SlideShare une entreprise Scribd logo
1  sur  8
Télécharger pour lire hors ligne
SABiosciences

TM

TECHNICAL ARTICLE

RT2 miRNA PCR Arrays

The Complete System for Genome-Wide & Pathway Focused microRNA Analysis
Yexun (Bill) Wang, Daniel Kim, Jennifer Gibbons, Xiao Zeng, Liyan Pang, George Quellhorst

SABiosciences Corporation 6951 Executive Way, Frederick, MD 21703 USA
Phone: +1 (301) 682-9200 Fax: +1 (301) 682-7300 Web: www.SABiosciences.com
Email: support@SABiosciences.com
Abstract: As powerful regulators of gene expression, microRNA (miRNA) have been implicated in diverse biological
pathways such as immune responses, development and differentiation, oncogenic pathways (like DNA repair and
apoptosis), and oxidative stress responses. This paper discusses some major obstacles in miRNA real-time PCR assay
development and evaluates the performance of the newest technique for the analysis of genome-wide miRNA expression:
RT2 miRNA PCR™ Arrays from SABiosciences. RT² miRNA PCR Arrays integrate the quantitative performance of
SYBR® Green-based real-time RT-PCR and the multi-sequence profiling capabilities of a microarray. The miRNA PCR
Array is a set of optimized real-time PCR assays, in 96-well or 384-well plates, for a miRNA panel as well as appropriate
housekeeping assays and RNA quality controls. A complete system includes a small RNA isolation kit, optimized
miRNA first strand synthesis kit, and an instrument specific master mix. This paper also presents scientific data showing
that the miRNA PCR Arrays have significantly improved specificity, sensitivity and reproducibility.

Introduction

Why Study miRNA?

What is miRNA?

The completion of the Human Genome Project in 2003 confirmed
the hypothesis that a large part of the genome is not translated into
proteins. This so called “junk” DNA was thought to be evolution’s
debris with no function. We now realize that a portion of this noncoding DNA is highly relevant to the regulation of gene expression.
While only about 1000 human miRNA sequences have been identified
so far, with each one having the possibility of hundreds of mRNA
targets, the potential effects of this class of RNA molecule is quite

Mature microRNAs (miRNA) are small single stranded RNA
molecules, typically 22 nucleotides in length. They were first
identified in studies of Caenorhabditis elegans development in 1993
[1], but have since been found in many species of plant and animal.
These RNA species are originally transcribed as a larger RNA species
hundreds or thousands of bases long, termed the primary miRNA
(pri-miRNA) [2]. The pri-miRNA is trimmed by the Microprocessor,
comprised of a Drosha family member, in the nucleus into a roughly
70 nucleotide hairpin termed precursor miRNA (pre-miRNA), which
is then exported to the cytoplasm. The RNase III enzyme, Dicer,
further processes pre-miRNA into the shorter RNA duplexes now
known as miRNA. The miRNA is then unwound, and one strand
(the mature miRNA) is incorporated into the RNA-induced silencing
complex (RISC), composed of Dicer, TRBP and Ago2. The RISC
complex guides the mature miRNA to its messenger RNA (mRNA)
target, typically base pairing imperfectly to its 3’ untranslated region
(3’-UTR). The recruitment of this complex to a target messenger RNA
(mRNA) inhibits its translation and therefore the synthesis of the
encoded protein, but can also induce degradation of the mRNA target.
The imperfect nature of the base-pairing, formed from a 7-nucleotide
“seed region” within the miRNA, allows a single miRNA to control
multiple genes with homologous sequences in the target region.
Over 700 miRNA genes have been identified in the human genome
(http://microrna.sanger.ac.uk/), and each miRNA is proposed to
have hundreds of mRNA targets [3]. Therefore, it is predicted that
30% of human genes are regulated by miRNA [4].

Contents
Introduction................................................................................................... 1
	 A) What is miRNA?.................................................................................... 1
	 B) Why Study miRNA. ............................................................................... 1
	 C) How is miRNA Studied?. ....................................................................... 2
The Complete miRNA PCR Array System................................................. 2
	 A) Improved Sensitivity & Dynamic Range. ............................................... 2
	 B) High PCR Efficiency, Improved Specificity & Discrimination................. 3
	 C) High Reproducibility.............................................................................. 4
RT2 miRNA PCR Array Application Examples........................................... 5
	
I. Cancer Research: Identifying miRNA Cancer Biomarkers.........................5
	
	
	
	
	

II. Development Research: Identifying Tissue-Specific miRNA
Biomarkers..........................................................................................................6
III. Signal Transduction Research: Screen the Genome for
p53-Responsive miRNA...................................................................................6
.
IV. miRNA Expression Analysis from Formalin-fixed Paraffin-

embedded Tissue Sections ............................................................................6
Summary........................................................................................................ 7
References..................................................................................................... 7
RT2 MicroRNA PCR Arrays

2
large. The importance of miRNA regulatory roles is underscored
by literature evidence that miRNA function is involved in almost all
biological processes, including cancer [5], stem cell regulation [6],
immune function [7], neurogenesis [8], metabolism [9] and others.
The expression patterns of miRNA have been exploited as a new class
of biomarkers for disease phenotypes and tissue classifications [10,
11], with the potential to hold better predictive value than codinggene based biomarkers.

How is miRNA Studied?
The first question researchers want to know is: among the hundreds
of miRNAs, which ones are differentially expressed in their model
system. To get this answer, microarray and reverse transcription (RT)
real-time PCR are the most often used platforms. Detecting every
miRNA across the entire genome in a specific and sensitive way is a
very challenging technological task. Many miRNA family members
and otherwise distinct miRNA species have very similar sequences,
some only differing by a single nucleotide.
Microarray-based miRNA detection relies on the direct hybridization
of miRNA in the sample to specific probes on a solid surface. Only
a single hybridization event determines the detection specificity.
Unlike microarrays, real-time PCR is more specific and more
quantitative. Not only multiple annealing events, but also the Taq
polymerase confers assay specificity. Taq polymerase extends
imperfectly annealed, non-specific primer-template complexes less
efficiently over specific annealing events. Additionally, real-time
PCR has greater sensitivity and a much wider detection range than
microarrays. In fact, most researchers choose real-time PCR as a tool
to further validate their microarray data.

A.

Conventional schemes for RT real-time PCR assay design are not
suitable for miRNA detection due to the short nature of the target
templates. There are two main popular real-time PCR based approaches
for miRNA detection (Figure 1). One uses sequence-specific stem-loop
RT primers (designed to anneal to the 3’-end of a mature miRNA) to
convert miRNA into cDNA [12]. Then, a forward primer (specific to the
5’-end of the miRNA), a universal reverse primer (specific for the stemloop RT primer sequence) and a 5’-nuclease hydrolysis probe (matching
part of the miRNA sequence and part of the RT primer sequence) are
used in real-time PCR detection. The other approach uses RNA poly(A) polymerase to add a poly-(A) tail to the free 3’-hydroxyl end of the
mature miRNA molecule. Then, an oligo-dT-containing universal RT
primer is used to convert miRNA into cDNA [13]. In the end, a miRNAspecific forward primer (utilizing the entire mature miRNA sequence)
and a universal reverse primer (specific for the universal RT primer) are
used in a SYBR® Green-based real-time PCR assay.
The limitation of the stem-loop RT-qPCR approach is that each
miRNA assay requires a separate RT reaction, making the analysis
of multiple miRNAs quite cumbersome. As each RT product can
only be used for detecting one miRNA, it consumes more samples
than needed when multiple miRNAs have to be assayed. Although
the RT reaction can be multiplexed with many gene-specific stemloop primers, performance and flexibility suffer when assaying a
few hundred miRNAs together. Recently, it has been reported that
miRNA variants are quite often expressed simultaneously in cells
[14]. Those miRNA variants differ at 3’-ends due to variability in
Dicer processing. Old gene-specific RT primer designs will not detect
all of these variants. Because poly-(A) tailing RT-qPCR represents a
universal approach, RT reaction efficiency should not be affected by
the presence of variants. The cDNA generated by universal poly(A) tailing RT reaction can be used to assay many different miRNAs.
Archived cDNA can be conveniently stored and used for other or any
new miRNAs in the future. No new RT assay design and performance
is required for newly discovered miRNA species.
Although 5’-nuclease hydrolysis probe-based qPCR is generally
perceived to be more specific, this advantage is limited for miRNA,
given their short 20 to 30 nucleotide-long template sequences. With
optimized reaction chemistry and primer design, universal poly-(A)
tailing RT and SYBR® Green-based qPCR assays deliver similarly
high specificity (see below) for miRNA with much more flexibility.

B.

The Complete miRNA PCR Array System
The SABiosciences’ RT2 miRNA RT-PCR system offers a simple and
scalable solution for the quantitative analysis of miRNA expression.
PCR arrays allow the simultaneous detection of over 700 miRNAs,
representing most functional miRNAs. Knowing and understanding
the various challenges associated with miRNA detection, we came up
with creative solutions in both reaction chemistry and assay design
to deliver greatly improved performance over other traditional
methods.

Figure 1: Strategies for miRNA RT-PCR. A) Stem-loop RT-PCR B) Universal poly-(A)
tailing RT-PCR

A) Improved Sensitivity & Dynamic Range:
There are multiple reasons for the superior sensitivity and dynamic

Tel 888-503-3187 (USA)

301-682-9200

Fax 888-465-9859 (USA)

301-682-7300
SABiosciences

3

Poly-(A) tailing of single strand RNA is not a sequence specific
process [15]. However, the poly-adenylation reaction does require
the free 3’-hydroxyl groups on all miRNA molecules. RNA fragments
with 3’-phosphorylation are not tailed or converted into cDNA. RNA
poly-(A) polymerase is also very sensitive to template secondary
structure. It works best with single stranded RNA ends, and tails
double-stranded, blunt or non-protruding 3’-ends very inefficiently
[15]. Most pre-miRNA molecules, having hair-pin structures, are not
substrates for poly-(A) addition or reverse transcription.
While developing the miRNA qPCR system, we noticed that some
RNA species (such as small nuclear RNA, tRNA and small rRNA)
can be poly-adenylated and converted to cDNA by oligo-dT primers.
Other RNA species with an intrinsic poly-(A) tract, like mRNA, can
also be converted to cDNA. Because they all carry the universal
priming sequence (from the oligo-dT RT primer), significant nonspecific amplification can happen, leading to high background and
making the specific analysis of mature miRNA problematic (Fig 2). To
address this issue, we exploited the single-strand RNA dependence
of both the poly-(A) polymerase and the reverse transcriptase. Both
enzymes act on highly structured RNA very inefficiently. Thus,
we developed a patent-pending buffer system, which favors the
formation of RNA secondary structure during the poly-(A) tailing
and reverse transcription process. In the same buffer, the very short
miRNAs does not form higher order structures. As a result, our buffer
conditions achieve much lower background compared to traditional
poly-(A) tailing and RT chemistry. The overall improvement of
sensitivity can be as much as 1000-fold (Figure 2).

35
25
20
15
10
5
0

B1.

RT2 miRNA PCR Array
Competitor #1
Competitor #2

30

1

3 4 5 6 7 8
Log10 [miR-658 Copies]

2

10 11

9

-d(RFU) / dT

50
40
30
20
10
0
64

66

68

70

72

74

76

78

80

Email support@SABiosciences.com

82

30
20
10
0
62

64

66

68

70

72

74

76

78

80

82

84

86

88

90

Figure 2: Superior Sensitivity & Dynamic Range with miRNA PCR Array System.
A) Synthetic mir-658 was serially diluted into a constant amount (100 ng) of small RNA
enriched from 293H cells lacking that sequence. Samples were analyzed with mir-658specific RT² miRNA qPCR Assays and other commercial assays. The resulting threshold
cycle values from the assays are plotted versus the log10 of the number of mir-658
template copies. B) The elimination of non-specific background contributes to the
observed wider dynamic range. Melt curve analysis reveals multiple peaks in another
commercial assay (B1), but a single peak in the SABiosciences’ assay (B2).

B) High PCR Efficiency, Improved Specificity & Discrimination:
For poly-(A) tailing RT and SYBR® Green-based qPCR of miRNA,
conventional wisdom would utilize forward miRNA-specific primer
sequence identical to the mature miRNA sequence [13], because they
are about the same length. However, in many cases, this primer
selection criterion creates various problems, such as primer dimers,
low amplification efficiency, high non-specific amplification, and low
discrimination among homologous miRNA. So what options are
available besides abandoning such assays?
miR-99a

AACCCGUAGAUCCGAUCUUGUG

miR-100

AACCCGUAGAUCCGAACUUGUG

120

Target-Specific Assay

80

Off-Target Assay

72.20

60
40
21.76

20
0.54

0.07

hsa-miR-99a
hsa-miR-100
RT2 mRNA qPCR Assays

hsa-miR-99a hsa-miR-100
Competitor qPCR Assays

Figure 3: RT2 miRNA PCR Assays Distinguish miRNA Family Members with Single
Nucleotide Mismatches via a Proprietary Primer Design. Relative detection as a
percent of the perfect match (100 x 2- DDCt) is calculated from the Ct values of target- and
off-target assays used to detect 105 copies of synthetic miRNA template. Mismatches
between assay and synthetic template are shown in bold.

60

62

40

0

y = -3.3683x + 41.596 R2 = 0.9982

0

50

Relative Detection
(% perfect match)

Threshold Cycles

40

60

100

1000X More Sensitive Than Competitors

A.

B2. 70

-d(RFU) / dT

range for our miRNA assays. Key reason among these is the
patent-pending chemistry of the RT² miRNA First Strand Kit that
preferentially add poly-(A) tails and reverse transcribes mature
miRNA, thereby decreasing non-specific background caused by
other RNA species.

84

86

88

90

Many miRNA sequences only differ by one or two nucleotides. Primer
annealing differences between perfectly matched and mismatched
cDNA templates, as well as the negative impact of mismatch on Taq
polymerase’s activity, help real-time PCR achieve better sequence
discrimination than microarrays. However, some primers designed
for mature miRNA sequences following conventional rules cannot
Web www.SABiosciences.com
RT2 MicroRNA PCR Arrays

4
achieve the level of discrimination required. We have empirically
validated and adopted primer design optimization rules that can
make assays more discriminative. For example, we studied the crossreactivity of two primer assays for hsa-miR-99a and hsa-miR-100.
The difference between their mature miRNA sequences is only one
nucleotide (Figure 3). Our competitor’s miRNA primer assays show
high degree of cross-reactivity (Fig 3). In contrast our hsa-miR-99a
assay has very low level of amplification from hsa-miR-100 template,
and conversely the hsa-mir-100 assay does not detect hsa-mir-99a
template. Similarly, other highly homologous miRNA sequences are
well differentiated with our miRNA assays (Table 1).
Synthetic
miRNA
template
miR-10a

miR-10b

miR-196a

miR-196b

Assay
Primers

Relative Detection
(%Perfect Match)

miR-10a

100.00

miR-10b

0.98

miR-10b

100.00

miR-10a

0.01

miR-196a

100.00

miR-196b

0.20

miR-196b

100.00

miR-196a

1.64

Poly A Minus Ct Values
ID

SABiosciences

Competitor

hsa-mir-16

34.23

30.67

hsa-mir-21

No Ct

31.57

hsa-mir-99a

No Ct

31.96

hsa-mir-100

No Ct

33

hsa-mir-658

37.77

34.1

hsa-mir-769-5p

36.4

30.46

Table 2. SABiosciences First Strand Kit Shows Lower Background than the Competitor.
Total RNA was reverse-transcribed without Poly-(A) Polymerase using SABiosciences’
or the competitor’s buffer system. The cDNA was then used in the corresponding miRNA
qPCR assays. A Ct value >35 is considered not reliably detected and a negative call.

miRNA Template Sequence

UACCCUGUAGAUCCGAAUUUGUG

UACCCUGUAGAACCGAAUUUGUG

UAGGUAGUUUCAUGUUGUUGGG

UAGGUAGUUUCCUGUUGUUGGG

Table 1: High Specificity of miRNA PCR Array. Relative detection as a percent of the
perfect match (100 x 2- DDCt) is calculated from the Ct values of target and off-target
assays used to detect 105 copies of synthetic miRNA template. The observed crossreactivities seen between RT² miRNA qPCR Assays for different miRNA species are
compared. Location of miRNA sequence mismatch is shown in bold.

Our proprietary miRNA specific primer design algorithm minimizes
non-specific amplification and maximizes the discrimination of
miRNA family members in SYBR® Green-based real-time PCR. To
insure the performance of our design algorithm, we apply three
stringent quality control (QC) criteria to each and every miRNA
assay in wet bench tests.
(1) Each miRNA assay must have a very low background. The best
test of each miRNA assay’s background is to perform a mock poly(A) tailing without the use of RNA poly-(A) polymerase followed
by RT-PCR using RNA extracted from cells. Under this condition,
no miRNA molecules should be converted into cDNA. Anything
detected by real-time PCR indicates non-miRNA background, which
compromises specific detection for the particular miRNA. Background
largely comes from two sources, primer dimmers and non-specific
interactions between primers and other non-miRNA derived cDNA
templates. Table 2 summarizes the differences in backgrounds
between our assays and one of our competitors’ for multiple miRNA
sequences. Both the primer design algorithm and the unique buffer
system mentioned above contribute to the improved performance
achieved by our assays.

(2) Each miRNA assay must have high amplification efficiency.
Within the same chemistry, differences in primer annealing, estimated
by primer melting temperature (Tm), often cause differences in real
time PCR efficiency. The limited miRNA sequence space does not
always allow the selection of miRNA primers with the best Tm
calculation. Moreover, theoretical Tm calculations do not always
agree with empirical measurements. Rather than relying solely on Tm,
we evaluate each primer’s amplification efficiency using the standard
curve method. Specifically, a pool of synthetic cDNA templates for
all queried miRNA sequences is prepared. Then, PCR efficiency for
each miRNA-specific primer is calculated from experiments using
serial dilutions of this pool. All validated primers should have close
to 100% efficiencies.
(3) Each miRNA assay must generate a single PCR product as judged
by the melt curve analysis. As discussed earlier, sub-optimized
miRNA assays may have non-specific amplifications, as indicated
by the presence of multiple peaks or a peak with an incorrect Tm
in a melt curve analysis. We test all of our pre-designed miRNA
primers in PCR with enriched small RNA from four different cell
lines separately following poly-(A) tailing and RT reactions. Good
primer assays yield single dissociation peaks at the same temperature
(Tm) in all four cell samples.
All of the above criteria should be applied to any SYBR® Green-based
miRNA assay designs. We have used our expertise to provide highquality PCR assays so researchers do not have to do the development
work themselves. In our experience, we find that about 47% assays
failed our three QC tests initially. For many miRNA, additional
rounds of primer design optimization improve PCR efficiency,
decrease background, and increase specificity. For others, we are still
developing solutions in order to offer those assays in the future.

C) High Reproducibility
One of the challenges for the miRNA PCR Array system is the
amplification of every relevant, pathway- or disease-focused miRNA
during the same PCR run. Due to the consistent QC criteria for every
assay during our wet-bench validation process, the same uniform
PCR conditions achieve the high level of sensitivity and specificity
expected of real-time PCR.
Our optimized reaction chemistry insures a high degree of

Tel 888-503-3187 (USA)

301-682-9200

Fax 888-465-9859 (USA)

301-682-7300
SABiosciences

5

reproducibility from the miRNA PCR Array System. To demonstrate
this concept, one end-user characterized the same human RNA
sample in technical duplicates with two separate RT2 miRNA First
Strand Kits and RT2 miRNA PCR Arrays. The raw threshold cycle
values for the entire array’s gene panel were then compared between
the replicates. The resulting scatter plot comparison yields the
predicted ideal straight line with a slope close to 1.0 and a correlation
coefficient of 0.99 (Figure 4). The highly reproducible nature of the
raw data means that results can be reliably compared from run-torun, plate-to-plate, and sample-to-sample. Any observed differences
in expression can therefore be attributed to the biology under study
and not to any variability in the technology itself.

High Technical Reproducibility
Technical Replicates 2

35
30
25

15
2

y = 0.9682x + 0.9078 R = 0.9915
15

20

25

30

35

Technical Replicate 1
Figure 4: The High Reproducibility of the RT2 miRNA PCR Arrays. Duplicate samples
of small RNA enriched from human brain tissue (Ambion, 200 ng) were characterized
using the RT² Human Genome miRNA PCR array on an ABI 7900HT. Raw Ct values
greater than 35 or reported as “not determined” were first changed to 35. The values
from the replicate arrays were plotted against each other, and then the data was fit
to a straight line.

Analyzing a representative set of sequences with the Genome or
miFinder arrays discovers novel functional roles for each miRNA.
Focused miRNA panels, like those on the Cancer or Cell Differentiation
& Development arrays, screen miRNA biomarkers known to be most
important to their specific model system. The representative results
below will illustrate examples of experiments that may be performed
with the RT² miRNA PCR Array System.

One currently burgeoning application of miRNA expression profiling
is the identification, screening, and validation of cancer biomarkers.
Because miRNAs have been shown to regulate genes in multiple
oncogenic pathways, it is reasonable to assume that some of the
miRNAs themselves may be dysregulated in tumors and cancer cells.
Screening for potential biomarkers can be performed efficiently with
RT2 miRNA PCR Arrays by quantitatively analyzing a large number
of miRNAs simultaneously. To exemplify the ease that interpretable
results can be obtained, we chose to compare miRNA expression
levels between a colon tumor and the corresponding matched
adjacent normal tissue (Figure 5). The RT² Human Cancer miRNA
PCR Array identifies potential colon cancer biomarkers, as shown by
the miRNAs that are up- or down-regulated in this experiment.

Human Colon Tumor Versus Adjacent Normal Tissue

3
2
1
0

-1

-2

miR-133b
miR-122
miR-20b
miR-335
miR-196a
miR-125a-5p
miR-142-5p
miR-96
miR-222
miR-148b
miR-92a
miR-184
miR-214
miR-15a
miR-18b
miR-378
let-7b
miR-205
miR-181a
miR-130a
miR-199a-3p
miR-40-5p
miR-20a
miR-146b-5p
miR-132
miR-193b
miR-183
miR-34c-5p
miR-30c
miR-148a
miR-134
let-7g
miR-138
miR-373
let-7c
let-7e
miR-17*
miR-29b
miR-146a
miR-212
miR-135b
miR-206
miR-124
miR-21
miR-103
miR-301a
miR-141
miR-100
miR-10b
miR-155
miR-1
miR-363
miR-150
let-7i
miR-27b
miR-7
miR-127-5p
miR-29a
miR-191
milet-7d
miR-9
let-7f

Log2 [Fold Difference]

4

The regulated expression of miRNA adds another layer of control
to an already complex gene regulatory network. One miRNA can
regulate multiple mRNA targets, and one target mRNA may be
regulated by multiple miRNA sequences. Therefore, the role that
any given miRNA sequence plays has yet to be completely defined.
Correlating miRNA expression profiles to biological phenotypes
adds to our understanding of miRNA-based gene regulation.

I. Cancer Research: Identifying miRNA Cancer
Biomarkers

20

10
10

RT2 miRNA PCR Array Application Examples

miRNA

Figure 5: RT2 Human Cancer miRNA PCR Array identifies potential colon cancer biomarkers. Small RNA isolated from human colon tumor and matched adjacent normal tissue
(Biochain) was characterized with PCR Arrays containing assays specific for 88 cancer-related human miRNA sequences. Fold-differences are calculated from raw Ct values
normalized to a panel of housekeeping snRNA genes.

Email support@SABiosciences.com

Web www.SABiosciences.com
RT2 MicroRNA PCR Arrays

6

II. Development Research: Identifying Tissue-Specific
miRNA Biomarkers

35

Ct Adeno-p53

Human Brain vs Human Muscle

4
3

Log10 (Brain)

40

2
1

30
203
551a
25
34a
940

20

0
-1

15

-2

20

25

30

35

40

Ct Control

-3
-4

15

-4

-3

-2

-1

0

1

2

3

4

Log10 (Muscle)
Figure 6: RT2 Human Differentiation miRNA PCR Array Identifies Tissue Specific miRNAs.
Small RNA enriched from human brain and muscle tissue total RNA (200 ng, Ambion)
were characterized with PCR Arrays containing assays for 88 differentiation-related
miRNA sequences. Normalized miRNA sequence expression levels for both tissues are
calculated and plotted against each other. Symbols outside the dotted lines represent
miRNA with at least a 2-fold expression difference between the respective tissues.

MicroRNA research began and continues to expand in the
developmental research field. Our miRNA RT-PCR array easily
screens for potentially important miRNAs in your tissue of interest. As
an example, we compared miRNA expression in two different tissues,
muscle and brain (Figure 6). The RT² Human Cell Differentiation &
Development miRNA PCR Array identifies 26 brain- and 20 musclespecific miRNA, as defined by greater than a 2-fold enrichment in
these respective tissues.

III. Signal Transduction Research: Screen the Genome
for p53-Responsive miRNA
Cancer and cell differentiation are the two research fields that have
most widely adopted the concept of miRNA expression profiling
and therefore high value miRNA candidates can be easily grouped
together. Scientists working in other biomedical research fields
still need to discover which miRNA sequences regulate genes
involved in the biological or disease processes that they study
or simply their single gene of interest. For example, if a protein
decreases its apparent level of expression on a Western blot but
maintains its level of expression at the RNA level by RT-PCR, then
a post-transcriptional mechanism of gene regulation, like miRNA,
is most likely involved. In fact, any researcher who is interested
in understanding how their genes of interest are regulated should
consider miRNA expression profiling. Fortunately, unlike gene
expression profiling, the relative small size of the mammalian
miRNA genome allows a 96-well or 384-well PCR plate to
simultaneously profile up to a quarter or even a half of the genome
on the miFinder or Genome RT2 miRNA PCR Arrays.

Tel 888-503-3187 (USA)

301-682-9200

Figure 7: RT2 Human Genome miRNA PCR Array Identifies Potential p53 Responsive miRNAs.
PC3 cells were transduced with adenovirus either encoding p53 or containing an empty
vector. After 48 h, small RNA was characterized with PCR Arrays containing 376 human
miRNA-specific assays. The scatter plot shows the differences in miRNA expression
upon p53 over-expression. Symbols represent miRNA with greater than two fold
changes in the expression.

To illustrate this idea, we profiled expression change for a large portion
the human miRNA genome (376 sequences) upon overexpression of
the p53 oncogene using Human Genome RT2 miRNA PCR Arrays. The
RT² Human Genome miRNA PCR Array identifies known and novel
miRNA sequences responsive to p53 over-expression (Figure 7). The
array identifies the well-known p53 targets, mir-34a and mir-34c [16],
as well as a dozen novel candidate targets including mir-203, mir-551a,
mir-940, mir-614, and others. The results of this experiment interestingly
suggest yet another layer of complexity to gene expression regulation.
The transcription factor, as gene expression regulator, also regulates
the expression of miRNA, a new class of gene expression regulators at
the post-transcriptional level. More importantly, this experiment also
demonstrates how any area of biomedical research can easily contribute
to a better understanding not only of the role of miRNA in their model
system of interest, but also of miRNA function in general, all with a very
simple experiment using the RT2 miRNA PCR Arrays.

IV. miRNA Expression Analysis from Formalin-fixed
Paraffin-embedded Tissue Sections
Formalin-fixed paraffin embedded (FFPE) samples represent an
invaluable source of research materials providing access to well
documented links between molecular and clinical information. It
has been suggested that miRNA, being small in size, are less prone
to degradation during the fixation and storage process. Thus, we
studied whether our miRNA RT-PCR array system can be used to
profile miRNA expression from FFPE samples. As an example, total
RNA was extracted from one 20mm section of a two-year old human
colon FFPE block using the RT² FFPE RNA Extraction Kit. One
microgram extracted RNA was used with RT² miRNA First Strand
Kit and Human Cancer miRNA PCR Array protocol. The results (Fig.
8) indicate that the majority of miRNAs from FFPE samples are well
preserved and can be used as the template for our miRNA RT-PCR
array system. This opens up the opportunity of carrying out miRNA
biomarker analysis in the vast amount of archived samples.
Fax 888-465-9859 (USA)

301-682-7300
SABiosciences

7
15

20

25

30

35

40Ct

miR-21
miR-125b
miR-199a-3p
miR-100
miR-10a
miR-10b
miR-200c
miR-16
miR-125a-5p
let-7b
miR-143
miR-1
miR-126
miR-92a
miR-23b
miR-27b
let-7i
miR-191
miR-378
miR-27a
miR-150
miR-148a
miR-25
miR-146a
miR-29b
miR-215
let-7a
miR-29a
miR-7
miR-30c
miR-15b
let-7e
let-7g
miR-146b-5p
miR-20a
miR-214
miR-17
miR-203
miR-15a
let-7c
miR-222
miR-155
miR-193b
miR-196a
miR-128a
miR-181b
miR-363
miR-193a-5p
miR-181a
mirR-148b
miR-218
miR-9
miR-130a
miR-19a
miR-20b
miR-132
miR-18b
miR-34a
let-7d
miR-210
miR-181c
miR-134
miR-301a
miR-205
miR-18a
miR-140-5p
miR-124
miR-373
miR-133b
miR-32
miR-212
miR-181d
miR-142-5p
miR-183
miR-149
miR-335
miR-138
miR-96
miR-127-5p
miR-34c-5p
miR-372
miR-206
miR-184
miR-98
miR135b
miR-144
let-7f
miR-122

Summary
The shortness and homology of miRNA sequences present significant
challenges for their accurate detection. We have developed patentpending chemistry and a proprietary primer design algorithm.
Together with a rigorous validation process, these technical advances
result in the high performance miRNA assays, which form the
foundation of the RT2 miRNA PCR Array system. The flexibility,
simplicity, and convenience of standard SYBR Green PCR detection
methodology make the miRNA PCR Array system accessible for
routine use in any research laboratory. The arrays feature a pathwayfocused, genome-wide or even customizable miRNA content
design, while demonstrating the sensitive, specific and reproducible
performance expected from real-time PCR. As a result, the RT2
miRNA PCR Array System is ideally suited to allow every laboratory
to combine the performance of real-time PCR with the profiling
capabilities of a microarray for miRNA expression profiling.

Reference
1.	 Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic
gene lin-4 encodes small RNAs with antisense complementarity to lin14. Cell, 1993. 75(5): p. 843-54.
2.	 Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev
Biol, 2007. 23: p. 175-205.
3.	 Lim, L.P., et al., Microarray analysis shows that some microRNAs
downregulate large numbers of target mRNAs. Nature, 2005.
433(7027): p. 769-73.
4.	 Ross, J.S., J.A. Carlson, and G. Brock, miRNA: the new gene silencer.
Am J Clin Pathol, 2007. 128(5): p. 830-6.
5.	 Visone, R. and C.M. Croce, MiRNAs and cancer. Am J Pathol, 2009.
174(4): p. 1131-8.
6.	 Gangaraju, V.K. and H. Lin, MicroRNAs: key regulators of stem cells.
Nat Rev Mol Cell Biol, 2009. 10(2): p. 116-25.
7.	 Xiao, C. and K. Rajewsky, MicroRNA control in the immune system:
basic principles. Cell, 2009. 136(1): p. 26-36.
8.	 Shen, Q. and S. Temple, Fine control: microRNA regulation of adult
neurogenesis. Nat Neurosci, 2009. 12(4): p. 369-70.
9.	 Tavintharan, S., et al., Riboregulators and metabolic disorders: getting
closer towards understanding the pathogenesis of diabetes mellitus?
Curr Mol Med, 2009. 9(3): p. 281-6.
10.	 Bartels, C.L. and G.J. Tsongalis, MicroRNAs: novel biomarkers for
human cancer. Clin Chem, 2009. 55(4): p. 623-31.
11.	 Rosenfeld, N., et al., MicroRNAs accurately identify cancer tissue
origin. Nat Biotechnol, 2008. 26(4): p. 462-9.
12.	 Chen, C., et al., Real-time quantification of microRNAs by stem-loop
RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
13.	 Shi, R. and V.L. Chiang, Facile means for quantifying microRNA
expression by real-time PCR. Biotechniques, 2005. 39(4): p. 519-25.
14.	 Morin, R.D., et al., Application of massively parallel sequencing to
microRNA profiling and discovery in human embryonic stem cells.
Genome Res, 2008. 18(4): p. 610-21.
15.	 Martin, G. and W. Keller, Tailing and 3’-end labeling of RNA with yeast

15

20

25

30

35

40Ct

Figure 8: Expression rank order of 88 cancer related miRNAs in RNA extracted from
one 20mm section of a 2-year old normal human colon FFPE block using the RT2 FFPE
RNA Extraction Kit.

Email support@SABiosciences.com

poly(A) polymerase and various nucleotides. RNA, 1998. 4(2): p. 226-30.
16.	 He, L., et al., A microRNA component of the p53 tumour suppressor
network. Nature, 2007. 447(7148): p. 1130-4.

Web www.SABiosciences.com
RT2 MicroRNA PCR Arrays

8

© 2009 SABiosciences Corporation All Rights Reserved
RT2 miRNA PCR, RT2 Profiler PCR Array, PathwayFinder, RT2 FFPE, and RT2 FFPE PreAMP are trademarks
of SABiosciences Corporation. SYBR is a registered trademark of Molecular Probes.

Tel 888-503-3187 (USA)

301-682-9200

Fax 888-465-9859 (USA)

301-682-7300

Contenu connexe

Tendances

Applications of pcr
Applications of pcrApplications of pcr
Applications of pcrMubaikaSeher
 
Sequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TMSequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TMThermo Fisher Scientific
 
TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030
TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030
TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030Thermo Fisher Scientific
 
Planning and Executing siRNA Experiments—Good Practices for Optimal Results
Planning and Executing siRNA Experiments—Good Practices for Optimal ResultsPlanning and Executing siRNA Experiments—Good Practices for Optimal Results
Planning and Executing siRNA Experiments—Good Practices for Optimal ResultsIntegrated DNA Technologies
 
POLYMERASE CHAIN REACTION
POLYMERASE CHAIN REACTIONPOLYMERASE CHAIN REACTION
POLYMERASE CHAIN REACTIONhera9
 
Technical Guide to Qiagen PCR Arrays - Download the Guide
Technical Guide to Qiagen PCR Arrays - Download the GuideTechnical Guide to Qiagen PCR Arrays - Download the Guide
Technical Guide to Qiagen PCR Arrays - Download the GuideQIAGEN
 
2016 micro rna in control of gene expression an overview of nuclear functions
2016   micro rna in control of gene expression an overview of nuclear functions2016   micro rna in control of gene expression an overview of nuclear functions
2016 micro rna in control of gene expression an overview of nuclear functionsAntar
 
RNA Drugs Informatics - 90 min lecture with questions
RNA Drugs Informatics - 90 min lecture with questionsRNA Drugs Informatics - 90 min lecture with questions
RNA Drugs Informatics - 90 min lecture with questionsMorten Lindow
 
Applications of Single Cell Analysis
Applications of Single  Cell AnalysisApplications of Single  Cell Analysis
Applications of Single Cell AnalysisQIAGEN
 
application of pcr in agriculture
application of pcr in agricultureapplication of pcr in agriculture
application of pcr in agricultureharshitajiancdfst
 
miRNA profiling from blood challenges and recommendations - Download the article
miRNA profiling from blood challenges and recommendations - Download the articlemiRNA profiling from blood challenges and recommendations - Download the article
miRNA profiling from blood challenges and recommendations - Download the articleQIAGEN
 

Tendances (20)

Molecular profiling 2013
Molecular profiling 2013Molecular profiling 2013
Molecular profiling 2013
 
Applications of pcr
Applications of pcrApplications of pcr
Applications of pcr
 
Sequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TMSequencing the Human TCRβ Repertoire on the Ion S5TM
Sequencing the Human TCRβ Repertoire on the Ion S5TM
 
TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030
TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030
TaqMan® Rare Mutation Assays w/ Digital PCR | ESHG 2015 Poster PM14.030
 
Planning and Executing siRNA Experiments—Good Practices for Optimal Results
Planning and Executing siRNA Experiments—Good Practices for Optimal ResultsPlanning and Executing siRNA Experiments—Good Practices for Optimal Results
Planning and Executing siRNA Experiments—Good Practices for Optimal Results
 
RT-PCR
RT-PCRRT-PCR
RT-PCR
 
POLYMERASE CHAIN REACTION
POLYMERASE CHAIN REACTIONPOLYMERASE CHAIN REACTION
POLYMERASE CHAIN REACTION
 
Technical Guide to Qiagen PCR Arrays - Download the Guide
Technical Guide to Qiagen PCR Arrays - Download the GuideTechnical Guide to Qiagen PCR Arrays - Download the Guide
Technical Guide to Qiagen PCR Arrays - Download the Guide
 
Pcr
PcrPcr
Pcr
 
Pcr Presentation
Pcr PresentationPcr Presentation
Pcr Presentation
 
4 nmj 2-1
4   nmj 2-14   nmj 2-1
4 nmj 2-1
 
2016 micro rna in control of gene expression an overview of nuclear functions
2016   micro rna in control of gene expression an overview of nuclear functions2016   micro rna in control of gene expression an overview of nuclear functions
2016 micro rna in control of gene expression an overview of nuclear functions
 
RNA Drugs Informatics - 90 min lecture with questions
RNA Drugs Informatics - 90 min lecture with questionsRNA Drugs Informatics - 90 min lecture with questions
RNA Drugs Informatics - 90 min lecture with questions
 
Applications of Single Cell Analysis
Applications of Single  Cell AnalysisApplications of Single  Cell Analysis
Applications of Single Cell Analysis
 
Ppt.pcr appli.
Ppt.pcr appli.Ppt.pcr appli.
Ppt.pcr appli.
 
Biogroup
BiogroupBiogroup
Biogroup
 
PCR
PCRPCR
PCR
 
application of pcr in agriculture
application of pcr in agricultureapplication of pcr in agriculture
application of pcr in agriculture
 
miRNA profiling from blood challenges and recommendations - Download the article
miRNA profiling from blood challenges and recommendations - Download the articlemiRNA profiling from blood challenges and recommendations - Download the article
miRNA profiling from blood challenges and recommendations - Download the article
 
Pcr. ppt
Pcr. pptPcr. ppt
Pcr. ppt
 

En vedette

Whitepaper serumplasma
Whitepaper serumplasmaWhitepaper serumplasma
Whitepaper serumplasmaElsa von Licy
 
''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...
''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...
''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...Wisdom Deebeke Kate
 
Competing Endogenous RNA
Competing Endogenous RNACompeting Endogenous RNA
Competing Endogenous RNABedanta Mohanty
 
Micro RNAs and ageing Dr Felekkis 2014 (1)
Micro RNAs and ageing Dr Felekkis 2014 (1)Micro RNAs and ageing Dr Felekkis 2014 (1)
Micro RNAs and ageing Dr Felekkis 2014 (1)Marios Kyriazis
 
Pseudogene Journal Club Presentation
Pseudogene Journal Club PresentationPseudogene Journal Club Presentation
Pseudogene Journal Club PresentationLucas Man
 

En vedette (6)

Whitepaper serumplasma
Whitepaper serumplasmaWhitepaper serumplasma
Whitepaper serumplasma
 
''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...
''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...
''Translational Repression and eIF4A2 Activity Are Critical for MicroRNA-Medi...
 
Competing Endogenous RNA
Competing Endogenous RNACompeting Endogenous RNA
Competing Endogenous RNA
 
miRNA and Diabetes
miRNA and DiabetesmiRNA and Diabetes
miRNA and Diabetes
 
Micro RNAs and ageing Dr Felekkis 2014 (1)
Micro RNAs and ageing Dr Felekkis 2014 (1)Micro RNAs and ageing Dr Felekkis 2014 (1)
Micro RNAs and ageing Dr Felekkis 2014 (1)
 
Pseudogene Journal Club Presentation
Pseudogene Journal Club PresentationPseudogene Journal Club Presentation
Pseudogene Journal Club Presentation
 

Similaire à Rt2 micrornapcr arrayswhitepaper

Bro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lrBro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lrElsa von Licy
 
Insilico & Genomics Approaches for the Characterization of Abiotic Stress ...
Insilico & Genomics  Approaches  for the Characterization of  Abiotic Stress ...Insilico & Genomics  Approaches  for the Characterization of  Abiotic Stress ...
Insilico & Genomics Approaches for the Characterization of Abiotic Stress ...rishiraj1992
 
Mi rna functional analysis 2013
Mi rna functional analysis 2013Mi rna functional analysis 2013
Mi rna functional analysis 2013Elsa von Licy
 
miScript Single Cell Poster
miScript Single Cell PostermiScript Single Cell Poster
miScript Single Cell PosterQIAGEN
 
Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...
Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...
Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...QIAGEN
 
Mi rna series i-dec 2012
Mi rna series i-dec 2012Mi rna series i-dec 2012
Mi rna series i-dec 2012Elsa von Licy
 
Mi rna part iii_2013
Mi rna part iii_2013Mi rna part iii_2013
Mi rna part iii_2013Elsa von Licy
 
microRNA discovery and biomarker development in clinical samples
microRNA discovery and biomarker development in clinical samplesmicroRNA discovery and biomarker development in clinical samples
microRNA discovery and biomarker development in clinical samplesexiqon
 
A comprehensive study of microarray
A comprehensive study of microarrayA comprehensive study of microarray
A comprehensive study of microarrayPRABAL SINGH
 

Similaire à Rt2 micrornapcr arrayswhitepaper (20)

Bro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lrBro gef mi_rna_0212_lr
Bro gef mi_rna_0212_lr
 
Mirnapcrarray
MirnapcrarrayMirnapcrarray
Mirnapcrarray
 
Insilico & Genomics Approaches for the Characterization of Abiotic Stress ...
Insilico & Genomics  Approaches  for the Characterization of  Abiotic Stress ...Insilico & Genomics  Approaches  for the Characterization of  Abiotic Stress ...
Insilico & Genomics Approaches for the Characterization of Abiotic Stress ...
 
Mi rna brochure_set
Mi rna brochure_setMi rna brochure_set
Mi rna brochure_set
 
Mi rna toss_set
Mi rna toss_setMi rna toss_set
Mi rna toss_set
 
Mi rna functional analysis 2013
Mi rna functional analysis 2013Mi rna functional analysis 2013
Mi rna functional analysis 2013
 
miScript Single Cell Poster
miScript Single Cell PostermiScript Single Cell Poster
miScript Single Cell Poster
 
Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...
Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...
Extending miRQC’s dynamic range: amplifying the view of Limiting RNA samples ...
 
Mirna and its applications
Mirna and its applicationsMirna and its applications
Mirna and its applications
 
Small rna
Small rnaSmall rna
Small rna
 
Biotechnology lecture
Biotechnology lectureBiotechnology lecture
Biotechnology lecture
 
Mi rna assays 2012
Mi rna assays 2012Mi rna assays 2012
Mi rna assays 2012
 
SiRNA & MiRNA.pptx
SiRNA & MiRNA.pptxSiRNA & MiRNA.pptx
SiRNA & MiRNA.pptx
 
Study of microarray
Study of microarrayStudy of microarray
Study of microarray
 
Mi rna series i-dec 2012
Mi rna series i-dec 2012Mi rna series i-dec 2012
Mi rna series i-dec 2012
 
Genetic engineering
Genetic engineeringGenetic engineering
Genetic engineering
 
Mi rna part iii_2013
Mi rna part iii_2013Mi rna part iii_2013
Mi rna part iii_2013
 
microRNA discovery and biomarker development in clinical samples
microRNA discovery and biomarker development in clinical samplesmicroRNA discovery and biomarker development in clinical samples
microRNA discovery and biomarker development in clinical samples
 
A comprehensive study of microarray
A comprehensive study of microarrayA comprehensive study of microarray
A comprehensive study of microarray
 
Pathways07 mi rna
Pathways07 mi rnaPathways07 mi rna
Pathways07 mi rna
 

Plus de Elsa von Licy

Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...Elsa von Licy
 
Strategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfiStrategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfiElsa von Licy
 
Neuropsychophysiologie
NeuropsychophysiologieNeuropsychophysiologie
NeuropsychophysiologieElsa von Licy
 
L agressivite en psychanalyse (21 pages 184 ko)
L agressivite en psychanalyse (21 pages   184 ko)L agressivite en psychanalyse (21 pages   184 ko)
L agressivite en psychanalyse (21 pages 184 ko)Elsa von Licy
 
C1 clef pour_la_neuro
C1 clef pour_la_neuroC1 clef pour_la_neuro
C1 clef pour_la_neuroElsa von Licy
 
Vuillez jean philippe_p01
Vuillez jean philippe_p01Vuillez jean philippe_p01
Vuillez jean philippe_p01Elsa von Licy
 
Spr ue3.1 poly cours et exercices
Spr ue3.1   poly cours et exercicesSpr ue3.1   poly cours et exercices
Spr ue3.1 poly cours et exercicesElsa von Licy
 
Plan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 pPlan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 pElsa von Licy
 
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutionsBioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutionsElsa von Licy
 
Poly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicalesPoly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicalesElsa von Licy
 
Methodes travail etudiants
Methodes travail etudiantsMethodes travail etudiants
Methodes travail etudiantsElsa von Licy
 
Atelier.etude.efficace
Atelier.etude.efficaceAtelier.etude.efficace
Atelier.etude.efficaceElsa von Licy
 
There is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_introThere is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_introElsa von Licy
 

Plus de Elsa von Licy (20)

Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
Styles of Scientific Reasoning, Scientific Practices and Argument in Science ...
 
Strategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfiStrategie Decisions Incertitude Actes conference fnege xerfi
Strategie Decisions Incertitude Actes conference fnege xerfi
 
Rainville pierre
Rainville pierreRainville pierre
Rainville pierre
 
Neuropsychophysiologie
NeuropsychophysiologieNeuropsychophysiologie
Neuropsychophysiologie
 
L agressivite en psychanalyse (21 pages 184 ko)
L agressivite en psychanalyse (21 pages   184 ko)L agressivite en psychanalyse (21 pages   184 ko)
L agressivite en psychanalyse (21 pages 184 ko)
 
C1 clef pour_la_neuro
C1 clef pour_la_neuroC1 clef pour_la_neuro
C1 clef pour_la_neuro
 
Hemostase polycop
Hemostase polycopHemostase polycop
Hemostase polycop
 
Antiphilos
AntiphilosAntiphilos
Antiphilos
 
Vuillez jean philippe_p01
Vuillez jean philippe_p01Vuillez jean philippe_p01
Vuillez jean philippe_p01
 
Spr ue3.1 poly cours et exercices
Spr ue3.1   poly cours et exercicesSpr ue3.1   poly cours et exercices
Spr ue3.1 poly cours et exercices
 
Plan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 pPlan de cours all l1 l2l3m1m2 p
Plan de cours all l1 l2l3m1m2 p
 
M2 bmc2007 cours01
M2 bmc2007 cours01M2 bmc2007 cours01
M2 bmc2007 cours01
 
Feuilletage
FeuilletageFeuilletage
Feuilletage
 
Chapitre 1
Chapitre 1Chapitre 1
Chapitre 1
 
Biophy
BiophyBiophy
Biophy
 
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutionsBioph pharm 1an-viscosit-des_liquides_et_des_solutions
Bioph pharm 1an-viscosit-des_liquides_et_des_solutions
 
Poly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicalesPoly histologie-et-embryologie-medicales
Poly histologie-et-embryologie-medicales
 
Methodes travail etudiants
Methodes travail etudiantsMethodes travail etudiants
Methodes travail etudiants
 
Atelier.etude.efficace
Atelier.etude.efficaceAtelier.etude.efficace
Atelier.etude.efficace
 
There is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_introThere is no_such_thing_as_a_social_science_intro
There is no_such_thing_as_a_social_science_intro
 

Rt2 micrornapcr arrayswhitepaper

  • 1. SABiosciences TM TECHNICAL ARTICLE RT2 miRNA PCR Arrays The Complete System for Genome-Wide & Pathway Focused microRNA Analysis Yexun (Bill) Wang, Daniel Kim, Jennifer Gibbons, Xiao Zeng, Liyan Pang, George Quellhorst SABiosciences Corporation 6951 Executive Way, Frederick, MD 21703 USA Phone: +1 (301) 682-9200 Fax: +1 (301) 682-7300 Web: www.SABiosciences.com Email: support@SABiosciences.com Abstract: As powerful regulators of gene expression, microRNA (miRNA) have been implicated in diverse biological pathways such as immune responses, development and differentiation, oncogenic pathways (like DNA repair and apoptosis), and oxidative stress responses. This paper discusses some major obstacles in miRNA real-time PCR assay development and evaluates the performance of the newest technique for the analysis of genome-wide miRNA expression: RT2 miRNA PCR™ Arrays from SABiosciences. RT² miRNA PCR Arrays integrate the quantitative performance of SYBR® Green-based real-time RT-PCR and the multi-sequence profiling capabilities of a microarray. The miRNA PCR Array is a set of optimized real-time PCR assays, in 96-well or 384-well plates, for a miRNA panel as well as appropriate housekeeping assays and RNA quality controls. A complete system includes a small RNA isolation kit, optimized miRNA first strand synthesis kit, and an instrument specific master mix. This paper also presents scientific data showing that the miRNA PCR Arrays have significantly improved specificity, sensitivity and reproducibility. Introduction Why Study miRNA? What is miRNA? The completion of the Human Genome Project in 2003 confirmed the hypothesis that a large part of the genome is not translated into proteins. This so called “junk” DNA was thought to be evolution’s debris with no function. We now realize that a portion of this noncoding DNA is highly relevant to the regulation of gene expression. While only about 1000 human miRNA sequences have been identified so far, with each one having the possibility of hundreds of mRNA targets, the potential effects of this class of RNA molecule is quite Mature microRNAs (miRNA) are small single stranded RNA molecules, typically 22 nucleotides in length. They were first identified in studies of Caenorhabditis elegans development in 1993 [1], but have since been found in many species of plant and animal. These RNA species are originally transcribed as a larger RNA species hundreds or thousands of bases long, termed the primary miRNA (pri-miRNA) [2]. The pri-miRNA is trimmed by the Microprocessor, comprised of a Drosha family member, in the nucleus into a roughly 70 nucleotide hairpin termed precursor miRNA (pre-miRNA), which is then exported to the cytoplasm. The RNase III enzyme, Dicer, further processes pre-miRNA into the shorter RNA duplexes now known as miRNA. The miRNA is then unwound, and one strand (the mature miRNA) is incorporated into the RNA-induced silencing complex (RISC), composed of Dicer, TRBP and Ago2. The RISC complex guides the mature miRNA to its messenger RNA (mRNA) target, typically base pairing imperfectly to its 3’ untranslated region (3’-UTR). The recruitment of this complex to a target messenger RNA (mRNA) inhibits its translation and therefore the synthesis of the encoded protein, but can also induce degradation of the mRNA target. The imperfect nature of the base-pairing, formed from a 7-nucleotide “seed region” within the miRNA, allows a single miRNA to control multiple genes with homologous sequences in the target region. Over 700 miRNA genes have been identified in the human genome (http://microrna.sanger.ac.uk/), and each miRNA is proposed to have hundreds of mRNA targets [3]. Therefore, it is predicted that 30% of human genes are regulated by miRNA [4]. Contents Introduction................................................................................................... 1 A) What is miRNA?.................................................................................... 1 B) Why Study miRNA. ............................................................................... 1 C) How is miRNA Studied?. ....................................................................... 2 The Complete miRNA PCR Array System................................................. 2 A) Improved Sensitivity & Dynamic Range. ............................................... 2 B) High PCR Efficiency, Improved Specificity & Discrimination................. 3 C) High Reproducibility.............................................................................. 4 RT2 miRNA PCR Array Application Examples........................................... 5 I. Cancer Research: Identifying miRNA Cancer Biomarkers.........................5 II. Development Research: Identifying Tissue-Specific miRNA Biomarkers..........................................................................................................6 III. Signal Transduction Research: Screen the Genome for p53-Responsive miRNA...................................................................................6 . IV. miRNA Expression Analysis from Formalin-fixed Paraffin- embedded Tissue Sections ............................................................................6 Summary........................................................................................................ 7 References..................................................................................................... 7
  • 2. RT2 MicroRNA PCR Arrays 2 large. The importance of miRNA regulatory roles is underscored by literature evidence that miRNA function is involved in almost all biological processes, including cancer [5], stem cell regulation [6], immune function [7], neurogenesis [8], metabolism [9] and others. The expression patterns of miRNA have been exploited as a new class of biomarkers for disease phenotypes and tissue classifications [10, 11], with the potential to hold better predictive value than codinggene based biomarkers. How is miRNA Studied? The first question researchers want to know is: among the hundreds of miRNAs, which ones are differentially expressed in their model system. To get this answer, microarray and reverse transcription (RT) real-time PCR are the most often used platforms. Detecting every miRNA across the entire genome in a specific and sensitive way is a very challenging technological task. Many miRNA family members and otherwise distinct miRNA species have very similar sequences, some only differing by a single nucleotide. Microarray-based miRNA detection relies on the direct hybridization of miRNA in the sample to specific probes on a solid surface. Only a single hybridization event determines the detection specificity. Unlike microarrays, real-time PCR is more specific and more quantitative. Not only multiple annealing events, but also the Taq polymerase confers assay specificity. Taq polymerase extends imperfectly annealed, non-specific primer-template complexes less efficiently over specific annealing events. Additionally, real-time PCR has greater sensitivity and a much wider detection range than microarrays. In fact, most researchers choose real-time PCR as a tool to further validate their microarray data. A. Conventional schemes for RT real-time PCR assay design are not suitable for miRNA detection due to the short nature of the target templates. There are two main popular real-time PCR based approaches for miRNA detection (Figure 1). One uses sequence-specific stem-loop RT primers (designed to anneal to the 3’-end of a mature miRNA) to convert miRNA into cDNA [12]. Then, a forward primer (specific to the 5’-end of the miRNA), a universal reverse primer (specific for the stemloop RT primer sequence) and a 5’-nuclease hydrolysis probe (matching part of the miRNA sequence and part of the RT primer sequence) are used in real-time PCR detection. The other approach uses RNA poly(A) polymerase to add a poly-(A) tail to the free 3’-hydroxyl end of the mature miRNA molecule. Then, an oligo-dT-containing universal RT primer is used to convert miRNA into cDNA [13]. In the end, a miRNAspecific forward primer (utilizing the entire mature miRNA sequence) and a universal reverse primer (specific for the universal RT primer) are used in a SYBR® Green-based real-time PCR assay. The limitation of the stem-loop RT-qPCR approach is that each miRNA assay requires a separate RT reaction, making the analysis of multiple miRNAs quite cumbersome. As each RT product can only be used for detecting one miRNA, it consumes more samples than needed when multiple miRNAs have to be assayed. Although the RT reaction can be multiplexed with many gene-specific stemloop primers, performance and flexibility suffer when assaying a few hundred miRNAs together. Recently, it has been reported that miRNA variants are quite often expressed simultaneously in cells [14]. Those miRNA variants differ at 3’-ends due to variability in Dicer processing. Old gene-specific RT primer designs will not detect all of these variants. Because poly-(A) tailing RT-qPCR represents a universal approach, RT reaction efficiency should not be affected by the presence of variants. The cDNA generated by universal poly(A) tailing RT reaction can be used to assay many different miRNAs. Archived cDNA can be conveniently stored and used for other or any new miRNAs in the future. No new RT assay design and performance is required for newly discovered miRNA species. Although 5’-nuclease hydrolysis probe-based qPCR is generally perceived to be more specific, this advantage is limited for miRNA, given their short 20 to 30 nucleotide-long template sequences. With optimized reaction chemistry and primer design, universal poly-(A) tailing RT and SYBR® Green-based qPCR assays deliver similarly high specificity (see below) for miRNA with much more flexibility. B. The Complete miRNA PCR Array System The SABiosciences’ RT2 miRNA RT-PCR system offers a simple and scalable solution for the quantitative analysis of miRNA expression. PCR arrays allow the simultaneous detection of over 700 miRNAs, representing most functional miRNAs. Knowing and understanding the various challenges associated with miRNA detection, we came up with creative solutions in both reaction chemistry and assay design to deliver greatly improved performance over other traditional methods. Figure 1: Strategies for miRNA RT-PCR. A) Stem-loop RT-PCR B) Universal poly-(A) tailing RT-PCR A) Improved Sensitivity & Dynamic Range: There are multiple reasons for the superior sensitivity and dynamic Tel 888-503-3187 (USA) 301-682-9200 Fax 888-465-9859 (USA) 301-682-7300
  • 3. SABiosciences 3 Poly-(A) tailing of single strand RNA is not a sequence specific process [15]. However, the poly-adenylation reaction does require the free 3’-hydroxyl groups on all miRNA molecules. RNA fragments with 3’-phosphorylation are not tailed or converted into cDNA. RNA poly-(A) polymerase is also very sensitive to template secondary structure. It works best with single stranded RNA ends, and tails double-stranded, blunt or non-protruding 3’-ends very inefficiently [15]. Most pre-miRNA molecules, having hair-pin structures, are not substrates for poly-(A) addition or reverse transcription. While developing the miRNA qPCR system, we noticed that some RNA species (such as small nuclear RNA, tRNA and small rRNA) can be poly-adenylated and converted to cDNA by oligo-dT primers. Other RNA species with an intrinsic poly-(A) tract, like mRNA, can also be converted to cDNA. Because they all carry the universal priming sequence (from the oligo-dT RT primer), significant nonspecific amplification can happen, leading to high background and making the specific analysis of mature miRNA problematic (Fig 2). To address this issue, we exploited the single-strand RNA dependence of both the poly-(A) polymerase and the reverse transcriptase. Both enzymes act on highly structured RNA very inefficiently. Thus, we developed a patent-pending buffer system, which favors the formation of RNA secondary structure during the poly-(A) tailing and reverse transcription process. In the same buffer, the very short miRNAs does not form higher order structures. As a result, our buffer conditions achieve much lower background compared to traditional poly-(A) tailing and RT chemistry. The overall improvement of sensitivity can be as much as 1000-fold (Figure 2). 35 25 20 15 10 5 0 B1. RT2 miRNA PCR Array Competitor #1 Competitor #2 30 1 3 4 5 6 7 8 Log10 [miR-658 Copies] 2 10 11 9 -d(RFU) / dT 50 40 30 20 10 0 64 66 68 70 72 74 76 78 80 Email support@SABiosciences.com 82 30 20 10 0 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 Figure 2: Superior Sensitivity & Dynamic Range with miRNA PCR Array System. A) Synthetic mir-658 was serially diluted into a constant amount (100 ng) of small RNA enriched from 293H cells lacking that sequence. Samples were analyzed with mir-658specific RT² miRNA qPCR Assays and other commercial assays. The resulting threshold cycle values from the assays are plotted versus the log10 of the number of mir-658 template copies. B) The elimination of non-specific background contributes to the observed wider dynamic range. Melt curve analysis reveals multiple peaks in another commercial assay (B1), but a single peak in the SABiosciences’ assay (B2). B) High PCR Efficiency, Improved Specificity & Discrimination: For poly-(A) tailing RT and SYBR® Green-based qPCR of miRNA, conventional wisdom would utilize forward miRNA-specific primer sequence identical to the mature miRNA sequence [13], because they are about the same length. However, in many cases, this primer selection criterion creates various problems, such as primer dimers, low amplification efficiency, high non-specific amplification, and low discrimination among homologous miRNA. So what options are available besides abandoning such assays? miR-99a AACCCGUAGAUCCGAUCUUGUG miR-100 AACCCGUAGAUCCGAACUUGUG 120 Target-Specific Assay 80 Off-Target Assay 72.20 60 40 21.76 20 0.54 0.07 hsa-miR-99a hsa-miR-100 RT2 mRNA qPCR Assays hsa-miR-99a hsa-miR-100 Competitor qPCR Assays Figure 3: RT2 miRNA PCR Assays Distinguish miRNA Family Members with Single Nucleotide Mismatches via a Proprietary Primer Design. Relative detection as a percent of the perfect match (100 x 2- DDCt) is calculated from the Ct values of target- and off-target assays used to detect 105 copies of synthetic miRNA template. Mismatches between assay and synthetic template are shown in bold. 60 62 40 0 y = -3.3683x + 41.596 R2 = 0.9982 0 50 Relative Detection (% perfect match) Threshold Cycles 40 60 100 1000X More Sensitive Than Competitors A. B2. 70 -d(RFU) / dT range for our miRNA assays. Key reason among these is the patent-pending chemistry of the RT² miRNA First Strand Kit that preferentially add poly-(A) tails and reverse transcribes mature miRNA, thereby decreasing non-specific background caused by other RNA species. 84 86 88 90 Many miRNA sequences only differ by one or two nucleotides. Primer annealing differences between perfectly matched and mismatched cDNA templates, as well as the negative impact of mismatch on Taq polymerase’s activity, help real-time PCR achieve better sequence discrimination than microarrays. However, some primers designed for mature miRNA sequences following conventional rules cannot Web www.SABiosciences.com
  • 4. RT2 MicroRNA PCR Arrays 4 achieve the level of discrimination required. We have empirically validated and adopted primer design optimization rules that can make assays more discriminative. For example, we studied the crossreactivity of two primer assays for hsa-miR-99a and hsa-miR-100. The difference between their mature miRNA sequences is only one nucleotide (Figure 3). Our competitor’s miRNA primer assays show high degree of cross-reactivity (Fig 3). In contrast our hsa-miR-99a assay has very low level of amplification from hsa-miR-100 template, and conversely the hsa-mir-100 assay does not detect hsa-mir-99a template. Similarly, other highly homologous miRNA sequences are well differentiated with our miRNA assays (Table 1). Synthetic miRNA template miR-10a miR-10b miR-196a miR-196b Assay Primers Relative Detection (%Perfect Match) miR-10a 100.00 miR-10b 0.98 miR-10b 100.00 miR-10a 0.01 miR-196a 100.00 miR-196b 0.20 miR-196b 100.00 miR-196a 1.64 Poly A Minus Ct Values ID SABiosciences Competitor hsa-mir-16 34.23 30.67 hsa-mir-21 No Ct 31.57 hsa-mir-99a No Ct 31.96 hsa-mir-100 No Ct 33 hsa-mir-658 37.77 34.1 hsa-mir-769-5p 36.4 30.46 Table 2. SABiosciences First Strand Kit Shows Lower Background than the Competitor. Total RNA was reverse-transcribed without Poly-(A) Polymerase using SABiosciences’ or the competitor’s buffer system. The cDNA was then used in the corresponding miRNA qPCR assays. A Ct value >35 is considered not reliably detected and a negative call. miRNA Template Sequence UACCCUGUAGAUCCGAAUUUGUG UACCCUGUAGAACCGAAUUUGUG UAGGUAGUUUCAUGUUGUUGGG UAGGUAGUUUCCUGUUGUUGGG Table 1: High Specificity of miRNA PCR Array. Relative detection as a percent of the perfect match (100 x 2- DDCt) is calculated from the Ct values of target and off-target assays used to detect 105 copies of synthetic miRNA template. The observed crossreactivities seen between RT² miRNA qPCR Assays for different miRNA species are compared. Location of miRNA sequence mismatch is shown in bold. Our proprietary miRNA specific primer design algorithm minimizes non-specific amplification and maximizes the discrimination of miRNA family members in SYBR® Green-based real-time PCR. To insure the performance of our design algorithm, we apply three stringent quality control (QC) criteria to each and every miRNA assay in wet bench tests. (1) Each miRNA assay must have a very low background. The best test of each miRNA assay’s background is to perform a mock poly(A) tailing without the use of RNA poly-(A) polymerase followed by RT-PCR using RNA extracted from cells. Under this condition, no miRNA molecules should be converted into cDNA. Anything detected by real-time PCR indicates non-miRNA background, which compromises specific detection for the particular miRNA. Background largely comes from two sources, primer dimmers and non-specific interactions between primers and other non-miRNA derived cDNA templates. Table 2 summarizes the differences in backgrounds between our assays and one of our competitors’ for multiple miRNA sequences. Both the primer design algorithm and the unique buffer system mentioned above contribute to the improved performance achieved by our assays. (2) Each miRNA assay must have high amplification efficiency. Within the same chemistry, differences in primer annealing, estimated by primer melting temperature (Tm), often cause differences in real time PCR efficiency. The limited miRNA sequence space does not always allow the selection of miRNA primers with the best Tm calculation. Moreover, theoretical Tm calculations do not always agree with empirical measurements. Rather than relying solely on Tm, we evaluate each primer’s amplification efficiency using the standard curve method. Specifically, a pool of synthetic cDNA templates for all queried miRNA sequences is prepared. Then, PCR efficiency for each miRNA-specific primer is calculated from experiments using serial dilutions of this pool. All validated primers should have close to 100% efficiencies. (3) Each miRNA assay must generate a single PCR product as judged by the melt curve analysis. As discussed earlier, sub-optimized miRNA assays may have non-specific amplifications, as indicated by the presence of multiple peaks or a peak with an incorrect Tm in a melt curve analysis. We test all of our pre-designed miRNA primers in PCR with enriched small RNA from four different cell lines separately following poly-(A) tailing and RT reactions. Good primer assays yield single dissociation peaks at the same temperature (Tm) in all four cell samples. All of the above criteria should be applied to any SYBR® Green-based miRNA assay designs. We have used our expertise to provide highquality PCR assays so researchers do not have to do the development work themselves. In our experience, we find that about 47% assays failed our three QC tests initially. For many miRNA, additional rounds of primer design optimization improve PCR efficiency, decrease background, and increase specificity. For others, we are still developing solutions in order to offer those assays in the future. C) High Reproducibility One of the challenges for the miRNA PCR Array system is the amplification of every relevant, pathway- or disease-focused miRNA during the same PCR run. Due to the consistent QC criteria for every assay during our wet-bench validation process, the same uniform PCR conditions achieve the high level of sensitivity and specificity expected of real-time PCR. Our optimized reaction chemistry insures a high degree of Tel 888-503-3187 (USA) 301-682-9200 Fax 888-465-9859 (USA) 301-682-7300
  • 5. SABiosciences 5 reproducibility from the miRNA PCR Array System. To demonstrate this concept, one end-user characterized the same human RNA sample in technical duplicates with two separate RT2 miRNA First Strand Kits and RT2 miRNA PCR Arrays. The raw threshold cycle values for the entire array’s gene panel were then compared between the replicates. The resulting scatter plot comparison yields the predicted ideal straight line with a slope close to 1.0 and a correlation coefficient of 0.99 (Figure 4). The highly reproducible nature of the raw data means that results can be reliably compared from run-torun, plate-to-plate, and sample-to-sample. Any observed differences in expression can therefore be attributed to the biology under study and not to any variability in the technology itself. High Technical Reproducibility Technical Replicates 2 35 30 25 15 2 y = 0.9682x + 0.9078 R = 0.9915 15 20 25 30 35 Technical Replicate 1 Figure 4: The High Reproducibility of the RT2 miRNA PCR Arrays. Duplicate samples of small RNA enriched from human brain tissue (Ambion, 200 ng) were characterized using the RT² Human Genome miRNA PCR array on an ABI 7900HT. Raw Ct values greater than 35 or reported as “not determined” were first changed to 35. The values from the replicate arrays were plotted against each other, and then the data was fit to a straight line. Analyzing a representative set of sequences with the Genome or miFinder arrays discovers novel functional roles for each miRNA. Focused miRNA panels, like those on the Cancer or Cell Differentiation & Development arrays, screen miRNA biomarkers known to be most important to their specific model system. The representative results below will illustrate examples of experiments that may be performed with the RT² miRNA PCR Array System. One currently burgeoning application of miRNA expression profiling is the identification, screening, and validation of cancer biomarkers. Because miRNAs have been shown to regulate genes in multiple oncogenic pathways, it is reasonable to assume that some of the miRNAs themselves may be dysregulated in tumors and cancer cells. Screening for potential biomarkers can be performed efficiently with RT2 miRNA PCR Arrays by quantitatively analyzing a large number of miRNAs simultaneously. To exemplify the ease that interpretable results can be obtained, we chose to compare miRNA expression levels between a colon tumor and the corresponding matched adjacent normal tissue (Figure 5). The RT² Human Cancer miRNA PCR Array identifies potential colon cancer biomarkers, as shown by the miRNAs that are up- or down-regulated in this experiment. Human Colon Tumor Versus Adjacent Normal Tissue 3 2 1 0 -1 -2 miR-133b miR-122 miR-20b miR-335 miR-196a miR-125a-5p miR-142-5p miR-96 miR-222 miR-148b miR-92a miR-184 miR-214 miR-15a miR-18b miR-378 let-7b miR-205 miR-181a miR-130a miR-199a-3p miR-40-5p miR-20a miR-146b-5p miR-132 miR-193b miR-183 miR-34c-5p miR-30c miR-148a miR-134 let-7g miR-138 miR-373 let-7c let-7e miR-17* miR-29b miR-146a miR-212 miR-135b miR-206 miR-124 miR-21 miR-103 miR-301a miR-141 miR-100 miR-10b miR-155 miR-1 miR-363 miR-150 let-7i miR-27b miR-7 miR-127-5p miR-29a miR-191 milet-7d miR-9 let-7f Log2 [Fold Difference] 4 The regulated expression of miRNA adds another layer of control to an already complex gene regulatory network. One miRNA can regulate multiple mRNA targets, and one target mRNA may be regulated by multiple miRNA sequences. Therefore, the role that any given miRNA sequence plays has yet to be completely defined. Correlating miRNA expression profiles to biological phenotypes adds to our understanding of miRNA-based gene regulation. I. Cancer Research: Identifying miRNA Cancer Biomarkers 20 10 10 RT2 miRNA PCR Array Application Examples miRNA Figure 5: RT2 Human Cancer miRNA PCR Array identifies potential colon cancer biomarkers. Small RNA isolated from human colon tumor and matched adjacent normal tissue (Biochain) was characterized with PCR Arrays containing assays specific for 88 cancer-related human miRNA sequences. Fold-differences are calculated from raw Ct values normalized to a panel of housekeeping snRNA genes. Email support@SABiosciences.com Web www.SABiosciences.com
  • 6. RT2 MicroRNA PCR Arrays 6 II. Development Research: Identifying Tissue-Specific miRNA Biomarkers 35 Ct Adeno-p53 Human Brain vs Human Muscle 4 3 Log10 (Brain) 40 2 1 30 203 551a 25 34a 940 20 0 -1 15 -2 20 25 30 35 40 Ct Control -3 -4 15 -4 -3 -2 -1 0 1 2 3 4 Log10 (Muscle) Figure 6: RT2 Human Differentiation miRNA PCR Array Identifies Tissue Specific miRNAs. Small RNA enriched from human brain and muscle tissue total RNA (200 ng, Ambion) were characterized with PCR Arrays containing assays for 88 differentiation-related miRNA sequences. Normalized miRNA sequence expression levels for both tissues are calculated and plotted against each other. Symbols outside the dotted lines represent miRNA with at least a 2-fold expression difference between the respective tissues. MicroRNA research began and continues to expand in the developmental research field. Our miRNA RT-PCR array easily screens for potentially important miRNAs in your tissue of interest. As an example, we compared miRNA expression in two different tissues, muscle and brain (Figure 6). The RT² Human Cell Differentiation & Development miRNA PCR Array identifies 26 brain- and 20 musclespecific miRNA, as defined by greater than a 2-fold enrichment in these respective tissues. III. Signal Transduction Research: Screen the Genome for p53-Responsive miRNA Cancer and cell differentiation are the two research fields that have most widely adopted the concept of miRNA expression profiling and therefore high value miRNA candidates can be easily grouped together. Scientists working in other biomedical research fields still need to discover which miRNA sequences regulate genes involved in the biological or disease processes that they study or simply their single gene of interest. For example, if a protein decreases its apparent level of expression on a Western blot but maintains its level of expression at the RNA level by RT-PCR, then a post-transcriptional mechanism of gene regulation, like miRNA, is most likely involved. In fact, any researcher who is interested in understanding how their genes of interest are regulated should consider miRNA expression profiling. Fortunately, unlike gene expression profiling, the relative small size of the mammalian miRNA genome allows a 96-well or 384-well PCR plate to simultaneously profile up to a quarter or even a half of the genome on the miFinder or Genome RT2 miRNA PCR Arrays. Tel 888-503-3187 (USA) 301-682-9200 Figure 7: RT2 Human Genome miRNA PCR Array Identifies Potential p53 Responsive miRNAs. PC3 cells were transduced with adenovirus either encoding p53 or containing an empty vector. After 48 h, small RNA was characterized with PCR Arrays containing 376 human miRNA-specific assays. The scatter plot shows the differences in miRNA expression upon p53 over-expression. Symbols represent miRNA with greater than two fold changes in the expression. To illustrate this idea, we profiled expression change for a large portion the human miRNA genome (376 sequences) upon overexpression of the p53 oncogene using Human Genome RT2 miRNA PCR Arrays. The RT² Human Genome miRNA PCR Array identifies known and novel miRNA sequences responsive to p53 over-expression (Figure 7). The array identifies the well-known p53 targets, mir-34a and mir-34c [16], as well as a dozen novel candidate targets including mir-203, mir-551a, mir-940, mir-614, and others. The results of this experiment interestingly suggest yet another layer of complexity to gene expression regulation. The transcription factor, as gene expression regulator, also regulates the expression of miRNA, a new class of gene expression regulators at the post-transcriptional level. More importantly, this experiment also demonstrates how any area of biomedical research can easily contribute to a better understanding not only of the role of miRNA in their model system of interest, but also of miRNA function in general, all with a very simple experiment using the RT2 miRNA PCR Arrays. IV. miRNA Expression Analysis from Formalin-fixed Paraffin-embedded Tissue Sections Formalin-fixed paraffin embedded (FFPE) samples represent an invaluable source of research materials providing access to well documented links between molecular and clinical information. It has been suggested that miRNA, being small in size, are less prone to degradation during the fixation and storage process. Thus, we studied whether our miRNA RT-PCR array system can be used to profile miRNA expression from FFPE samples. As an example, total RNA was extracted from one 20mm section of a two-year old human colon FFPE block using the RT² FFPE RNA Extraction Kit. One microgram extracted RNA was used with RT² miRNA First Strand Kit and Human Cancer miRNA PCR Array protocol. The results (Fig. 8) indicate that the majority of miRNAs from FFPE samples are well preserved and can be used as the template for our miRNA RT-PCR array system. This opens up the opportunity of carrying out miRNA biomarker analysis in the vast amount of archived samples. Fax 888-465-9859 (USA) 301-682-7300
  • 7. SABiosciences 7 15 20 25 30 35 40Ct miR-21 miR-125b miR-199a-3p miR-100 miR-10a miR-10b miR-200c miR-16 miR-125a-5p let-7b miR-143 miR-1 miR-126 miR-92a miR-23b miR-27b let-7i miR-191 miR-378 miR-27a miR-150 miR-148a miR-25 miR-146a miR-29b miR-215 let-7a miR-29a miR-7 miR-30c miR-15b let-7e let-7g miR-146b-5p miR-20a miR-214 miR-17 miR-203 miR-15a let-7c miR-222 miR-155 miR-193b miR-196a miR-128a miR-181b miR-363 miR-193a-5p miR-181a mirR-148b miR-218 miR-9 miR-130a miR-19a miR-20b miR-132 miR-18b miR-34a let-7d miR-210 miR-181c miR-134 miR-301a miR-205 miR-18a miR-140-5p miR-124 miR-373 miR-133b miR-32 miR-212 miR-181d miR-142-5p miR-183 miR-149 miR-335 miR-138 miR-96 miR-127-5p miR-34c-5p miR-372 miR-206 miR-184 miR-98 miR135b miR-144 let-7f miR-122 Summary The shortness and homology of miRNA sequences present significant challenges for their accurate detection. We have developed patentpending chemistry and a proprietary primer design algorithm. Together with a rigorous validation process, these technical advances result in the high performance miRNA assays, which form the foundation of the RT2 miRNA PCR Array system. The flexibility, simplicity, and convenience of standard SYBR Green PCR detection methodology make the miRNA PCR Array system accessible for routine use in any research laboratory. The arrays feature a pathwayfocused, genome-wide or even customizable miRNA content design, while demonstrating the sensitive, specific and reproducible performance expected from real-time PCR. As a result, the RT2 miRNA PCR Array System is ideally suited to allow every laboratory to combine the performance of real-time PCR with the profiling capabilities of a microarray for miRNA expression profiling. Reference 1. Lee, R.C., R.L. Feinbaum, and V. Ambros, The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin14. Cell, 1993. 75(5): p. 843-54. 2. Bushati, N. and S.M. Cohen, microRNA functions. Annu Rev Cell Dev Biol, 2007. 23: p. 175-205. 3. Lim, L.P., et al., Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005. 433(7027): p. 769-73. 4. Ross, J.S., J.A. Carlson, and G. Brock, miRNA: the new gene silencer. Am J Clin Pathol, 2007. 128(5): p. 830-6. 5. Visone, R. and C.M. Croce, MiRNAs and cancer. Am J Pathol, 2009. 174(4): p. 1131-8. 6. Gangaraju, V.K. and H. Lin, MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol, 2009. 10(2): p. 116-25. 7. Xiao, C. and K. Rajewsky, MicroRNA control in the immune system: basic principles. Cell, 2009. 136(1): p. 26-36. 8. Shen, Q. and S. Temple, Fine control: microRNA regulation of adult neurogenesis. Nat Neurosci, 2009. 12(4): p. 369-70. 9. Tavintharan, S., et al., Riboregulators and metabolic disorders: getting closer towards understanding the pathogenesis of diabetes mellitus? Curr Mol Med, 2009. 9(3): p. 281-6. 10. Bartels, C.L. and G.J. Tsongalis, MicroRNAs: novel biomarkers for human cancer. Clin Chem, 2009. 55(4): p. 623-31. 11. Rosenfeld, N., et al., MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol, 2008. 26(4): p. 462-9. 12. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179. 13. Shi, R. and V.L. Chiang, Facile means for quantifying microRNA expression by real-time PCR. Biotechniques, 2005. 39(4): p. 519-25. 14. Morin, R.D., et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells. Genome Res, 2008. 18(4): p. 610-21. 15. Martin, G. and W. Keller, Tailing and 3’-end labeling of RNA with yeast 15 20 25 30 35 40Ct Figure 8: Expression rank order of 88 cancer related miRNAs in RNA extracted from one 20mm section of a 2-year old normal human colon FFPE block using the RT2 FFPE RNA Extraction Kit. Email support@SABiosciences.com poly(A) polymerase and various nucleotides. RNA, 1998. 4(2): p. 226-30. 16. He, L., et al., A microRNA component of the p53 tumour suppressor network. Nature, 2007. 447(7148): p. 1130-4. Web www.SABiosciences.com
  • 8. RT2 MicroRNA PCR Arrays 8 © 2009 SABiosciences Corporation All Rights Reserved RT2 miRNA PCR, RT2 Profiler PCR Array, PathwayFinder, RT2 FFPE, and RT2 FFPE PreAMP are trademarks of SABiosciences Corporation. SYBR is a registered trademark of Molecular Probes. Tel 888-503-3187 (USA) 301-682-9200 Fax 888-465-9859 (USA) 301-682-7300