse activar 11
Variateur de vitesse activar 11Variateur de vitesse activar 11
Variateur de vitesse activar 11
Boubakri Mohamed
 

Tendances (20)

Electronique de puissance
Electronique de puissanceElectronique de puissance
Electronique de puissance
 
PWM Controller for Power Supplies
PWM Controller for Power SuppliesPWM Controller for Power Supplies
PWM Controller for Power Supplies
 
Space Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM InverterSpace Vector Modulation(SVM) Technique for PWM Inverter
Space Vector Modulation(SVM) Technique for PWM Inverter
 
Flyback converter
Flyback converterFlyback converter
Flyback converter
 
Moteur Asynchrone
Moteur AsynchroneMoteur Asynchrone
Moteur Asynchrone
 
Câblage Entrées / Sorties Automate programmable
Câblage Entrées / Sorties Automate programmable Câblage Entrées / Sorties Automate programmable
Câblage Entrées / Sorties Automate programmable
 
Exercices onduleur
Exercices onduleurExercices onduleur
Exercices onduleur
 
Les transformateurs
Les transformateursLes transformateurs
Les transformateurs
 
Chapter 20
Chapter 20Chapter 20
Chapter 20
 
Ener1 - CM2 - Triphasé
Ener1 - CM2 - TriphaséEner1 - CM2 - Triphasé
Ener1 - CM2 - Triphasé
 
Variateur de vitesse activar 11
Variateur de vitesse activar 11Variateur de vitesse activar 11
Variateur de vitesse activar 11
 
Tp informatique industrielle
Tp informatique industrielleTp informatique industrielle
Tp informatique industrielle
 
Dimensionnement des composants_pour_convertisseur_sepic
Dimensionnement des composants_pour_convertisseur_sepicDimensionnement des composants_pour_convertisseur_sepic
Dimensionnement des composants_pour_convertisseur_sepic
 
Dimensionnement et commande d’un hacheur parallèle.pptx
Dimensionnement et commande d’un hacheur parallèle.pptxDimensionnement et commande d’un hacheur parallèle.pptx
Dimensionnement et commande d’un hacheur parallèle.pptx
 
Mcc
MccMcc
Mcc
 
Simple model of Fuse(LTspice)
Simple model of Fuse(LTspice) Simple model of Fuse(LTspice)
Simple model of Fuse(LTspice)
 
Per unit analysis
Per unit analysisPer unit analysis
Per unit analysis
 
Polycopié Electronique de puissance avec Matlab Simulink.pdf
Polycopié Electronique de puissance avec Matlab Simulink.pdfPolycopié Electronique de puissance avec Matlab Simulink.pdf
Polycopié Electronique de puissance avec Matlab Simulink.pdf
 
Types of snubber circuits | Design of snubber for flyback converter | Simulat...
Types of snubber circuits | Design of snubber for flyback converter | Simulat...Types of snubber circuits | Design of snubber for flyback converter | Simulat...
Types of snubber circuits | Design of snubber for flyback converter | Simulat...
 
Les transistors
Les transistorsLes transistors
Les transistors
 

En vedette

En vedette (10)

ENERGY REGENERATING SYSTEM for HEV,EV using PSpice
ENERGY REGENERATING SYSTEM for HEV,EV using PSpiceENERGY REGENERATING SYSTEM for HEV,EV using PSpice
ENERGY REGENERATING SYSTEM for HEV,EV using PSpice
 
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
How to Design of Power Management of Hybrid Circuit(Battery and Capacitor) us...
 
R&D of New Technology Using Simulation
R&D of New Technology Using SimulationR&D of New Technology Using Simulation
R&D of New Technology Using Simulation
 
SPICE PARK ALL LIST of SEP2015
SPICE PARK ALL LIST of SEP2015SPICE PARK ALL LIST of SEP2015
SPICE PARK ALL LIST of SEP2015
 
二次電池モデルのご提供方法
二次電池モデルのご提供方法二次電池モデルのご提供方法
二次電池モデルのご提供方法
 
SPICE PARK, 4,749 Models
SPICE PARK, 4,749 ModelsSPICE PARK, 4,749 Models
SPICE PARK, 4,749 Models
 
キャパシタモデルのご提供方法
キャパシタモデルのご提供方法キャパシタモデルのご提供方法
キャパシタモデルのご提供方法
 
エナジーハーベスティングのデザイン手法セミナーテキスト
エナジーハーベスティングのデザイン手法セミナーテキストエナジーハーベスティングのデザイン手法セミナーテキスト
エナジーハーベスティングのデザイン手法セミナーテキスト
 
ビー・テクノロジーの事業内容(26FEB2013)
ビー・テクノロジーの事業内容(26FEB2013)ビー・テクノロジーの事業内容(26FEB2013)
ビー・テクノロジーの事業内容(26FEB2013)
 
ビー・テクノロジーの製品のラインナップ(21版)
ビー・テクノロジーの製品のラインナップ(21版)ビー・テクノロジーの製品のラインナップ(21版)
ビー・テクノロジーの製品のラインナップ(21版)
 

Similaire à Flyback Converter using PWM IC(LTspice Version)

MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)
Tsuyoshi Horigome
 

Similaire à Flyback Converter using PWM IC(LTspice Version) (20)

電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
PWM Buck Converter using Average Model
PWM Buck Converter using Average ModelPWM Buck Converter using Average Model
PWM Buck Converter using Average Model
 
RN1418 PSpice Model (Free SPICE Model)
RN1418 PSpice Model  (Free SPICE Model)RN1418 PSpice Model  (Free SPICE Model)
RN1418 PSpice Model (Free SPICE Model)
 
RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)RN1418 LTspice Model (Free SPICE Model)
RN1418 LTspice Model (Free SPICE Model)
 
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 NewOriginal Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
Original Mosfet MC33151DR2G 33151 MC33151 SOP-8 New
 
SPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBGSPICE Model of TC7USB31WBG
SPICE Model of TC7USB31WBG
 
Original Opto PC123 P123 123 DIP-4 New
Original Opto PC123 P123 123 DIP-4 NewOriginal Opto PC123 P123 123 DIP-4 New
Original Opto PC123 P123 123 DIP-4 New
 
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
 
Cataloge schneider khởi động mềm softstarter
Cataloge schneider khởi động mềm softstarterCataloge schneider khởi động mềm softstarter
Cataloge schneider khởi động mềm softstarter
 
SPICE Model of TC7USB31FK
SPICE Model of TC7USB31FKSPICE Model of TC7USB31FK
SPICE Model of TC7USB31FK
 
MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)MBN600E45A PSpice Model (Free SPICE Model)
MBN600E45A PSpice Model (Free SPICE Model)
 
Original N-Channel IGBT 70A 330V FGPF4633 4633 300A 330V TO-200F New Fairchild
Original N-Channel IGBT 70A 330V FGPF4633 4633 300A 330V TO-200F New FairchildOriginal N-Channel IGBT 70A 330V FGPF4633 4633 300A 330V TO-200F New Fairchild
Original N-Channel IGBT 70A 330V FGPF4633 4633 300A 330V TO-200F New Fairchild
 
Original IGBT FGPF50N33 50N33 50A 330V TO-220F New Fairchild
Original IGBT FGPF50N33 50N33 50A 330V TO-220F New FairchildOriginal IGBT FGPF50N33 50N33 50A 330V TO-220F New Fairchild
Original IGBT FGPF50N33 50N33 50A 330V TO-220F New Fairchild
 
LEC20G604 (6).pdf
LEC20G604 (6).pdfLEC20G604 (6).pdf
LEC20G604 (6).pdf
 
SPICE Model of TC7USB221WBG
SPICE Model of TC7USB221WBGSPICE Model of TC7USB221WBG
SPICE Model of TC7USB221WBG
 
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARKSPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
SPICE MODEL of TPC8119 (Standard+BDS Model) in SPICE PARK
 
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 NewOriginal IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
Original IGBT N-CHANNEL IRG7R313U 7R313U 330V 160A TO-252 New
 

Plus de Tsuyoshi Horigome

Plus de Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Flyback Converter using PWM IC(LTspice Version)

  • 1. Bee Technologies http://www.bee-tech.info/ Design Kit Flyback Converter using PWM IC LTspice Version 1Copyright (C) Siam Bee Technologies 2015 02JUL2015
  • 2. Contents 1. 50W Off-Line Adapter Circuit (VIN=85Vac) 1.1) Input Waveform 1.2) Output Waveform 1.3) Output Power 1.4) Gate Drive Output and Oscillator Timing (IC) 2. 50W Off-Line Adapter Circuit (VIN=110Vac) 2.1) Input Waveform 2.2) Output Waveform 2.3) Output Power 2.4) Gate Drive Output and Oscillator Timing (IC) 3. 50W Off-Line Adapter Circuit (VIN=265Vac) 3.1) Input Waveform 3.2) Output Waveform 3.3) Output Power 3.4) Gate Drive Output and Oscillator Timing (IC) 4. Transformer Specification 5. Operation Waveform (VIN=110Vac, Example) 5.1) Transformer Turn Ratio 5.2) Transformer Primary Side Inductance (LP) 5.3) VCC Output Waveform 5.4) MOSFET Switching Device (UQ101) 5.5) Output Rectifier Diode (D201 - D202) 5.6) Current Sensing and Feedback Circuit Conclusion Simulation Details Appendix A - Initial Condition Settings Appendix B - Bill of Materials Simulation Index 2Copyright (C) Siam Bee Technologies 2015
  • 3. 1. 50W Off-Line Adapter Circuit (VIN=85Vac) - Simulation Circuit 3Copyright (C) Siam Bee Technologies 2015 .tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate  Initial condition are set ,so the simulation starts near the steady state. VIN=85Vac V(Out) starts from 11V by the initial condition V(Vcc) starts from 12V
  • 4. 1.1) Input Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 4 Time [sec] VDC,AVG = 104.33V VAC = 85Vrms VDC, MIN = 85.8V
  • 5. 1.2) Output Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 5 The output voltage is regulated at 12.12V Time [sec] The output current is 4.04A (RL=3) V(Out) starts from 11V by the initial condition
  • 6. 1.3) Output Power - Simulation Result Copyright (C) Siam Bee Technologies 2015 6 Time [sec] The simulation result shows the output power is 48.90W
  • 7. 1.4) Gate Drive Output and Oscillator Timing (IC) - Simulation Result Copyright (C) Siam Bee Technologies 2015 7 Time [sec] VOSC Oscillator frequency = 105kHz PW = 3.877us
  • 8. 2. 50W Off-Line Adapter Circuit (VIN=110Vac) - Simulation Circuit 8Copyright (C) Siam Bee Technologies 2015 .tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate  Initial condition are set ,so the simulation starts near the steady state. VIN=110Vac V(Vcc) starts from 12V V(Out) starts from 11V by the initial condition
  • 9. 2.1) Input Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 9 Time [sec] VDC,AVG = 142.41V VAC = 110Vrms VDC, MIN = 128.621V
  • 10. 2.2) Output Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 10 The output voltage is regulated at 12.118V Time [sec] The output current is 4.039A (RL=3) V(Out) starts from 11V by the initial condition
  • 11. 2.3) Output Power - Simulation Result Copyright (C) Siam Bee Technologies 2015 11 Time [sec] The simulation result shows the output power is 48.95W
  • 12. 2.4) Gate Drive Output and Oscillator Timing (IC) - Simulation Result Copyright (C) Siam Bee Technologies 2015 12 Time [sec] PW = 3.282us VOSC Oscillator frequency = 105kHz
  • 13. 3. 50W Off-Line Adapter Circuit (VIN=265Vac) - Simulation Circuit 13Copyright (C) Siam Bee Technologies 2015 .tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate  Initial condition are set ,so the simulation starts near the steady state. VIN=265Vac V(Vcc) starts from 12V V(Out) starts from 11V by the initial condition
  • 14. 3.1) Input Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 14 Time [sec] VDC,AVG = 367.58V VAC = 265Vrms VDC, MIN = 361.264V
  • 15. 3.2) Output Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 15 The output voltage is regulated at 12.075V Time [sec] The output current is 4.025A (RL=3) V(Out) starts from 11V by the initial condition
  • 16. 3.3) Output Power - Simulation Result Copyright (C) Siam Bee Technologies 2015 16 Time [sec] The simulation result shows the output power is 48.70W
  • 17. 3.4) Gate Drive Output and Oscillator Timing (IC) - Simulation Result Copyright (C) Siam Bee Technologies 2015 17 Time [sec] PW = 1.706us VOSC Oscillator frequency = 105kHz
  • 18. 4. Transformer Specification Copyright (C) Siam Bee Technologies 2015 18 NP NS NSUB Pin (S--F) Turns NP 1 → 3 54 NS 9 → 12 10 NSUB 5 → 6 10 Winding Specification Pin Value Inductance 1 - 3 600uH Leakage 1 - 3 15uH Electrical Specification  To model the transformer (or coupled inductors), we can use the SPICE primitive k, which describes the coupling ratio between a primary and a secondary.
  • 19. 5. Operation Waveform (VIN=110Vac, Example) - Simulation Circuit 19Copyright (C) Siam Bee Technologies 2015 + VDS - ID - + VKA IF The system parameter are as follows: - Maximum output power : 50W - Input voltage : 110Vrms - AC line frequency : 50Hz - Switching frequency : 100kHz VIN=110Vac + VCC - V(Out) starts from 11V V(Vcc) starts from 12V
  • 20. 5.1) Transformer Turn Ratio - Simulation Result Copyright (C) Siam Bee Technologies 2015 20 Time [sec] VP VS VCC  This figure shows the waveforms of the voltages at each side of the transformer.
  • 21.  This figure shows the waveforms of ID(UQ101) and IF(D201, D202) in the CCM mode.  The primary-side inductance (LP) of the transformer determines the converter operation mode. 5.2) Transformer Primary Side Inductance (LP) - Simulation Result Copyright (C) Siam Bee Technologies 2015 21 Time [sec] ΟNΤ Τ IF(D201, D202) VPWM ID(UQ101)
  • 22. 5.3) VCC Output Waveform - Simulation Result Copyright (C) Siam Bee Technologies 2015 22 Time [sec] VCC = 12.367V
  • 23. 5.4) MOSFET Switching Device (UQ101) - Simulation Result Copyright (C) Siam Bee Technologies 2015 23 Time [sec] VDS(t) ID(t) Switching loss (turn-off) Switching loss (turn-on) Conduction loss (VDS x ID)
  • 24. 5.5) Output Rectifier Diode (D201 - D202) - Simulation Result Copyright (C) Siam Bee Technologies 2015 24 Time [sec] VKA(t) IF(t) Peak magnitude current Conduction loss (VF,AK x IF) PLOSS_(D201, 202) (t)
  • 25. 5.6) Current Sensing and Feedback Circuit - Simulation Result Copyright (C) Siam Bee Technologies 2015 25 Time [sec] 1V Comparator VCS
  • 26. Conclusion Copyright (C) Siam Bee Technologies 2015 26 Input voltage Output power Oscillator frequency PW 85Vac 48.95 W 105 kHz 3.877 us 110Vac 48.95 W 105 kHz 3.278 us 265Vac 48.70 W 105 kHz 1.706 us Simulation Results
  • 27. Simulation Details Analysis directives: .Tran 0 50m 0 10n .Option Gmin=75E-9 .Option Abstol=1.0E-9 .Option Vntol=1.0u .Option Trtol=1000 .Option Method=Gear * Engine Solver: Alternate Libraries: .LIB 2sk4101ls.lib .LIB an1431t.lib .LIB pc817c.lib .LIB d2sba60.lib .LIB mbrf20100ct.lib .LIB era91-02.lib .LIB 1n5408.lib .LIB fan7601.lib 27Copyright (C) Siam Bee Technologies 2015
  • 28. Appendix A - Initial Condition Settings Copyright (C) Siam Bee Technologies 2015 28 Initial phase= 90 .IC V(Vdc_in)= {Vac*√2} .IC V(Vcc)= 12V .IC V(Out) = 11V .IC V(Cs)= 0V .IC V(Rt_Ct)= 0V .IC V(Ls)= 2V
  • 29. Appendix B - Bill of Materials Copyright (C) Siam Bee Technologies 2015 29 Designator Manufacturer Part Number Comment Designator Manufacturer Part Number Comment R1 - 10Ω - C109 - 0.47uF - R103 - 56kΩ - C112 - 0.1uF - R105 - 100Ω - C201 - 1000uF - R107 - 0.5Ω - C202 - 1000uF - R108 - 1kΩ - C203 - 1nF - R109 - 8kΩ - C222 - 2.2nF - R110 - 3.9kΩ - D1 Fairchild 1N5408 Spice model R201 - 3.3kΩ - D101 Fairchild 1N5408 Spice model R202 - 1.2kΩ - D102 Fairchild 1N5408 Spice model R204 - 27kΩ - D103 Fuji Electric ERA91-02 Spice model R205 - 7kΩ - D201 ON Semi. MBRF20100CT Spice model R206 - 10Ω - D202 ON Semi. MBRF20100CT Spice model C1 - 1nF - U1 Shindengen D2SBA60 Spice model C103 - 150uF - U101 Fairchild FAN7601 Spice model C105 - 10pF - UQ101 Sanyo 2SK4101LS Spice model C106 - 2.7nF - U201 Panasonic AN1431T Spice model C107 - 47uF - U301 Sharp PC817C Spice model C108 - 0.01uF -
  • 30. Simulation Index 30 Simulations Folder name 1. 50W Off-Line Adapter Circuit (VIN=85Vac)................ 2. 50W Off-Line Adapter Circuit (VIN=110Vac).............. 3. 50W Off-Line Adapter Circuit (VIN=85Vac)................ 4. Operation Waveform (VIN=110Vac, Example)........... ../Simulation data/VIN_85VAC ../Simulation data/VIN_110VAC ../Simulation data/VIN_265VAC ../Simulation data/Operation Waveform Copyright (C) Siam Bee Technologies 2015