SlideShare une entreprise Scribd logo
L’intelligence Artificielle :
nouvel acteur du champ de bataille
Thierry Berthier
Chaire de Cyberdéfense & Cybersécurité Saint-Cyr – CREC
4 juillet 2017
https://fr.slideshare.net/OPcyberland/presentations
PLAN
1 - Le temps du Kronos, A l’origine de l’Intelligence Artificielle
2 - Intelligence artificielle – De quoi parle-t-on ?
3 - Lorsque l’IA surpasse l’homme en 2016
4 - La course à l’IA est lancée
5 - L’intelligence artificielle sur le champ de bataille
6 - Le soldat augmenté
1 - Le temps du Kronos,
A l’origine de l’IA
Thétis et Héphaïstos soutenu par ses automates –
Auteur : Füssli, Johann Heinrich (1741-1825) – Date : 1803
Dans la mythologie
grecque, Héphaïstos,
l’illustre artisan, est un
dieu infirme, difforme et
boiteux.
C’est aussi un
extraordinaire
concepteur d’automates
et de créatures
artificielles imitant la vie
qu’il met au service des
dieux.
Héphaïstos et le temps du Kronos
Héphaïstos sait forger et animer des mécanismes complexes. Il a
construit des trépieds capables de se déplacer de manière autonome
(automatoï) pour se rendre à l’assemblée des dieux ainsi que les
fameuses portes de l’Olympe qui s’ouvrent d’elles-mêmes.
Selon des sources antiques, il a fabriqué des servantes d’or qui
l’assistent dans ses travaux, puis six charmeuses d’or accompagnées
de chiens gardiens du palais d’Alkinoos, de chevaux forgés pour le
char des Cabires, d’un aigle fabriqué pour Zeus et du géant de
bronze Talos laissé à Minos pour garder l’île de Crète.
Créés pour accomplir une tâche précise qu’ils exécutent à la
perfection, les automates d’Héphaïstos construits sur le modèle
d’objets usuels, d’animaux ou d’êtres humains deviennent les
auxiliaires des dieux.
Héphaïstos et le temps du Kronos
Dans la société divine où les Olympiens ne connaissent ni peine ni
contrainte, les créations animées d’Héphaïstos remplacent les
esclaves des sociétés humaines pour accomplir les tâches les plus
répétitives et rébarbatives.
Les automates donnent à la communauté des dieux et à la première
race humaine la possibilité de mener une existence idéale, dénuée
d’effort, préservée des souffrances et des malheurs.
Cette période idyllique, appelée « temps du Kronos », est celle d’une
agriculture prospère qui ne demande aucun effort et d’une
production de richesses et de ressources totalement automatisée.
On notera que les automates du temps du Kronos rendent inutiles
l’esclavage et le travail humain.
Avec les convergences NBIC, CKTS et DIADEH débute le
second temps du Kronos
L’espèce humaine aborde aujourd’hui son second temps du Kronos
marqué par la convergence NBIC (Nanotechnologies, Biotechnologies,
Informatique, sciences Cognitives).
Les héritiers mortels d’Héphaïstos s’incarnent désormais dans chaque
créateur de robots mis au service de ceux qui aspirent à une vie sans
contrainte et à une certaine forme d’immortalité.
Avec les convergences NBIC, CKTS et DIADEH débute le
second temps du Kronos
Pour comprendre le futur, relisons l’Iliade et l’Odyssée !
L’intelligence artificielle et la robotique, comme la forge et le
marteau d’Héphaïstos, transforment notre environnement et nous
libèrent de ses contraintes. L’augmentation de l’espérance de vie et
l’émergence d’une information ubiquitaire globale entourant et
guidant l’individu caractérisent désormais ce second temps du
Kronos dans ses promesses émancipatrices.
Les merveilleuses créations d’Héphaïstos réalisaient toutes les
tâches humaines à la perfection en surpassant le travail des êtres
mortels. Ainsi, nul intrus ne parvenait à échapper à son chien d’or,
molosse forgé, gardien du palais d’Alkinoos. Le géant Talos pouvait
effectuer le tour de la Crète trois fois par jour pour prévenir toute
intrusion.
2 -
Intelligence Artificielle,
De quoi parle-t-on ?
Des tentatives pour définir l’IA …
L’expression IA apparaît en 1956 durant la conférence de Dartmouth
dans une première définition (qui s’avère très insuffisante
aujourd’hui) :
Définition de Marvin Minsky (1927 – 2016)
« L’intelligence artificielle est la science qui consiste à faire faire à
des machines ce que l’homme fait moyennant une certaine
intelligence ».
Critique : Cette définition présente une forte récursivité… La
« complexité » mentale est-elle comparable à la complexité
informatique ?
La définition de Minsky exclut des domaines majeurs de l’IA : la
perception (vision et parole), la robotique, la compréhension du
langage naturel, le sens commun.
13
Des tentatives pour définir l’IA …
L’IA est-t-elle le contraire de la « bêtise naturelle » ??
Une définition plus opérationnelle :
« L’IA est le domaine de l’informatique qui étudie comment faire
faire à l’ordinateur des tâches pour lesquelles l’homme est
aujourd’hui encore le meilleur. »
(Elaine Rich & Knight – Artificial Intelligence)
Les grandes dichotomies de l’IA subsistent :
- IA forte vs IA faible,
- Niveau de compétence vs niveau de performance,
- Algorithmique vs non algorithmique,
- Vision analytique vs vision émergente de la résolution de
problèmes,
- Sciences du naturel vs sciences de l’Artificiel. 14
Des tentatives pour définir l’IA …
IA forte : une machine produisant un comportement intelligent ,
capable d’avoir conscience d’elle-même en éprouvant des
« sentiments » et une compréhension de ses propres
raisonnements.
IA faible : Machine simulant ces comportements sans conscience
d’elle-même. Impossibilité liée au support « biologique » de la
conscience.
La question centrale : une « conscience » peut-elle émerger de
manipulations purement syntaxiques ?
C’est l’expérience de la Chambre chinoise imaginée par John Searle
en 1981. C’est aussi l’hypothèse (forte) de la pensée singulariste /
transhumaniste.
15
Le Test de Turing (1950)
16
Compétence vs performance :
On doit tenir compte de la distinction introduite par Noam
Chomsky (MIT) : faire « comme » ou faire « aussi bien que ».
L’oiseau et l ’avion volent mais pas de la même façon…
Jeux d ’échecs : les grands champions réfléchissent différemment
de Deep Blue.
Jeu de Go : AlphaGo n’a pas la même approche que celle du
champion du monde .
Vision analytique vs vision émergente de la résolution de
problèmes :
D’un côté on procède par décomposition de problèmes en sous-
problèmes plus simples à résoudre (analyse procédurale, système
experts basés sur la logique des prédicats) et de l’autre, on réalise
une distribution des tâches à un ensemble d ’agents qui
interagissent (exemple : Ant Algorithm).
17
L’histoire de l’IA est très récente… (60 ans)
Acte de naissance : 1956, Darmouth College (New Hampshire,USA)
John McCarthy (tenant de la logique) et Marvin Minsky (tenant
d’une approche par schémas).
Genèse autour de la notion de « machines à penser »
Comparaison du cerveau avec les premiers ordinateurs
Les grands acteurs de l’IA
Mc Culloch et Pitts : réseaux neuronaux artificiels (approche
physiologique),
Wiener : cybernétique,
Shannon : théorie de l’information,
Von Neumann : architecture d’un calculateur,
Alan Turing : théorisation des fonctions calculables par machine,
Kurt Gödel : théorème d’incomplétude (1931). 20
L’époque des systèmes experts (1970-1980)
Les systèmes experts apparaissent au début des années 1970 et se
développent jusqu’à la fin des années 1980 :
DENDRAL en chimie, MYCIN en médecine, Hersay II en
compréhension de la parole, Prospector en géologie.
Apparaissent également les premiers générateurs de systèmes
Experts : NEXPERT System, CLIPS, …
Les langages de programmation pour l’IA
LISP (usa), PROLOG (France - Colmerauer),
SmallTalk (langage objet), YAFOOL et KL-ONE (langages de Frame),
langages de logique de description.
21
Dès 1970, apparaît le concept de Réseaux
sémantiques
22
Les années 1980 :
La période des espoirs déçus de l’IA
Recul de l’approche symbolique de l’IA :
Après des espoirs déçus : en particulier avec l’échec de la
généralisation de la théorie des micromondes et le constat du
manque de souplesse des systèmes experts (on parlerait aujourd’hui
de manque d’agilité). Ils ont pourtant enregistré des succès dans des
domaines bien spécifiques en particulier en informatique de gestion.
Renaissance de l’approche connexionniste :
- Systèmes multi-agents, concept de « vie artificielle »,
- Hopfield, mémoire autoassociative, 1982
- Rumelhart & McClelland, Parallel Distributed Processes, MIT Press,
1985
- Réseaux de neurones artficiel (RNA)
23
Les défis actuels de l’IA
- Attente d’une IA généraliste (?), autonome (?), auto-apprenante
- Elle doit devenir performante et adaptative sur des situations
dynamiques, changeantes, singulières.
- Elle doit être capable d’assister l’apprentissage humain.
- Elle doit être en mesure de gérer des dialogues entre « agents »
très hétérogènes.
Pour cela, il faut traiter la cognition comme une émergence dans
l’interaction avec l’environnement.
Ceci implique la conception d’une nouvelle génération de systèmes
informatiques qui vont privilégier une cognition située, distribuée,
émergente (prolifération d’agents intelligents et auto-apprentissage).
24
L’agent intelligent comme concept
fondamental de l’IA
- Le terme « action » est à comprendre au sens large. Cela peut
signifier « fournir un diagnostic ».
- La boucle systémique Agent/Environnement n’est pas
nécessairement fermée.
?
senseurs
"actionneurs "
AGENT
perception
ENVIRONNEMENT
"action"
Source – Mines ParisTech
25
Définition de l’apprentissage artificiel :
« Capacité d’un système à améliorer ses performances
via des interactions avec son environnement » .
Spécificité de l’apprentissage :
Conception et adaptation de l’agent « intelligent » par
analyse automatisée (statistique) de son environnement
et de son action dans cet environnement.
Exemple typique d’apprentissage artificiel :
L’agent « prédicteur »
26
Historique
Données
externes
PrédictionAGENT
PREDICTEUR
Modèle de l’agent prédicteur
Performance espérée : minimiser l’erreur de prédiction
Méthode : utiliser des données expérimentales pour déterminer
le modèle le plus correct du type :
Prédiction = F ( historique, données externes )
Source – Mines ParisTech
27
Un système d’apprentissage est en général
composé :
- d’un modèle paramétrique,
- d’une façon d’interagir avec l’environnement,
- d’une « fonction de coût » à minimiser,
- d’un algorithme destiné à adapter le modèle, en
utilisant les données issues de l’environnement, avec
l’objectif d’optimiser la fonction de coût
28
Le modèle mathématique d'un
neurone artificiel
Entrées du
neurone
Poids du
neurone
29
La phase d'apprentissage d'un réseau de neurones se
décompose en cinq étapes :
Etape 1 - Présenter au réseau un couple entrée-cible.
Etape 2 - Calculer les prévisions du réseau pour les cibles.
Etape 3 - Utiliser la fonction d'erreur pour calculer la différence entre les prévisions
(sorties) du réseau et les valeurs cible. Reprendre les étapes 1 et 2 jusqu'à ce que
tous les couples entrée-cible aient été présentés au réseau.
Etape 4 - Utiliser l'algorithme d'apprentissage afin d'ajuster les poids du réseau de
telle sorte qu'il produise de meilleures prévisions à chaque couple entrée-cible.
Remarque : les étapes 1 à 5 constituent un seul cycle d'apprentissage ou itération.
Le nombre de cycles nécessaire pour entraîner un modèle de réseaux de neurones
n'est pas connu a priori mais peut être défini dans le cadre du processus
d'apprentissage.
Etape 5 - Répéter à nouveau les étapes 1 à 5 pendant un certain nombre de cycles
d'apprentissage ou d'itérations jusqu'à ce que le réseau commence à produire des
résultats suffisamment fiables (c'est-à-dire des sorties qui se trouvent assez
proches des cibles compte tenu des valeurs d'entrée). Un processus
d'apprentissage type pour les réseaux de neurones est constitué de plusieurs
centaines de cycles.
30
Les réseaux de neurones sont performants dans les
tâches suivantes :
Traitement du signal,
Maîtrise des processus,
Robotique,
Classification,
Pré-traitement des données
Reconnaissance de formes,
Analyse de l'image et synthèse vocale,
Diagnostics et suivi médical,
Marché boursier et prévisions,
Demande de crédits ou de prêts immobiliers.
31
Deep Learning et Réseaux de Neurones
On enregistre les premiers succès du Deep Learning (apprentissage
profond) en 2006. Les réseaux de neurones accompagnent les
avancées du Deep Learning .
Ces réseaux sont multicouches. Ils effectuent une série de
traitements hiérarchisés dans le but de classer des objets en
catégories, sans critères prédéfinis. Il s'agit d'un apprentissage non
supervisé.
Google, Facebook, IBM les utilisent partout aujourd’hui…
32
Un exemple issu de la convergence bio-informatique
(convergence NBIC)
Le processeur neuromorphique TrueNorth IBM
issu du programme DARPA SyNAPSE
3 -
Lorsque l’IA surpasse
l’homme en 2016
En 2016, l’Intelligence Artificielle a surpassé
l’homme dans plusieurs domaines.
Ces domaines étaient jusque là réservés à la
seule expertise humaine.
Robot chirurgien autonome STAR (Smart Tissue Autonomous Robot)
Pour la première fois, un robot chirurgien a opéré de manière
totalement autonome . Il est intervenu pour recoudre deux parties
d’un intestin de cochon.
Les chercheurs responsables de ce programme ont publié leurs
résultats en mai 2016 dans la revue Translational Medecine.
Le robot autonome a opéré avec plus de précision et d’habileté
que les chirurgiens humains et que les robots pilotés
manuellement par l’homme sur le même type d’intervention.
Des technologies d’imagerie intelligente et des marqueurs
fluorescents ont permis au robot de s’adapter aux tissus mous et
de réaliser des sutures et des connexions optimales.
La phase de test va se poursuivre durant deux ans avant une
intervention humaine.
Le « nouveau Rembrandt » peint par une Intelligence Artificielle
Le 5 avril 2016, un nouveau Rembrandt a été dévoilé…
Ce tableau « à la manière de Rembrandt » a été entièrement
réalisé par une IA créée par Microsoft, la banque ING, l’Université
de Delft et deux musées néerlandais .
L’IA a d’abord analysé des centaines de tableaux de Rembrandt
puis a déterminé les caractéristiques dominantes du Maître. Elle a
ensuite piloté une imprimante 3D pour réaliser cette œuvre inédite
en respectant parfaitement le style de Rembrandt.
Le champion Sud Coréen Lee Sedol affrontant l’IA AlphaGo au jeu de GO en 2016
En 2016, AlphaGo, l’intelligence artificielle développée par Google
DeepMind a battu à 4 reprises le champion du monde de jeu de Go,
Lee Sedol (5 manches à 0 en janvier contre le champion européen
et 4 manches à une en mars contre Lee Sedol).
Avec ses 10 puissance 600 combinaisons possibles, le jeu de Go
reste beaucoup plus complexe que le jeu d’échecs.
AlphaGo a utilisé les techniques du Deep Learning pour réaliser cet
exploit.
ALPHA , une IA de simulation de combat aérien hyper agressive
ALPHA , une IA de simulation de combat aérien hyper agressive
Le colonel Gene Lee, instructeur considéré par ses pairs comme
ayant une « expertise considérable des avions de chasse et du
combat aérien » s’est mesuré à plusieurs reprises à ALPHA …
Durant les simulations de combat effectuées contre la machine,
l’instructeur a été abattu plusieurs fois.
Selon Gene Lee :
ALPHA se révèle être « la plus agressive, le plus réactive, la plus
dynamique et la plus crédible intelligence artificielle » des
intelligences artificielles qu’il a pu voir.
4 -
La course à l’IA est lancée
La Course à l’IA
La Course à l’IA
La Course à l’IA
Google, IBM, Twitter, Intel, Apple, Yahoo, Salesforce, Samsung, sont
en concurrence depuis 2011 pour racheter les startups d’IA les plus
innovantes.
Depuis 2011, 140 startups et entreprises travaillant dans le secteur
de l’intelligence artificielle avancée ont été rachetées , dont 40
acquisitions en 2016 !
Les leaders de la recherche en Machine Learning
La Chine et les Etats-Unis sont leaders dans la recherche en Machine
Learning / Deep Learning.
La Chine vient de prendre la tête du classement des pays en terme
de publications de recherche en Machine Learning / Deep Learning
et des citations de ces articles.
Barack Obama a fait plusieurs interventions rappelant l’importance
stratégique de l’IA dans la future croissance américaine. Plusieurs
études prospectives sur l’IA ont été lancées par son gouvernement.
https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/n
ational_ai_rd_strategic_plan.pdf
Durant les vingt prochaines années, l’IA sera le
principal vecteur stratégique du développement
économique des nations.
Elle déterminera leur puissance militaire et leur
niveau de souveraineté nationale…
5 - L’Intelligence Artificielle
sur le champ de bataille
" L'IA est un élément stratégique de notre souveraineté
nationale " - Jean-Yves Le Drian (2017)
Comment définir l'IA de défense ?
L'IA : la capacité à traiter de l'information comme le ferait
l'humain mais par des moyens artificiels .
Cette capacité comprend 4 fonctions principales pour définir l’IA
de défense :
F1 - Percevoir l'environnement
F2 - Lui donner un sens
F3 - Capable d'apprendre et d'évoluer
F4 - Capable de proposer des actions et de décider.
L’IA de défense est une augmentation de l'humain sans être un
remplacement (position de Marko Erman, Directeur R&D du
groupe Thales).
L'IA de Défense ne se différencie pas de l'IA civile.
Comment définir l'IA de défense ?
Le résultat fourni par une IA n'est pas le meilleur mais est
« raisonnable ». La différence résulte de l'apprentissage : Plus les
données sont nombreuses et meilleur sera le retour.
Dans la défense, l'apprentissage fait la différence.
Problème difficile : la validation des process
Le rôle de l'industriel de l’IA de défense : simplifier , rendre la
décision plus facile, lever l'ambiguïté.
L'IA est amplifiée par les data, la connectivité et la cybersécurité
(cas de données corrompues). La confiance en les données, les
applis du cloud : c'est stratégique.
Comment définir l'IA de défense ?
Exemple 1 : Le "Chazam" du radar selon Thales
Thales développe un radar à couche neuronale qui apprend sur
des sources connues, puis qui saura reconnaitre les signatures en
haute précision et avec une simplicité du capteur, antenne : il est
intelligent , évolutif, performant grâce aux réseaux de neurones.
Exemple 2 : (Thales) La sécurisation de la ville de Mexico :
meurtre à armes à feu, criminalité/ 15 000 caméras, des
détecteurs acoustiques pour géolocaliser le lieu d'un tir d'arme à
feu puis alerter automatiquement la police, etc...
Le résultat : donner des moyens de regarder les bons écrans !
Réduire le temps d'intervention de 12 minutes à 3 minutes. C'est
crucial en matière de criminalité. Dans ce cas précis, l’IA sauve
des vies !
Comment définir l'IA de défense ?
La complexité des défis de l’IA :
Les données doivent être représentative de l'espace des
problèmes.
L'annotation de données : c'est en général un processus très long .
Il faut alors passer par la simulation : 2 millions de simulations pour
le Rafale pour l'annotation.
La puissance dissipée par un réseau de neurone : Elle est énorme
par rapport au cerveau humain.
La certification, la validation formelle de la solution faite
aujourd’hui par l‘opérateur humain.
La position de militaires français sur l’IA
Selon le Général Vincent Desportes,
-Il faut faire la différence entre la bataille et la guerre :
-La bataille est un acte technique différent de l'acte politique qui
est de faire la guerre.
-L'IA augmente la rapidité de gagner les batailles.
-L’histoire a montré que l’on peut disposer de la meilleure des
technologies et perdre la guerre.
-Concernant l’augmentation, il ne faut pas confondre l'acte
technique et l'acte politique.
- La décision de donner la mort est une décision politique qui doit
rester humaine.
La position de militaires français sur l’IA
Selon le Général Vincent Desportes,
- Concernant l’emploi des drones : il ne faut pas déléguer le rôle
de donner la mort au drone (cf mines) ?
- Au niveau stratégique : toute décision stratégique est intuitive.
L'IA va aider à prendre la bonne décision.
- Le stratège aura un peu moins d'options mais des options de
meilleure qualité grâce à l'IA.
- Gagner la guerre c'est contrôler les espaces. l'IA va aider à cela.
Le contrôle des espaces et la prédictibilité vont être facilités par
les apports et les progrès de l’IA.
La position de militaires français sur l’IA
Selon le Général Vincent Desportes,
- Concernant les solutions d'aide à la décision : On pourra prévoir
des choses mais pas tout .
- L'homme est un être émotionnel, passionnel, et irrationnel.
Il sera difficile pour l'IA d’être efficace face aux comportements
irrationnels et émotionnels.
- Il y aura un équilibre à trouver entre le coût de l'IA et l'impact sur
les volumes et les effectifs. On accroit la qualité technologique
mais on réduit le volume des parcs et de flottes et effectifs.
Il faut donc trouver cet équilibre.
La position de militaires français sur l’IA
Selon l’ancien Ministre de la Défense, Jean-Yves Le Drian,
Les grands enjeux stratégiques de la Défense sont désormais :
- L'hypervélocité
- La lutte sous-marine
- l'IA
On doit attendre beaucoup de l'IA et des robots pour aller gagner
des batailles. Elles se gagnent dans le tribunal de la force.
Pour gagner les prochaines guerres, il faut considérer que l'homme
aura toujours toute sa place dans le dispositif.
L'arme nucléaire a changé la nature de la guerre , c'est la seule à
ce jour. L'IA va - t - elle modifier la guerre ?
L’IA de défense du côté
américain
La robotisation du champ de bataille touche aujourd’hui toutes les
armées, petites et grandes.
Les américains sont les leaders dans le domaine des drones
d’observation et de combat. Ils ont d’ailleurs fondé leur doctrine de
lutte contre le terrorisme sur l’utilisation de ces drones en
Afghanistan, dans les zones tribales du Pakistan, en Irak, en Libye, au
Mali et au Nord Cameroun.
Prédator tirant un
missile Hellfire
Defense Advanced Research Projects Agency
La Darpa et l’US Navy viennent de lancer très officiellement le Sea
Hunter, un navire autonome dépourvu d’équipage humain, dédié à
la lutte anti-sous-marine. Long d’une quarantaine de mètres,
le Sea Hunter est capable d’évoluer en autonomie durant plusieurs
mois sur des milliers de kilomètres.
Issu d’un programme Darpa, il débute aujourd’hui une phase de
tests qui s’étalera sur deux ans.
Sea Hunter n’est pas « télécommandé » par un opérateur agissant
depuis un poste de commandement mais dispose d’une réelle
autonomie, une fois sa mission initiale définie.
Il est capable en particulier de réaliser toutes les manœuvres
usuelles d’un navire de cette taille sans intervention humaine et
sait reconnaître et respecter les règles de navigations
internationales.
La Darpa annonce un coût de développement à hauteur de 20
millions de dollars qui sera très largement compensé par les
économies de fonctionnement qu’il va engendrer.
En effet, le coût de fonctionnement journalier de Sea Hunter se
situe entre 15 000 et 20 000 dollars, ce qui est bien meilleur
marché que celui d’un navire équivalent doté d’un équipage
humain…
Sea Hunter est donc la Google Car des mers qui pourrait bien
uberiser le marché des navires de surveillance et de lutte anti-
sous-marine.
Comme le proclament la Darpa et l’US Navy, il s’agit d’une
révolution technologique et stratégique qui
« disrupte » totalement le marché.
L’intelligence artificielle qui fait baisser les coûts de
fonctionnement
L’Intelligence Artificielle (IA) agit comme le levier principal pour
faire baisser le coût de fonctionnement journalier des systèmes en
les rendant autonomes (et en détruisant au passage les emplois de
l’équipage). On retrouve ce couple (IA, baisse du coût de
fonctionnement par autonomisation) dans tous les autres
contextes de développement de systèmes armés autonomes :
Les robots sentinelles Samsung SGRA1 déployés le long de la
frontière entre les deux Corée induisent des économies réalisées
sur les effectifs des personnels positionnés sur la frontière.
Un seul robot démineur russe dérivé des unités robotisées
Platform-M est aujourd’hui capable de remplacer l’action de 15 à
20 démineurs humains, avec un taux de détection dépassant les 95
%.
Les robots sentinelles russes MRK-27-BT sont déployés autour des
camions porteurs de missiles stratégiques Topol depuis le début de
l’année, révolutionnant l’activité de sécurisation d’une zone
militaire hautement sensible.
Dans chaque situation, l’IA remplace l’action d’un groupe
d’opérateurs humains avec un gain de productivité important : pas
de congé maladie, pas de jours fériés, pas de contestation salariale,
pas de fatigue ou de baisse de vigilance durant le service, et dans
les cas extrêmes, une économie de sang durant l’attaque.
L’IA de Défense du côté de la
Fédération de Russie…
Les systèmes d'armes semi-autonomes et autonomes
seront largement employés par les troupes russes d'ici
2018. Ils devraient représenter plus de 30 % de
l'ensemble du matériel mis en service d'ici 2025.
Le Général Valeri Guérassimov, chef d’État-major des
forces armées de la Fédération de Russie et vice-ministre
russe de la Défense vient de déclarer que son pays
cherche à développer des unités de combat robotisées
capables d'intervenir sur toutes les zones de crises.
L’Unité de combat robotisée Platform-M
Robot sentinelle russe Volk-2
Robot démineur russe Ouran-6
Robot russe Argo
Poids : environ 1000 kg ; dimensions : longeur 3,4m ; largeur 1m ; hauteur 1,65m
Vitesse de déplacement 20km ; durée opérationnelle : 20 heures ;
Armement : mitrailleuse, grenade anti-char RPG26, grenades RSG2
Robot tireur russe Strelok
Char russe T14 Armata
A tourelle automatisée – vers une « dronification » du T14
L’IA de défense du côté
français
Dassault NEURON
Le Dassault Neuron est un démonstrateur de drone de combat
furtif européen se basant sur l'aile volante et dont la maîtrise
d'œuvre est confiée à Dassault Aviation. Il reprend une
aérodynamique similaire au bombardier Northrop Grumman B-2
Spirit
Vitesse maximale : 980 km/h
Longueur : 9,5 m
Envergure : 12 m
Moteur : Rolls-Royce Safran Aircraft Engines Adour Mk. 951
Type de moteur : Turboréacteur à double flux
Coût unitaire : 25 000 000–25 000 000 EUR (2013)
Premier vol : 1er décembre 2012
Premier vol en formation pour le NEURON avec un Rafale et un
Falcon 7X
L’IA de Défense en Corée du
Sud
A la frontière des deux Corées : SGR A1 développé par Samsung
L’IA de Défense du côté
israélien
DOGO, le robot antiterroriste
La société israélienne General Robotics développe son robot
portable Dogo, armé d'un pistolet GLOCK 26, calibre 9mm. Il s'agit
de la première machine compacte du monde équipée de ses
propres armes. L'engin ne pèse que 12 kg.
Selon la société General Robotics, le robot peut être utilisé en
combat rapproché, ainsi que pour des opérations antiterroristes.
Dogo peut également être équipé de spray au poivre et de gaz
paralysants.
L’appareil est équipé d’un système de transmission d’informations
audio et vidéo ancré à son panneau de commande, ainsi que d’un
système de détection d’obstacles. Par exemple, à l’approche d’un
escalier, il passe automatiquement en mode optimal en soulevant
ses roues sans qu’il y ait besoin de commandes supplémentaires.
Selon la description qu’en fait General Robotics, Dogo est un
«chien de garde », d’où son nom, inspiré par le dogue argentin,
un chien connu pour être rusé, courageux et dominateur.
Dogo a une autonomie d’environ quatre heures et dispose d’un
système de surveillance composé de 8 caméras à haute
résolution qui offrent une visibilité à 360 degrés.
Les défis de « l’IA militaire » et les enjeux de souveraineté
nationale sous-jacents :
- La complexité algorithmique des processus
- L’exploitation optimisée du futur « tsunami » de données issu
des objets connectés accompagnant le combattant.
- Developper un Cloud souverain militaire, national (data
centers dédiés, partage des puissance de calcul, HPC,
simulation.
- Développer une cybersécurité de l’IA, et une résilience de
l’IA militaire
- Attirer et former des cadres officiers et sous-officiers formés à
l’IA.
Les défis de « l’IA militaire » et les enjeux de souveraineté
nationale sous-jacents :
- Développer des IA hyper-agressives, hyper véloce (comme
ALPHA).
- Développer des IA « curieuses » dotées d’une forme de
sagacité artificielle (agents cureux).
- Développer des IA à large spectre d’utilisation, généralistes et
adaptatives.
- Développer des IA efficaces dans un contexte de faible
volumétrie de données.
6 - Le soldat augmenté
L’IA va permettre « d’augmenter » des capacités
cognitives du combattant.
Cela dit, les problématiques à ce sujet sont nombreuses :
- Réversibilité de l’augmentation,
- Localisation de l’augmentation,
- Effets collatéraux de l’augmentation d’une capacité sur les
autres capacités du combattant (avec diminution possible),
- Complexité des processus d’augmentation,
- Cybersécurité de l’IA accompagnant l’augmentation,
- Développer un modèle formel de l’augmentation au combat.
Pour conclure…
Rapide et inéluctable, la robotisation du champ de bataille est en
marche, sur terre, dans les airs comme en mer. Elle oblige
désormais les stratèges à repenser les doctrines militaires et les
règles d’engagement au combat pour les adapter à un art de la
guerre où l’autonomie des systèmes devient prépondérante.
Américains, Russes et Chinois ont choisi de robotiser et de rendre
semi-autonome puis autonome une grande partie de leurs
systèmes d’armes.
On peut parier que les nations qui n’entreront pas dans la course à
l’IA dans ce domaine sacrifieront du même coup leur potentiel de
défense et leurs capacités opérationnelles. Le fossé technologique
sera alors semblable à celui opposant une armée féodale à une
armée du vingtième siècle. Les vrais enjeux de sécurité et de
société se situent aujourd’hui dans cette course à l’IA de défense
qui peut provoquer des déséquilibres géostratégiques
irrattrapables…
La « dronification » et la robotisation font évoluer les systèmes
d’armes vers la semi-autonomie puis vers l’autonomie.
Cette évolution pose des questions à la fois éthiques et
stratégiques.
L’intelligence artificielle occupe désormais un rôle central dans la
révolution de l’armement moderne. Elle participe à la projection du
combat sur l’espace numérique.
Le problème du contrôle du système d’arme, transféré sur le
cyberespace, nous interroge à nouveau sur les risques de hacking et
de détournement.
Les défis technologiques et les enjeux stratégiques ne doivent
pas être sous-estimés… Ils engagent notre sécurité.
http://cyberland.centerblog.net/
https://fr.slideshare.net/OPcyberland/presentations
http://www.chaire-cyber.fr/
113

Contenu connexe

Tendances

AI_course.pdf
AI_course.pdfAI_course.pdf
AI_course.pdf
MissaouiWissal
 
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
OPcyberland
 
Intelligence Artificielle et cybersécurité
Intelligence Artificielle et cybersécuritéIntelligence Artificielle et cybersécurité
Intelligence Artificielle et cybersécurité
OPcyberland
 
ChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignement
ChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignementChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignement
ChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignement
Alain Goudey
 
COURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptxCOURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptx
PROF ALAIN NDEDI
 
Machine Learning et Intelligence Artificielle
Machine Learning et Intelligence ArtificielleMachine Learning et Intelligence Artificielle
Machine Learning et Intelligence Artificielle
Soft Computing
 
Intelligence artificielle et soin.pptx
Intelligence artificielle et soin.pptxIntelligence artificielle et soin.pptx
Intelligence artificielle et soin.pptx
Arnaud Depil-Duval
 
iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney
Hicham Sabre
 
IoT, Sécurité et Santé: un cocktail détonnant ?
IoT, Sécurité et Santé: un cocktail détonnant ?IoT, Sécurité et Santé: un cocktail détonnant ?
IoT, Sécurité et Santé: un cocktail détonnant ?
Antoine Vigneron
 
Présentation PFE: Système de gestion des réclamations et interventions clients
Présentation PFE: Système de gestion des réclamations et interventions clientsPrésentation PFE: Système de gestion des réclamations et interventions clients
Présentation PFE: Système de gestion des réclamations et interventions clients
Mohamed Ayoub OUERTATANI
 
Internet des Objets
Internet des ObjetsInternet des Objets
Internet des Objets
Dhiaeddine Loghmari
 
Intelligence artificielle en médecine
Intelligence artificielle en médecineIntelligence artificielle en médecine
Intelligence artificielle en médecine
Jean-Emmanuel Bibault Bibault, MD, PhD
 
Big data
Big dataBig data
Intelligence artificielle et travail
Intelligence artificielle et travailIntelligence artificielle et travail
Intelligence artificielle et travail
France Stratégie
 
Intelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agentIntelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agent
Noureddine Djebbari
 
ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiantsChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
Alain Goudey
 
Presentation de projet de fin de etude
Presentation de projet de fin de etudePresentation de projet de fin de etude
Presentation de projet de fin de etude
Belwafi Bilel
 
ChatBots et intelligence artificielle arrivent dans les banques
ChatBots et intelligence artificielle arrivent dans les banques ChatBots et intelligence artificielle arrivent dans les banques
ChatBots et intelligence artificielle arrivent dans les banques
LINAGORA
 
ROBOT à base d'Android - Présentation PFE
ROBOT à base d'Android - Présentation PFEROBOT à base d'Android - Présentation PFE
ROBOT à base d'Android - Présentation PFE
Houssem Eddine LASSOUED
 

Tendances (20)

AI_course.pdf
AI_course.pdfAI_course.pdf
AI_course.pdf
 
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
 
Intelligence Artificielle et cybersécurité
Intelligence Artificielle et cybersécuritéIntelligence Artificielle et cybersécurité
Intelligence Artificielle et cybersécurité
 
ChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignement
ChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignementChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignement
ChatGPT, Midjourney, la déferlante des IA génératives dans l'enseignement
 
Presentation,PFE
Presentation,PFEPresentation,PFE
Presentation,PFE
 
COURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptxCOURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptx
 
Machine Learning et Intelligence Artificielle
Machine Learning et Intelligence ArtificielleMachine Learning et Intelligence Artificielle
Machine Learning et Intelligence Artificielle
 
Intelligence artificielle et soin.pptx
Intelligence artificielle et soin.pptxIntelligence artificielle et soin.pptx
Intelligence artificielle et soin.pptx
 
iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney
 
IoT, Sécurité et Santé: un cocktail détonnant ?
IoT, Sécurité et Santé: un cocktail détonnant ?IoT, Sécurité et Santé: un cocktail détonnant ?
IoT, Sécurité et Santé: un cocktail détonnant ?
 
Présentation PFE: Système de gestion des réclamations et interventions clients
Présentation PFE: Système de gestion des réclamations et interventions clientsPrésentation PFE: Système de gestion des réclamations et interventions clients
Présentation PFE: Système de gestion des réclamations et interventions clients
 
Internet des Objets
Internet des ObjetsInternet des Objets
Internet des Objets
 
Intelligence artificielle en médecine
Intelligence artificielle en médecineIntelligence artificielle en médecine
Intelligence artificielle en médecine
 
Big data
Big dataBig data
Big data
 
Intelligence artificielle et travail
Intelligence artificielle et travailIntelligence artificielle et travail
Intelligence artificielle et travail
 
Intelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agentIntelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agent
 
ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiantsChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
 
Presentation de projet de fin de etude
Presentation de projet de fin de etudePresentation de projet de fin de etude
Presentation de projet de fin de etude
 
ChatBots et intelligence artificielle arrivent dans les banques
ChatBots et intelligence artificielle arrivent dans les banques ChatBots et intelligence artificielle arrivent dans les banques
ChatBots et intelligence artificielle arrivent dans les banques
 
ROBOT à base d'Android - Présentation PFE
ROBOT à base d'Android - Présentation PFEROBOT à base d'Android - Présentation PFE
ROBOT à base d'Android - Présentation PFE
 

Similaire à Intelligence Artficielle : nouvel acteur du champ de bataille

Conférence UTA BFM Limoges - IA nouvel acteur du champ de bataille
Conférence UTA  BFM  Limoges - IA nouvel acteur du champ de batailleConférence UTA  BFM  Limoges - IA nouvel acteur du champ de bataille
Conférence UTA BFM Limoges - IA nouvel acteur du champ de bataille
OPcyberland
 
Convergence NBIC CKTS et RH
Convergence NBIC CKTS et RHConvergence NBIC CKTS et RH
Convergence NBIC CKTS et RH
OPcyberland
 
Cours Conférence INHESJ - IA et cybersécurité
Cours Conférence INHESJ - IA et cybersécuritéCours Conférence INHESJ - IA et cybersécurité
Cours Conférence INHESJ - IA et cybersécurité
OPcyberland
 
Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...
OPcyberland
 
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier Meïr Long
 
Article sur l'IA dans le magazine Start
Article sur l'IA dans le magazine StartArticle sur l'IA dans le magazine Start
Article sur l'IA dans le magazine Start
Pascal Flamand
 
IntelligenceArtificielle.pdf
IntelligenceArtificielle.pdfIntelligenceArtificielle.pdf
IntelligenceArtificielle.pdf
harizi riadh
 
1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle
Maxime MAZON
 
La coopération des intelligences
La coopération des intelligencesLa coopération des intelligences
La coopération des intelligences
Aymeric
 
cours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificiellecours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificielle
syliaghz
 
Ch1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdfCh1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdf
kedegaston39
 
WygDay - Session Innovation xBrainLab
WygDay - Session Innovation xBrainLabWygDay - Session Innovation xBrainLab
WygDay - Session Innovation xBrainLabGregory Renard
 
WygDay 2010 - Start Up : xbrainlab
WygDay 2010 - Start Up : xbrainlabWygDay 2010 - Start Up : xbrainlab
WygDay 2010 - Start Up : xbrainlab
Wygwam
 
Intelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdfIntelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdf
Gamal Mansour
 
Penser le laboratoire du futur... l'impact de L'IA
 Penser le laboratoire du futur... l'impact de L'IA  Penser le laboratoire du futur... l'impact de L'IA
Penser le laboratoire du futur... l'impact de L'IA
Yvon Gervaise
 
LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...
LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...
LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...
Fernando Alcoforado
 
Présentation réalités virtuelles
Présentation réalités virtuellesPrésentation réalités virtuelles
Présentation réalités virtuelles
Scander1005
 
IA, Ia grande question
IA, Ia grande questionIA, Ia grande question
IA, Ia grande question
Alain Lefebvre
 

Similaire à Intelligence Artficielle : nouvel acteur du champ de bataille (20)

Conférence UTA BFM Limoges - IA nouvel acteur du champ de bataille
Conférence UTA  BFM  Limoges - IA nouvel acteur du champ de batailleConférence UTA  BFM  Limoges - IA nouvel acteur du champ de bataille
Conférence UTA BFM Limoges - IA nouvel acteur du champ de bataille
 
Convergence NBIC CKTS et RH
Convergence NBIC CKTS et RHConvergence NBIC CKTS et RH
Convergence NBIC CKTS et RH
 
Cours Conférence INHESJ - IA et cybersécurité
Cours Conférence INHESJ - IA et cybersécuritéCours Conférence INHESJ - IA et cybersécurité
Cours Conférence INHESJ - IA et cybersécurité
 
Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...
 
2011 frances
2011 frances2011 frances
2011 frances
 
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
 
Article sur l'IA dans le magazine Start
Article sur l'IA dans le magazine StartArticle sur l'IA dans le magazine Start
Article sur l'IA dans le magazine Start
 
IntelligenceArtificielle.pdf
IntelligenceArtificielle.pdfIntelligenceArtificielle.pdf
IntelligenceArtificielle.pdf
 
1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle
 
Cfp cyborg
Cfp cyborgCfp cyborg
Cfp cyborg
 
La coopération des intelligences
La coopération des intelligencesLa coopération des intelligences
La coopération des intelligences
 
cours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificiellecours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificielle
 
Ch1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdfCh1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdf
 
WygDay - Session Innovation xBrainLab
WygDay - Session Innovation xBrainLabWygDay - Session Innovation xBrainLab
WygDay - Session Innovation xBrainLab
 
WygDay 2010 - Start Up : xbrainlab
WygDay 2010 - Start Up : xbrainlabWygDay 2010 - Start Up : xbrainlab
WygDay 2010 - Start Up : xbrainlab
 
Intelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdfIntelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdf
 
Penser le laboratoire du futur... l'impact de L'IA
 Penser le laboratoire du futur... l'impact de L'IA  Penser le laboratoire du futur... l'impact de L'IA
Penser le laboratoire du futur... l'impact de L'IA
 
LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...
LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...
LES AVANTAGES ET LES RISQUES DE LA SINGULARITÉ TECHNOLOGIQUE BASÉE SUR LA SUP...
 
Présentation réalités virtuelles
Présentation réalités virtuellesPrésentation réalités virtuelles
Présentation réalités virtuelles
 
IA, Ia grande question
IA, Ia grande questionIA, Ia grande question
IA, Ia grande question
 

Plus de OPcyberland

Conference robots kedge 26 mars 2021
Conference robots kedge   26 mars 2021Conference robots kedge   26 mars 2021
Conference robots kedge 26 mars 2021
OPcyberland
 
Panorama Cybersécurité 2020
Panorama Cybersécurité 2020Panorama Cybersécurité 2020
Panorama Cybersécurité 2020
OPcyberland
 
Synthese ianp2019
Synthese ianp2019Synthese ianp2019
Synthese ianp2019
OPcyberland
 
Ianp 2019
Ianp 2019Ianp 2019
Ianp 2019
OPcyberland
 
Ia et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3ILIa et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3IL
OPcyberland
 
ID FORUM - FIC2020
ID FORUM - FIC2020ID FORUM - FIC2020
ID FORUM - FIC2020
OPcyberland
 
Cybermed ia2020
Cybermed ia2020Cybermed ia2020
Cybermed ia2020
OPcyberland
 
Dut informatique limoges
Dut informatique limogesDut informatique limoges
Dut informatique limoges
OPcyberland
 
Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019
OPcyberland
 
Guide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3emeGuide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3eme
OPcyberland
 
Congres cybermed nice 2019
Congres cybermed nice 2019Congres cybermed nice 2019
Congres cybermed nice 2019
OPcyberland
 
Conférence NAIA Bordeaux
Conférence NAIA Bordeaux Conférence NAIA Bordeaux
Conférence NAIA Bordeaux
OPcyberland
 
Ihedn menace cyber
Ihedn menace cyberIhedn menace cyber
Ihedn menace cyber
OPcyberland
 
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
OPcyberland
 
MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019
OPcyberland
 
ifda financial attacks - Conférence ECW 2018 Rennes
   ifda financial attacks - Conférence ECW 2018 Rennes   ifda financial attacks - Conférence ECW 2018 Rennes
ifda financial attacks - Conférence ECW 2018 Rennes
OPcyberland
 
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote   IA et sécurité numérique - 15 novembre 2018 - Ecole PolytechniqueAristote   IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
OPcyberland
 
Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018
OPcyberland
 
Cyberstrategia
CyberstrategiaCyberstrategia
Cyberstrategia
OPcyberland
 
Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018
Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018
Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018
OPcyberland
 

Plus de OPcyberland (20)

Conference robots kedge 26 mars 2021
Conference robots kedge   26 mars 2021Conference robots kedge   26 mars 2021
Conference robots kedge 26 mars 2021
 
Panorama Cybersécurité 2020
Panorama Cybersécurité 2020Panorama Cybersécurité 2020
Panorama Cybersécurité 2020
 
Synthese ianp2019
Synthese ianp2019Synthese ianp2019
Synthese ianp2019
 
Ianp 2019
Ianp 2019Ianp 2019
Ianp 2019
 
Ia et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3ILIa et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3IL
 
ID FORUM - FIC2020
ID FORUM - FIC2020ID FORUM - FIC2020
ID FORUM - FIC2020
 
Cybermed ia2020
Cybermed ia2020Cybermed ia2020
Cybermed ia2020
 
Dut informatique limoges
Dut informatique limogesDut informatique limoges
Dut informatique limoges
 
Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019
 
Guide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3emeGuide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3eme
 
Congres cybermed nice 2019
Congres cybermed nice 2019Congres cybermed nice 2019
Congres cybermed nice 2019
 
Conférence NAIA Bordeaux
Conférence NAIA Bordeaux Conférence NAIA Bordeaux
Conférence NAIA Bordeaux
 
Ihedn menace cyber
Ihedn menace cyberIhedn menace cyber
Ihedn menace cyber
 
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
 
MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019
 
ifda financial attacks - Conférence ECW 2018 Rennes
   ifda financial attacks - Conférence ECW 2018 Rennes   ifda financial attacks - Conférence ECW 2018 Rennes
ifda financial attacks - Conférence ECW 2018 Rennes
 
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote   IA et sécurité numérique - 15 novembre 2018 - Ecole PolytechniqueAristote   IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
 
Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018
 
Cyberstrategia
CyberstrategiaCyberstrategia
Cyberstrategia
 
Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018
Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018
Intelligence Artificielle - Comment change-t-elle le mode ? JBU2018
 

Intelligence Artficielle : nouvel acteur du champ de bataille

  • 1. L’intelligence Artificielle : nouvel acteur du champ de bataille Thierry Berthier Chaire de Cyberdéfense & Cybersécurité Saint-Cyr – CREC 4 juillet 2017 https://fr.slideshare.net/OPcyberland/presentations
  • 2. PLAN 1 - Le temps du Kronos, A l’origine de l’Intelligence Artificielle 2 - Intelligence artificielle – De quoi parle-t-on ? 3 - Lorsque l’IA surpasse l’homme en 2016 4 - La course à l’IA est lancée 5 - L’intelligence artificielle sur le champ de bataille 6 - Le soldat augmenté
  • 3. 1 - Le temps du Kronos, A l’origine de l’IA
  • 4. Thétis et Héphaïstos soutenu par ses automates – Auteur : Füssli, Johann Heinrich (1741-1825) – Date : 1803
  • 5. Dans la mythologie grecque, Héphaïstos, l’illustre artisan, est un dieu infirme, difforme et boiteux. C’est aussi un extraordinaire concepteur d’automates et de créatures artificielles imitant la vie qu’il met au service des dieux.
  • 6. Héphaïstos et le temps du Kronos Héphaïstos sait forger et animer des mécanismes complexes. Il a construit des trépieds capables de se déplacer de manière autonome (automatoï) pour se rendre à l’assemblée des dieux ainsi que les fameuses portes de l’Olympe qui s’ouvrent d’elles-mêmes. Selon des sources antiques, il a fabriqué des servantes d’or qui l’assistent dans ses travaux, puis six charmeuses d’or accompagnées de chiens gardiens du palais d’Alkinoos, de chevaux forgés pour le char des Cabires, d’un aigle fabriqué pour Zeus et du géant de bronze Talos laissé à Minos pour garder l’île de Crète. Créés pour accomplir une tâche précise qu’ils exécutent à la perfection, les automates d’Héphaïstos construits sur le modèle d’objets usuels, d’animaux ou d’êtres humains deviennent les auxiliaires des dieux.
  • 7. Héphaïstos et le temps du Kronos Dans la société divine où les Olympiens ne connaissent ni peine ni contrainte, les créations animées d’Héphaïstos remplacent les esclaves des sociétés humaines pour accomplir les tâches les plus répétitives et rébarbatives. Les automates donnent à la communauté des dieux et à la première race humaine la possibilité de mener une existence idéale, dénuée d’effort, préservée des souffrances et des malheurs. Cette période idyllique, appelée « temps du Kronos », est celle d’une agriculture prospère qui ne demande aucun effort et d’une production de richesses et de ressources totalement automatisée. On notera que les automates du temps du Kronos rendent inutiles l’esclavage et le travail humain.
  • 8. Avec les convergences NBIC, CKTS et DIADEH débute le second temps du Kronos L’espèce humaine aborde aujourd’hui son second temps du Kronos marqué par la convergence NBIC (Nanotechnologies, Biotechnologies, Informatique, sciences Cognitives). Les héritiers mortels d’Héphaïstos s’incarnent désormais dans chaque créateur de robots mis au service de ceux qui aspirent à une vie sans contrainte et à une certaine forme d’immortalité.
  • 9. Avec les convergences NBIC, CKTS et DIADEH débute le second temps du Kronos
  • 10. Pour comprendre le futur, relisons l’Iliade et l’Odyssée ! L’intelligence artificielle et la robotique, comme la forge et le marteau d’Héphaïstos, transforment notre environnement et nous libèrent de ses contraintes. L’augmentation de l’espérance de vie et l’émergence d’une information ubiquitaire globale entourant et guidant l’individu caractérisent désormais ce second temps du Kronos dans ses promesses émancipatrices. Les merveilleuses créations d’Héphaïstos réalisaient toutes les tâches humaines à la perfection en surpassant le travail des êtres mortels. Ainsi, nul intrus ne parvenait à échapper à son chien d’or, molosse forgé, gardien du palais d’Alkinoos. Le géant Talos pouvait effectuer le tour de la Crète trois fois par jour pour prévenir toute intrusion.
  • 11.
  • 13. Des tentatives pour définir l’IA … L’expression IA apparaît en 1956 durant la conférence de Dartmouth dans une première définition (qui s’avère très insuffisante aujourd’hui) : Définition de Marvin Minsky (1927 – 2016) « L’intelligence artificielle est la science qui consiste à faire faire à des machines ce que l’homme fait moyennant une certaine intelligence ». Critique : Cette définition présente une forte récursivité… La « complexité » mentale est-elle comparable à la complexité informatique ? La définition de Minsky exclut des domaines majeurs de l’IA : la perception (vision et parole), la robotique, la compréhension du langage naturel, le sens commun. 13
  • 14. Des tentatives pour définir l’IA … L’IA est-t-elle le contraire de la « bêtise naturelle » ?? Une définition plus opérationnelle : « L’IA est le domaine de l’informatique qui étudie comment faire faire à l’ordinateur des tâches pour lesquelles l’homme est aujourd’hui encore le meilleur. » (Elaine Rich & Knight – Artificial Intelligence) Les grandes dichotomies de l’IA subsistent : - IA forte vs IA faible, - Niveau de compétence vs niveau de performance, - Algorithmique vs non algorithmique, - Vision analytique vs vision émergente de la résolution de problèmes, - Sciences du naturel vs sciences de l’Artificiel. 14
  • 15. Des tentatives pour définir l’IA … IA forte : une machine produisant un comportement intelligent , capable d’avoir conscience d’elle-même en éprouvant des « sentiments » et une compréhension de ses propres raisonnements. IA faible : Machine simulant ces comportements sans conscience d’elle-même. Impossibilité liée au support « biologique » de la conscience. La question centrale : une « conscience » peut-elle émerger de manipulations purement syntaxiques ? C’est l’expérience de la Chambre chinoise imaginée par John Searle en 1981. C’est aussi l’hypothèse (forte) de la pensée singulariste / transhumaniste. 15
  • 16. Le Test de Turing (1950) 16
  • 17. Compétence vs performance : On doit tenir compte de la distinction introduite par Noam Chomsky (MIT) : faire « comme » ou faire « aussi bien que ». L’oiseau et l ’avion volent mais pas de la même façon… Jeux d ’échecs : les grands champions réfléchissent différemment de Deep Blue. Jeu de Go : AlphaGo n’a pas la même approche que celle du champion du monde . Vision analytique vs vision émergente de la résolution de problèmes : D’un côté on procède par décomposition de problèmes en sous- problèmes plus simples à résoudre (analyse procédurale, système experts basés sur la logique des prédicats) et de l’autre, on réalise une distribution des tâches à un ensemble d ’agents qui interagissent (exemple : Ant Algorithm). 17
  • 18.
  • 19.
  • 20. L’histoire de l’IA est très récente… (60 ans) Acte de naissance : 1956, Darmouth College (New Hampshire,USA) John McCarthy (tenant de la logique) et Marvin Minsky (tenant d’une approche par schémas). Genèse autour de la notion de « machines à penser » Comparaison du cerveau avec les premiers ordinateurs Les grands acteurs de l’IA Mc Culloch et Pitts : réseaux neuronaux artificiels (approche physiologique), Wiener : cybernétique, Shannon : théorie de l’information, Von Neumann : architecture d’un calculateur, Alan Turing : théorisation des fonctions calculables par machine, Kurt Gödel : théorème d’incomplétude (1931). 20
  • 21. L’époque des systèmes experts (1970-1980) Les systèmes experts apparaissent au début des années 1970 et se développent jusqu’à la fin des années 1980 : DENDRAL en chimie, MYCIN en médecine, Hersay II en compréhension de la parole, Prospector en géologie. Apparaissent également les premiers générateurs de systèmes Experts : NEXPERT System, CLIPS, … Les langages de programmation pour l’IA LISP (usa), PROLOG (France - Colmerauer), SmallTalk (langage objet), YAFOOL et KL-ONE (langages de Frame), langages de logique de description. 21
  • 22. Dès 1970, apparaît le concept de Réseaux sémantiques 22
  • 23. Les années 1980 : La période des espoirs déçus de l’IA Recul de l’approche symbolique de l’IA : Après des espoirs déçus : en particulier avec l’échec de la généralisation de la théorie des micromondes et le constat du manque de souplesse des systèmes experts (on parlerait aujourd’hui de manque d’agilité). Ils ont pourtant enregistré des succès dans des domaines bien spécifiques en particulier en informatique de gestion. Renaissance de l’approche connexionniste : - Systèmes multi-agents, concept de « vie artificielle », - Hopfield, mémoire autoassociative, 1982 - Rumelhart & McClelland, Parallel Distributed Processes, MIT Press, 1985 - Réseaux de neurones artficiel (RNA) 23
  • 24. Les défis actuels de l’IA - Attente d’une IA généraliste (?), autonome (?), auto-apprenante - Elle doit devenir performante et adaptative sur des situations dynamiques, changeantes, singulières. - Elle doit être capable d’assister l’apprentissage humain. - Elle doit être en mesure de gérer des dialogues entre « agents » très hétérogènes. Pour cela, il faut traiter la cognition comme une émergence dans l’interaction avec l’environnement. Ceci implique la conception d’une nouvelle génération de systèmes informatiques qui vont privilégier une cognition située, distribuée, émergente (prolifération d’agents intelligents et auto-apprentissage). 24
  • 25. L’agent intelligent comme concept fondamental de l’IA - Le terme « action » est à comprendre au sens large. Cela peut signifier « fournir un diagnostic ». - La boucle systémique Agent/Environnement n’est pas nécessairement fermée. ? senseurs "actionneurs " AGENT perception ENVIRONNEMENT "action" Source – Mines ParisTech 25
  • 26. Définition de l’apprentissage artificiel : « Capacité d’un système à améliorer ses performances via des interactions avec son environnement » . Spécificité de l’apprentissage : Conception et adaptation de l’agent « intelligent » par analyse automatisée (statistique) de son environnement et de son action dans cet environnement. Exemple typique d’apprentissage artificiel : L’agent « prédicteur » 26
  • 27. Historique Données externes PrédictionAGENT PREDICTEUR Modèle de l’agent prédicteur Performance espérée : minimiser l’erreur de prédiction Méthode : utiliser des données expérimentales pour déterminer le modèle le plus correct du type : Prédiction = F ( historique, données externes ) Source – Mines ParisTech 27
  • 28. Un système d’apprentissage est en général composé : - d’un modèle paramétrique, - d’une façon d’interagir avec l’environnement, - d’une « fonction de coût » à minimiser, - d’un algorithme destiné à adapter le modèle, en utilisant les données issues de l’environnement, avec l’objectif d’optimiser la fonction de coût 28
  • 29. Le modèle mathématique d'un neurone artificiel Entrées du neurone Poids du neurone 29
  • 30. La phase d'apprentissage d'un réseau de neurones se décompose en cinq étapes : Etape 1 - Présenter au réseau un couple entrée-cible. Etape 2 - Calculer les prévisions du réseau pour les cibles. Etape 3 - Utiliser la fonction d'erreur pour calculer la différence entre les prévisions (sorties) du réseau et les valeurs cible. Reprendre les étapes 1 et 2 jusqu'à ce que tous les couples entrée-cible aient été présentés au réseau. Etape 4 - Utiliser l'algorithme d'apprentissage afin d'ajuster les poids du réseau de telle sorte qu'il produise de meilleures prévisions à chaque couple entrée-cible. Remarque : les étapes 1 à 5 constituent un seul cycle d'apprentissage ou itération. Le nombre de cycles nécessaire pour entraîner un modèle de réseaux de neurones n'est pas connu a priori mais peut être défini dans le cadre du processus d'apprentissage. Etape 5 - Répéter à nouveau les étapes 1 à 5 pendant un certain nombre de cycles d'apprentissage ou d'itérations jusqu'à ce que le réseau commence à produire des résultats suffisamment fiables (c'est-à-dire des sorties qui se trouvent assez proches des cibles compte tenu des valeurs d'entrée). Un processus d'apprentissage type pour les réseaux de neurones est constitué de plusieurs centaines de cycles. 30
  • 31. Les réseaux de neurones sont performants dans les tâches suivantes : Traitement du signal, Maîtrise des processus, Robotique, Classification, Pré-traitement des données Reconnaissance de formes, Analyse de l'image et synthèse vocale, Diagnostics et suivi médical, Marché boursier et prévisions, Demande de crédits ou de prêts immobiliers. 31
  • 32. Deep Learning et Réseaux de Neurones On enregistre les premiers succès du Deep Learning (apprentissage profond) en 2006. Les réseaux de neurones accompagnent les avancées du Deep Learning . Ces réseaux sont multicouches. Ils effectuent une série de traitements hiérarchisés dans le but de classer des objets en catégories, sans critères prédéfinis. Il s'agit d'un apprentissage non supervisé. Google, Facebook, IBM les utilisent partout aujourd’hui… 32
  • 33. Un exemple issu de la convergence bio-informatique (convergence NBIC) Le processeur neuromorphique TrueNorth IBM issu du programme DARPA SyNAPSE
  • 34.
  • 35.
  • 36.
  • 37.
  • 38. 3 - Lorsque l’IA surpasse l’homme en 2016
  • 39. En 2016, l’Intelligence Artificielle a surpassé l’homme dans plusieurs domaines. Ces domaines étaient jusque là réservés à la seule expertise humaine.
  • 40. Robot chirurgien autonome STAR (Smart Tissue Autonomous Robot)
  • 41. Pour la première fois, un robot chirurgien a opéré de manière totalement autonome . Il est intervenu pour recoudre deux parties d’un intestin de cochon. Les chercheurs responsables de ce programme ont publié leurs résultats en mai 2016 dans la revue Translational Medecine. Le robot autonome a opéré avec plus de précision et d’habileté que les chirurgiens humains et que les robots pilotés manuellement par l’homme sur le même type d’intervention. Des technologies d’imagerie intelligente et des marqueurs fluorescents ont permis au robot de s’adapter aux tissus mous et de réaliser des sutures et des connexions optimales. La phase de test va se poursuivre durant deux ans avant une intervention humaine.
  • 42. Le « nouveau Rembrandt » peint par une Intelligence Artificielle
  • 43. Le 5 avril 2016, un nouveau Rembrandt a été dévoilé… Ce tableau « à la manière de Rembrandt » a été entièrement réalisé par une IA créée par Microsoft, la banque ING, l’Université de Delft et deux musées néerlandais . L’IA a d’abord analysé des centaines de tableaux de Rembrandt puis a déterminé les caractéristiques dominantes du Maître. Elle a ensuite piloté une imprimante 3D pour réaliser cette œuvre inédite en respectant parfaitement le style de Rembrandt.
  • 44. Le champion Sud Coréen Lee Sedol affrontant l’IA AlphaGo au jeu de GO en 2016
  • 45. En 2016, AlphaGo, l’intelligence artificielle développée par Google DeepMind a battu à 4 reprises le champion du monde de jeu de Go, Lee Sedol (5 manches à 0 en janvier contre le champion européen et 4 manches à une en mars contre Lee Sedol). Avec ses 10 puissance 600 combinaisons possibles, le jeu de Go reste beaucoup plus complexe que le jeu d’échecs. AlphaGo a utilisé les techniques du Deep Learning pour réaliser cet exploit.
  • 46. ALPHA , une IA de simulation de combat aérien hyper agressive
  • 47. ALPHA , une IA de simulation de combat aérien hyper agressive Le colonel Gene Lee, instructeur considéré par ses pairs comme ayant une « expertise considérable des avions de chasse et du combat aérien » s’est mesuré à plusieurs reprises à ALPHA … Durant les simulations de combat effectuées contre la machine, l’instructeur a été abattu plusieurs fois. Selon Gene Lee : ALPHA se révèle être « la plus agressive, le plus réactive, la plus dynamique et la plus crédible intelligence artificielle » des intelligences artificielles qu’il a pu voir.
  • 48. 4 - La course à l’IA est lancée
  • 49. La Course à l’IA
  • 50. La Course à l’IA
  • 51. La Course à l’IA Google, IBM, Twitter, Intel, Apple, Yahoo, Salesforce, Samsung, sont en concurrence depuis 2011 pour racheter les startups d’IA les plus innovantes. Depuis 2011, 140 startups et entreprises travaillant dans le secteur de l’intelligence artificielle avancée ont été rachetées , dont 40 acquisitions en 2016 !
  • 52.
  • 53. Les leaders de la recherche en Machine Learning La Chine et les Etats-Unis sont leaders dans la recherche en Machine Learning / Deep Learning. La Chine vient de prendre la tête du classement des pays en terme de publications de recherche en Machine Learning / Deep Learning et des citations de ces articles. Barack Obama a fait plusieurs interventions rappelant l’importance stratégique de l’IA dans la future croissance américaine. Plusieurs études prospectives sur l’IA ont été lancées par son gouvernement. https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/n ational_ai_rd_strategic_plan.pdf
  • 54.
  • 55. Durant les vingt prochaines années, l’IA sera le principal vecteur stratégique du développement économique des nations. Elle déterminera leur puissance militaire et leur niveau de souveraineté nationale…
  • 56.
  • 57.
  • 58. 5 - L’Intelligence Artificielle sur le champ de bataille " L'IA est un élément stratégique de notre souveraineté nationale " - Jean-Yves Le Drian (2017)
  • 59. Comment définir l'IA de défense ? L'IA : la capacité à traiter de l'information comme le ferait l'humain mais par des moyens artificiels . Cette capacité comprend 4 fonctions principales pour définir l’IA de défense : F1 - Percevoir l'environnement F2 - Lui donner un sens F3 - Capable d'apprendre et d'évoluer F4 - Capable de proposer des actions et de décider. L’IA de défense est une augmentation de l'humain sans être un remplacement (position de Marko Erman, Directeur R&D du groupe Thales). L'IA de Défense ne se différencie pas de l'IA civile.
  • 60. Comment définir l'IA de défense ? Le résultat fourni par une IA n'est pas le meilleur mais est « raisonnable ». La différence résulte de l'apprentissage : Plus les données sont nombreuses et meilleur sera le retour. Dans la défense, l'apprentissage fait la différence. Problème difficile : la validation des process Le rôle de l'industriel de l’IA de défense : simplifier , rendre la décision plus facile, lever l'ambiguïté. L'IA est amplifiée par les data, la connectivité et la cybersécurité (cas de données corrompues). La confiance en les données, les applis du cloud : c'est stratégique.
  • 61. Comment définir l'IA de défense ? Exemple 1 : Le "Chazam" du radar selon Thales Thales développe un radar à couche neuronale qui apprend sur des sources connues, puis qui saura reconnaitre les signatures en haute précision et avec une simplicité du capteur, antenne : il est intelligent , évolutif, performant grâce aux réseaux de neurones. Exemple 2 : (Thales) La sécurisation de la ville de Mexico : meurtre à armes à feu, criminalité/ 15 000 caméras, des détecteurs acoustiques pour géolocaliser le lieu d'un tir d'arme à feu puis alerter automatiquement la police, etc... Le résultat : donner des moyens de regarder les bons écrans ! Réduire le temps d'intervention de 12 minutes à 3 minutes. C'est crucial en matière de criminalité. Dans ce cas précis, l’IA sauve des vies !
  • 62. Comment définir l'IA de défense ? La complexité des défis de l’IA : Les données doivent être représentative de l'espace des problèmes. L'annotation de données : c'est en général un processus très long . Il faut alors passer par la simulation : 2 millions de simulations pour le Rafale pour l'annotation. La puissance dissipée par un réseau de neurone : Elle est énorme par rapport au cerveau humain. La certification, la validation formelle de la solution faite aujourd’hui par l‘opérateur humain.
  • 63. La position de militaires français sur l’IA Selon le Général Vincent Desportes, -Il faut faire la différence entre la bataille et la guerre : -La bataille est un acte technique différent de l'acte politique qui est de faire la guerre. -L'IA augmente la rapidité de gagner les batailles. -L’histoire a montré que l’on peut disposer de la meilleure des technologies et perdre la guerre. -Concernant l’augmentation, il ne faut pas confondre l'acte technique et l'acte politique. - La décision de donner la mort est une décision politique qui doit rester humaine.
  • 64. La position de militaires français sur l’IA Selon le Général Vincent Desportes, - Concernant l’emploi des drones : il ne faut pas déléguer le rôle de donner la mort au drone (cf mines) ? - Au niveau stratégique : toute décision stratégique est intuitive. L'IA va aider à prendre la bonne décision. - Le stratège aura un peu moins d'options mais des options de meilleure qualité grâce à l'IA. - Gagner la guerre c'est contrôler les espaces. l'IA va aider à cela. Le contrôle des espaces et la prédictibilité vont être facilités par les apports et les progrès de l’IA.
  • 65. La position de militaires français sur l’IA Selon le Général Vincent Desportes, - Concernant les solutions d'aide à la décision : On pourra prévoir des choses mais pas tout . - L'homme est un être émotionnel, passionnel, et irrationnel. Il sera difficile pour l'IA d’être efficace face aux comportements irrationnels et émotionnels. - Il y aura un équilibre à trouver entre le coût de l'IA et l'impact sur les volumes et les effectifs. On accroit la qualité technologique mais on réduit le volume des parcs et de flottes et effectifs. Il faut donc trouver cet équilibre.
  • 66. La position de militaires français sur l’IA Selon l’ancien Ministre de la Défense, Jean-Yves Le Drian, Les grands enjeux stratégiques de la Défense sont désormais : - L'hypervélocité - La lutte sous-marine - l'IA On doit attendre beaucoup de l'IA et des robots pour aller gagner des batailles. Elles se gagnent dans le tribunal de la force. Pour gagner les prochaines guerres, il faut considérer que l'homme aura toujours toute sa place dans le dispositif. L'arme nucléaire a changé la nature de la guerre , c'est la seule à ce jour. L'IA va - t - elle modifier la guerre ?
  • 67. L’IA de défense du côté américain
  • 68.
  • 69. La robotisation du champ de bataille touche aujourd’hui toutes les armées, petites et grandes. Les américains sont les leaders dans le domaine des drones d’observation et de combat. Ils ont d’ailleurs fondé leur doctrine de lutte contre le terrorisme sur l’utilisation de ces drones en Afghanistan, dans les zones tribales du Pakistan, en Irak, en Libye, au Mali et au Nord Cameroun. Prédator tirant un missile Hellfire
  • 70. Defense Advanced Research Projects Agency
  • 71.
  • 72. La Darpa et l’US Navy viennent de lancer très officiellement le Sea Hunter, un navire autonome dépourvu d’équipage humain, dédié à la lutte anti-sous-marine. Long d’une quarantaine de mètres, le Sea Hunter est capable d’évoluer en autonomie durant plusieurs mois sur des milliers de kilomètres. Issu d’un programme Darpa, il débute aujourd’hui une phase de tests qui s’étalera sur deux ans. Sea Hunter n’est pas « télécommandé » par un opérateur agissant depuis un poste de commandement mais dispose d’une réelle autonomie, une fois sa mission initiale définie. Il est capable en particulier de réaliser toutes les manœuvres usuelles d’un navire de cette taille sans intervention humaine et sait reconnaître et respecter les règles de navigations internationales.
  • 73. La Darpa annonce un coût de développement à hauteur de 20 millions de dollars qui sera très largement compensé par les économies de fonctionnement qu’il va engendrer. En effet, le coût de fonctionnement journalier de Sea Hunter se situe entre 15 000 et 20 000 dollars, ce qui est bien meilleur marché que celui d’un navire équivalent doté d’un équipage humain… Sea Hunter est donc la Google Car des mers qui pourrait bien uberiser le marché des navires de surveillance et de lutte anti- sous-marine. Comme le proclament la Darpa et l’US Navy, il s’agit d’une révolution technologique et stratégique qui « disrupte » totalement le marché.
  • 74.
  • 75. L’intelligence artificielle qui fait baisser les coûts de fonctionnement L’Intelligence Artificielle (IA) agit comme le levier principal pour faire baisser le coût de fonctionnement journalier des systèmes en les rendant autonomes (et en détruisant au passage les emplois de l’équipage). On retrouve ce couple (IA, baisse du coût de fonctionnement par autonomisation) dans tous les autres contextes de développement de systèmes armés autonomes : Les robots sentinelles Samsung SGRA1 déployés le long de la frontière entre les deux Corée induisent des économies réalisées sur les effectifs des personnels positionnés sur la frontière. Un seul robot démineur russe dérivé des unités robotisées Platform-M est aujourd’hui capable de remplacer l’action de 15 à 20 démineurs humains, avec un taux de détection dépassant les 95 %.
  • 76. Les robots sentinelles russes MRK-27-BT sont déployés autour des camions porteurs de missiles stratégiques Topol depuis le début de l’année, révolutionnant l’activité de sécurisation d’une zone militaire hautement sensible. Dans chaque situation, l’IA remplace l’action d’un groupe d’opérateurs humains avec un gain de productivité important : pas de congé maladie, pas de jours fériés, pas de contestation salariale, pas de fatigue ou de baisse de vigilance durant le service, et dans les cas extrêmes, une économie de sang durant l’attaque.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81. L’IA de Défense du côté de la Fédération de Russie…
  • 82. Les systèmes d'armes semi-autonomes et autonomes seront largement employés par les troupes russes d'ici 2018. Ils devraient représenter plus de 30 % de l'ensemble du matériel mis en service d'ici 2025. Le Général Valeri Guérassimov, chef d’État-major des forces armées de la Fédération de Russie et vice-ministre russe de la Défense vient de déclarer que son pays cherche à développer des unités de combat robotisées capables d'intervenir sur toutes les zones de crises.
  • 83. L’Unité de combat robotisée Platform-M
  • 86. Robot russe Argo Poids : environ 1000 kg ; dimensions : longeur 3,4m ; largeur 1m ; hauteur 1,65m Vitesse de déplacement 20km ; durée opérationnelle : 20 heures ; Armement : mitrailleuse, grenade anti-char RPG26, grenades RSG2
  • 88. Char russe T14 Armata A tourelle automatisée – vers une « dronification » du T14
  • 89. L’IA de défense du côté français
  • 91. Le Dassault Neuron est un démonstrateur de drone de combat furtif européen se basant sur l'aile volante et dont la maîtrise d'œuvre est confiée à Dassault Aviation. Il reprend une aérodynamique similaire au bombardier Northrop Grumman B-2 Spirit Vitesse maximale : 980 km/h Longueur : 9,5 m Envergure : 12 m Moteur : Rolls-Royce Safran Aircraft Engines Adour Mk. 951 Type de moteur : Turboréacteur à double flux Coût unitaire : 25 000 000–25 000 000 EUR (2013) Premier vol : 1er décembre 2012
  • 92. Premier vol en formation pour le NEURON avec un Rafale et un Falcon 7X
  • 93. L’IA de Défense en Corée du Sud
  • 94. A la frontière des deux Corées : SGR A1 développé par Samsung
  • 95. L’IA de Défense du côté israélien
  • 96. DOGO, le robot antiterroriste
  • 97. La société israélienne General Robotics développe son robot portable Dogo, armé d'un pistolet GLOCK 26, calibre 9mm. Il s'agit de la première machine compacte du monde équipée de ses propres armes. L'engin ne pèse que 12 kg. Selon la société General Robotics, le robot peut être utilisé en combat rapproché, ainsi que pour des opérations antiterroristes. Dogo peut également être équipé de spray au poivre et de gaz paralysants. L’appareil est équipé d’un système de transmission d’informations audio et vidéo ancré à son panneau de commande, ainsi que d’un système de détection d’obstacles. Par exemple, à l’approche d’un escalier, il passe automatiquement en mode optimal en soulevant ses roues sans qu’il y ait besoin de commandes supplémentaires.
  • 98. Selon la description qu’en fait General Robotics, Dogo est un «chien de garde », d’où son nom, inspiré par le dogue argentin, un chien connu pour être rusé, courageux et dominateur. Dogo a une autonomie d’environ quatre heures et dispose d’un système de surveillance composé de 8 caméras à haute résolution qui offrent une visibilité à 360 degrés.
  • 99. Les défis de « l’IA militaire » et les enjeux de souveraineté nationale sous-jacents : - La complexité algorithmique des processus - L’exploitation optimisée du futur « tsunami » de données issu des objets connectés accompagnant le combattant. - Developper un Cloud souverain militaire, national (data centers dédiés, partage des puissance de calcul, HPC, simulation. - Développer une cybersécurité de l’IA, et une résilience de l’IA militaire - Attirer et former des cadres officiers et sous-officiers formés à l’IA.
  • 100. Les défis de « l’IA militaire » et les enjeux de souveraineté nationale sous-jacents : - Développer des IA hyper-agressives, hyper véloce (comme ALPHA). - Développer des IA « curieuses » dotées d’une forme de sagacité artificielle (agents cureux). - Développer des IA à large spectre d’utilisation, généralistes et adaptatives. - Développer des IA efficaces dans un contexte de faible volumétrie de données.
  • 101. 6 - Le soldat augmenté
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108. L’IA va permettre « d’augmenter » des capacités cognitives du combattant. Cela dit, les problématiques à ce sujet sont nombreuses : - Réversibilité de l’augmentation, - Localisation de l’augmentation, - Effets collatéraux de l’augmentation d’une capacité sur les autres capacités du combattant (avec diminution possible), - Complexité des processus d’augmentation, - Cybersécurité de l’IA accompagnant l’augmentation, - Développer un modèle formel de l’augmentation au combat.
  • 110. Rapide et inéluctable, la robotisation du champ de bataille est en marche, sur terre, dans les airs comme en mer. Elle oblige désormais les stratèges à repenser les doctrines militaires et les règles d’engagement au combat pour les adapter à un art de la guerre où l’autonomie des systèmes devient prépondérante. Américains, Russes et Chinois ont choisi de robotiser et de rendre semi-autonome puis autonome une grande partie de leurs systèmes d’armes. On peut parier que les nations qui n’entreront pas dans la course à l’IA dans ce domaine sacrifieront du même coup leur potentiel de défense et leurs capacités opérationnelles. Le fossé technologique sera alors semblable à celui opposant une armée féodale à une armée du vingtième siècle. Les vrais enjeux de sécurité et de société se situent aujourd’hui dans cette course à l’IA de défense qui peut provoquer des déséquilibres géostratégiques irrattrapables…
  • 111. La « dronification » et la robotisation font évoluer les systèmes d’armes vers la semi-autonomie puis vers l’autonomie. Cette évolution pose des questions à la fois éthiques et stratégiques. L’intelligence artificielle occupe désormais un rôle central dans la révolution de l’armement moderne. Elle participe à la projection du combat sur l’espace numérique. Le problème du contrôle du système d’arme, transféré sur le cyberespace, nous interroge à nouveau sur les risques de hacking et de détournement. Les défis technologiques et les enjeux stratégiques ne doivent pas être sous-estimés… Ils engagent notre sécurité.
  • 112.