SlideShare une entreprise Scribd logo
Intelligence Artificielle :
Quels usages et quels apports en
matière de cybersécurité ?
Cycle Sécurité numérique – INHESJ
Thierry Berthier - 13 juin 2016
Chaire de Cyberdéfense & Cybersécurité Saint-Cyr
1
Plan
1 - L’intelligence Artificielle
Définitions (tentatives)
Historique de l’IA
Fondements de l’IA
2 - Apprentissage & réseaux de neurones artificiels
Principes et construction d’un RNA
Apprentissage supervisé et non supervisé
Capacités, cas d’usage, grands exemples
3 - L’IA comme moteur de la cybersécurité
Les chiffres de la cybersécurité en 2015
Les apports de l’IA en cybersécurité
L’UBA - User Behavior Analytics , une tendance lourde
Quelques solutions du marché
Perspectives & prospective
2
1 - L’intelligence artificielle
3
Ce que déclarait Alan Turing en 1950…
“ Instead of trying to produce a program to simulate the adult mind, why
not rather try to produce one which simulates the child‘s? If this were
then subjected to an appropriate course of education one would obtain
the adult brain.
Presumably, the child brain is something like a notebook […]. Rather
little mechanism, and lots of blank sheets. […]. Our hope is that there is
so little mechanism in the child brain that something like it can be easily
programmed. The amount of work in the education we can assume, as
a first approximation, to be much the same as for the human child.
Computing machinery and intelligence
(Alan Turing, 1950, Mind, philosophy journal).”
4
Des tentatives pour définir l’IA …
L’expression IA apparaît en 1956 durant la conférence de Dartmouth
dans une première définition (qui s’avère très insuffisante
aujourd’hui) :
Définition de Marvin Minsky (1927 – 2016)
« L’intelligence artificielle est la science qui consiste à faire faire à
des machines ce que l’homme fait moyennant une certaine
intelligence ».
Critique : Cette définition présente une forte récursivité… La
« complexité » mentale est-elle comparable à la complexité
informatique ?
La définition de Minsky exclut des domaines majeurs de l’IA : la
perception (vision et parole), la robotique, la compréhension du
langage naturel, le sens commun.
5
Des tentatives pour définir l’IA …
L’IA est-t-elle le contraire de la « bêtise naturelle » ??
Une définition plus opérationnelle :
« L’IA est le domaine de l’informatique qui étudie comment faire
faire à l’ordinateur des tâches pour lesquelles l’homme est
aujourd’hui encore le meilleur. »
(Elaine Rich & Knight – Artificial Intelligence)
Les grandes dichotomies de l’IA subsistent :
- IA forte vs IA faible,
- Niveau de compétence vs niveau de performance,
- Algorithmique vs non algorithmique,
- Vision analytique vs vision émergente de la résolution de
problèmes,
- Sciences du naturel vs sciences de l’Artificiel. 6
Des tentatives pour définir l’IA …
IA forte : une machine produisant un comportement intelligent ,
capable d’avoir conscience d’elle-même en éprouvant des
« sentiments » et une compréhension de ses propres
raisonnements.
IA faible : Machine simulant ces comportements sans conscience
d’elle-même. Impossibilité liée au support « biologique » de la
conscience.
La question centrale : une « conscience » peut-elle émerger de
manipulations purement syntaxiques ?
C’est l’expérience de la Chambre chinoise imaginée par John Searle
en 1981. C’est aussi l’hypothèse (forte) de la pensée singulariste /
transhumaniste.
7
Le Test de Turing (1950)
8
Compétence vs performance :
On doit tenir compte de la distinction introduite par Noam
Chomsky (MIT) : faire « comme » ou faire « aussi bien que ».
L’oiseau et l ’avion volent mais pas de la même façon…
Jeux d ’échecs : les grands champions réfléchissent différemment
de Deep Blue.
Jeu de Go : AlphaGo n’a pas la même approche que celle du
champion du monde .
Vision analytique vs vision émergente de la résolution de
problèmes :
D’un côté on procède par décomposition de problèmes en sous-
problèmes plus simples à résoudre (analyse procédurale, système
experts basés sur la logique des prédicats) et de l’autre, on réalise
une distribution des tâches à un ensemble d ’agents qui
interagissent (exemple : Ant Algorithm).
9
L’histoire de l’IA est très récente… (60 ans)
Acte de naissance : 1956, Darmouth College (New Hampshire,USA)
John McCarthy (tenant de la logique) et Marvin Minsky (tenant
d’une approche par schémas).
Genèse autour de la notion de « machines à penser »
Comparaison du cerveau avec les premiers ordinateurs
Les grands acteurs de l’IA
Mc Culloch et Pitts : réseaux neuronaux artificiels (approche
physiologique),
Wiener : cybernétique,
Shannon : théorie de l’information,
Von Neumann : architecture d’un calculateur,
Alan Turing : théorisation des fonctions calculables par machine,
Kurt Gödel : théorème d’incomplétude (1931). 10
La machine de Turing universelle
(1936)
11
Les premiers programmes et systèmes de l’IA
Newell, Simon et Shaw proposent un premier programme de
démonstration de théorèmes en logique (1956!). Ils généralisent en
proposant le General Problem Solver qui progresse dans la
résolution en évaluant la différence entre la situation du solveur et
le but à atteindre.
Les programmes capables de jouer aux échecs : les premières idées
apparaissent en 1950 avec Shannon. La première victoire sur un
Maître en 1997 Deep Blue bat Kasparov.
Jeu de Go: AlphaGo remporte 4 victoires sur 5 au jeu de Go en 2016
Le test « d’intelligence » (Evans 1963) : trouver la suite « logique »
(analogique en fait) d’une série de figures.
Résolution de problèmes par propagation de contraintes ( Waltz
1975 ).
Dialogue en « langage naturel » : Eliza, Weizenbaum en 1965
Système SHRDLU Winograd en 1971. 12
L’époque des systèmes experts (1970-1980)
Les systèmes experts apparaissent au début des années 1970 et se
développent jusqu’à la fin des années 1980 :
DENDRAL en chimie, MYCIN en médecine, Hersay II en
compréhension de la parole, Prospector en géologie.
Apparaissent également les premiers générateurs de systèmes
Experts : NEXPERT System, CLIPS, …
Les langages de programmation pour l’IA
LISP (usa), PROLOG (France - Colmerauer),
SmallTalk (langage objet), YAFOOL et KL-ONE (langages de Frame),
langages de logique de description.
13
Période 70-80 : Systèmes Experts
• Chainage avant (Rules) ou arrière (Prolog)
• Dendral (1965), Mycin (1974); Prospector(1983)
Base de connaissance (BC)
mémoire à long terme
Base de faits (BF)
mémoire de travail
Moteur d’inférence
(MI)
14
Dès 1970, apparaît le concept de Réseaux
sémantiques
15
Les années 1980 :
La période des espoirs déçus de l’IA
Recul de l’approche symbolique de l’IA :
Après des espoirs déçus : en particulier avec l’échec de la
généralisation de la théorie des micromondes et le constat du
manque de souplesse des systèmes experts (on parlerait aujourd’hui
de manque d’agilité). Ils ont pourtant enregistré des succès dans des
domaines bien spécifiques en particulier en informatique de gestion.
Renaissance de l’approche connexionniste :
- Systèmes multi-agents, concept de « vie artificielle »,
- Hopfield, mémoire autoassociative, 1982
- Rumelhart & McClelland, Parallel Distributed Processes, MIT Press,
1985
- Réseaux de neurones artficiel (RNA)
16
Les défis actuels de l’IA
- Attente d’une IA généraliste (?), autonome (?), auto-apprenante
- Elle doit devenir performante et adaptative sur des situations
dynamiques, changeantes, singulières.
- Elle doit être capable d’assister l’apprentissage humain.
- Elle doit être en mesure de gérer des dialogues entre « agents »
très hétérogènes.
Pour cela, il faut traiter la cognition comme une émergence dans
l’interaction avec l’environnement.
Ceci implique la conception d’une nouvelle génération de systèmes
informatiques qui vont privilégier une cognition située, distribuée,
émergente (prolifération d’agents intelligents et auto-apprentissage).
17
L’agent intelligent comme concept
fondamental de l’IA
- Le terme « action » est à comprendre au sens large. Cela peut
signifier « fournir un diagnostic ».
- La boucle systémique Agent/Environnement n’est pas
nécessairement fermée.
?
senseurs
"actionneurs "
AGENT
perception
ENVIRONNEMENT
"action"
Source – Mines ParisTech
18
Source – Mines ParisTech
19
Définition de l’apprentissage artificiel :
« Capacité d’un système à améliorer ses performances
via des interactions avec son environnement » .
Spécificité de l’apprentissage :
Conception et adaptation de l’agent « intelligent » par
analyse automatisée (statistique) de son environnement
et de son action dans cet environnement.
Exemple typique d’apprentissage artificiel :
L’agent « prédicteur »
20
Historique
Données
externes
PrédictionAGENT
PREDICTEUR
Modèle de l’agent prédicteur
Performance espérée : minimiser l’erreur de prédiction
Méthode : utiliser des données expérimentales pour déterminer
le modèle le plus correct du type :
Prédiction = F ( historique, données externes )
Source – Mines ParisTech
21
Définir précisément le type d’apprentissage
recherché
En particulier , il faut choisir le modèle de fonctions
mathématiques sous-jacent : splines, arbre de décision, réseau
de neurones, arbre d’expression, machine à noyau…
Il faut définir le type d’interactions avec l’environnement :
- apprentissage « hors-ligne » v.s. « en-ligne »
- apprentissage « supervisé » ou non, « par renforcement »
Il faut définir la mesure de performance du système : fonction
de coût, objectif, critère implicite, …
Et la façon de l’améliorer : famille d’algorithmes utilisés
gradient, résolution exacte, problème quadratique, heuristique.
22
2 - Apprentissage & Réseaux
de Neurones Artificiels (RNA)
23
Un système d’apprentissage est en général
composé :
- d’un modèle paramétrique,
- d’une façon d’interagir avec l’environnement,
- d’une « fonction de coût » à minimiser,
- d’un algorithme destiné à adapter le modèle, en
utilisant les données issues de l’environnement, avec
l’objectif d’optimiser la fonction de coût
24
Apprentissage supervisé
Exemples entrée-sortie
(x1,y1), (x2,y2), … , (xn, yn)
H famille de
modèles mathématiques
Paramètres pour
l’algorithme d’apprentissage
ALGORITHME
D’APPRENTISSAGE hH
Source – Mines ParisTech
25
APPRENTISSAGE SUPERVISÉ :
régression et classification
Régression Classification
(approximation) (yi = « étiquettes »)
?AGENT
Entrée = perception
Sortie adéquate (attendue)
entrée
sortie
points = exemples  courbe = régression
entrée =
position point
sortie désirée =
classe ( =-1,+=+1)

Fonction
étiquette=f(x)
(et frontière de
séparation)
Source – Mines ParisTech
26
APPRENTISSAGE NON SUPERVISÉ
Deux situations sont possibles :
Ou bien on ne dispose que d’exemples de type « entrée », et on cherche à
obtenir un agent dont la « sortie » vérifie une certaine propriété (par exemple,
sortie obtenue identique ou « proche » pour des entrées « voisines »).
Ou bien on ne dispose que d’un environnement (réel ou simulé) dans lequel on
peut placer l’agent pour « évaluer » son comportement de façon à l’améliorer.
?AGENT
Entrée = perception
Sortie voulue INCONNUE
ENVIRONNEMENT
Source – Mines ParisTech
27
Apprentissage NON supervisé
à partir de données
Base d’exemples
de type « entrée seule» :
X= {x1, x2, … , xn}
(xid, souvent avec d « grand »)
H famille de
modèles mathématiques
[ chaque hH  agent
avec comportement y=h(x) ]
Hyper-paramètres pour
l’algorithme d’apprentissage
ALGORITHME
D’APPRENTISSAGE
hH telle que
critère J(h,X)
soit vérifié ou
optimisé
Source – Mines ParisTech
28
axone
corps cellulaire
dendrite
synapse
Réseaux de neurones artificiels (RNA)
Le modèle du neurone biologique
29
Neurones biologiques
30
Utilisation des RNA
En classification et catégorisation :
Pour répartir en plusieurs classes des objets,
Pour transformer des données quantitatives en informations qualitatives,
Pour la reconnaissance de formes, d’images, de sons, de textes.
En Recherche Opérationnelle :
Pour résoudre des problèmes dont on ne connaît pas la solution,
En apprentissage profond.
En Mémoire Associative :
Pour restituer ou reconstituer une donnée à partir d’informations
incomplètes et/ou bruitées.
31
Bref historique des RNA
James [1890] :
L’introduction du concept de mémoire associative
McCulloch & Pitts [1943]
A logical calculus of the ideas immanent in nervous activities
Introduction du concept de neurone formel
 Les ordinateurs à codage binaire (Von Neumann)
 L ’intelligence artificielle (calcul symbolique)
 Les réseaux de neurones
Hebb [1949]
Organisation of behavior
le conditionnement comme propriété des neurones artificiels.
Les premières lois d’apprentissage.
32
Bref historique des RNA
Rosenblatt [1957] :
Présentation du perceptron comme premier modèle opérationnel
Capacité de reconnaissance d ’une configuration apprise
Utilisation pour traiter la tolérance aux bruits
Widrow [1960] :
Réseau Adaline, adaptive linear element
Minsky & Papert [1969] :
Une limite : impossibilité de classer des configurations non
linéairement séparables.
Abandon (financier) des recherches sur les RNA durant presque
une décennie…
33
Bref historique des RNA
[1967 - 1982] :
Mise en sommeil des recherches sur les RNA. Elles continuent
sous le couvert de domaines divers. Grossberg, Kohonen,
Anderson, ...
Hopfield [1982] :
Introduction du modèle des verres de spins
Boltzmann [1983] :
première réponse à la limite de Minsky et Papert
[1985] :
la rétro-propagation du gradient et le perceptron multicouche
Rumelhart, McClelland, … [1985] :
le groupe Parallel Distributed Processing
34
Le modèle mathématique d'un
neurone artificiel
Entrées du
neurone
Poids du
neurone
35
Le modèle mathématique d'un neurone artificiel
Un neurone est constitué d'un intégrateur qui effectue la somme
pondérée de ses entrées. Le résultat de cette somme est ensuite
transformée par une fonction de transfert f qui produit la sortie a du
neurone.
Les R entrées du neurone correspondent au vecteur P noté
traditionnellement en ligne. On utilise aussi la transposée.
W représente le vecteur des poids du neurone.
La sortie n de l'intégrateur est alors définie par une égalité écrite
sous forme matricielle. b désigne le « biais du neurone », c’est-à-
dire un facteur correctif décidé par tâtonnement. La sortie du
neurone est donnée par a = f(WtP-b)
36
Sortie n de l’intégrateur :
Sous forme matricielle :
b = biais du neurone
Sortie a du neurone :
Principe de
fonctionnement du
neurone
37
Représentation formelle du neurone
38
Les plus courantes
Les plus utilisées
fonction seuil
(ou "hard limit")
fonction sigmoïdefonction linéaire
Fonctions de transfert usuelles
39
Fonctions de transfert usuelles
Le modèle de RNA utilise une fonction d'activation
a = f(n) qui peut être définie de plusieurs manières
(souvent empiriques) en fonction des situations.
Les plus usuelles sont la fonction "seuil" ou "hard limit" en
anglais, la fonction "linéaire", et la fonction "sigmoïde".
40
Construction du réseau de neurones
41
Construction du réseau de neurones
Un réseau de neurones est un maillage constitué de plusieurs
neurones organisés généralement par couches.
wi,j désigne le poids de la connexion qui relie le neurone i à son
entrée j.
L'ensemble est représenté par une matrice des poids de connexion
W de dimension SxR et les S neurones sont représentés par un
vecteur de neurones.
42
Construction du réseau de neurones
Un réseau de neurones est constitué de plusieurs couches de
neurones qui sont connectées entre elles (Perceptron Multi-
Couches).
Les réseaux multicouches sont beaucoup plus puissants que les
réseaux simples à une seule couche. Les réseaux de neurones
exploitent en général deux ou trois couches mais parfois plus
(DeepFace de Facebook RN à 9 couches).
En utilisant deux couches et en employant une fonction
d'activation sigmoïde sur la couche cachée, il est possible d'
"entraîner" un réseau à produire une approximation de la plupart
des fonctions, avec une précision arbitraire.
43
Représentation du réseau
44
Le perceptron multi-couches
45
La phase d'apprentissage d'un réseau de neurones se
décompose en cinq étapes :
Etape 1 - Présenter au réseau un couple entrée-cible.
Etape 2 - Calculer les prévisions du réseau pour les cibles.
Etape 3 - Utiliser la fonction d'erreur pour calculer la différence entre les prévisions
(sorties) du réseau et les valeurs cible. Reprendre les étapes 1 et 2 jusqu'à ce que
tous les couples entrée-cible aient été présentés au réseau.
Etape 4 - Utiliser l'algorithme d'apprentissage afin d'ajuster les poids du réseau de
telle sorte qu'il produise de meilleures prévisions à chaque couple entrée-cible.
Remarque : les étapes 1 à 5 constituent un seul cycle d'apprentissage ou itération.
Le nombre de cycles nécessaire pour entraîner un modèle de réseaux de neurones
n'est pas connu a priori mais peut être défini dans le cadre du processus
d'apprentissage.
Etape 5 - Répéter à nouveau les étapes 1 à 5 pendant un certain nombre de cycles
d'apprentissage ou d'itérations jusqu'à ce que le réseau commence à produire des
résultats suffisamment fiables (c'est-à-dire des sorties qui se trouvent assez
proches des cibles compte tenu des valeurs d'entrée). Un processus
d'apprentissage type pour les réseaux de neurones est constitué de plusieurs
centaines de cycles.
46
Les réseaux de neurones sont performants dans les
taches suivantes :
Traitement du signal,
Maîtrise des processus,
Robotique,
Classification,
Pré-traitement des données
Reconnaissance de formes,
Analyse de l'image et synthèse vocale,
Diagnostics et suivi médical,
Marché boursier et prévisions,
Demande de crédits ou de prêts immobiliers.
47
Deep Learning et Réseaux de Neurones
On enregistre les premiers succès du Deep Learning (apprentissage
profond) en 2006. Les réseaux de neurones accompagnent les
avancées du Deep Learning .
Ces réseaux sont multicouches. Ils effectuent une série de
traitements hiérarchisés dans le but de classer des objets en
catégories, sans critères prédéfinis. Il s'agit d'un apprentissage non
supervisé.
Google, Facebook, IBM les utilisent partout aujourd’hui…
Donnons quelques exemples :
48
DeepFace de Facebook
Facebook a développé DeepFace, une
application de reconnaissance de visages qui
atteint des taux de réussite de plus de 97 %.
DeepFace utilise un réseau de neurones à 9
couches.
49
50
AlphaGo – DeepMind Google
51
AlphaGo – DeepMind Google
52
53
Google Car & Deep Learning
54
Dans les rêves des couches profondes des réseaux de
neurones de Google…
55
Dans les rêves des couches profondes des réseaux de
neurones de Google…
56
TensorFlow, la bibliothèque « Machine Learning » de Google
https://www.tensorflow.org/
57
Watson – IBM
58
Watson – IBM
59
Les dérives de TAY, l’IA de Microsoft qui apprenait trop bien …
60
Les dérives de TAY, l’IA de Microsoft qui apprenait trop bien …
61
3 - L’IA comme moteur de la
cybersécurité
62
Quelques chiffres concernant 2015 …
63
Les chiffres de la cybersécurité en 2015
Etude Pwc – The Global State of Information Security Survey 2016
Au niveau mondial :
- Une augmentation de 38 % du nombre de cyberattaques.
- Une augmentation de 24 % des budgets sécurité des
entreprises (correction par rapport à la tendance en baisse constatée en
2014)
- En France, le nombre de cyberattaques a progressé de 51 % au
cours des 12 derniers mois et les budgets de sécurité des
entreprises françaises ont progressé en moyenne de 29 % alors
que les pertes estimées liées aux cyberattaques ont augmenté de
28 % en une année.
64
Pourcentage d’augmentation du nombre d’incident de
cybersécurité en 2015 en France et dans le monde
Source d’incident de cybersécurité en 2015 en France et dans le monde
65
Au niveau mondial comme en France, la source des menaces reste
majoritairement interne aux entreprises. En effet, les employés actuels
constituent, cette année encore, la principale source des compromissions de
données. Cependant les sources qui ont progressé le plus en 2015 sont, elles,
externes aux entreprises. L’étude révèle que la responsabilité des fournisseurs et
des prestataires de service actuels est de plus en plus importante ; elle a
augmenté d’environ 32% pour les fournisseurs et de 30% pour les prestataires de
services. Cela est dû au fait que les entreprises travaillent de plus en plus en
collaboration avec des partenaires externes, ce qui participe à l’expansion de la
surface d’attaque.
Augmentation du budget moyen « cybersécurité » des entreprises en 2015
66
Le budget moyen de cybersécurité des entreprises françaises interrogées s’est
établi à 4,8 millions d’euros par entreprise en 2015, soit un budget en hausse
de 29% par rapport à l’année dernière – un chiffre quelque peu supérieur à la
moyenne mondiale de 24%. Les répondants ont affirmé que l’implication de
plus en plus poussée du comité exécutif a permis d’améliorer leurs pratiques
de cybersécurité. Ces investissements budgétaires répondent à une menace
réelle pesant sur les résultats des entreprises. En effet, les pertes financières
liées à des incidents de cybersécurité sont estimées en moyenne à 3,7 millions
d’euros par entreprise en France, soit une augmentation de 28% par rapport à
2014. Alors que les cyber-risques deviennent des préoccupations clés des
comités exécutifs, les dirigeants repensent leurs pratiques en matière de
cybersécurité et se concentrent sur un mix de technologies innovantes qui
peuvent réduire les risques, tout en améliorant la performance commerciale
de l’entreprise. Ces technologies permettent de construire des dispositifs de
protection intégrés et holistiques contre les cyberattaques. 91% des
organisations interrogées ont mis en place des frameworks pour la sécurité,
ou, plus souvent, une fusion de différents frameworks.
67
http://www.pwc.fr/cybersecurite-le-nombre-de-cyber-attaques-recensees-a-progresse-
de-38-dans-le-monde-en-2015.html
68
http://www.pwc.fr/cybersecurite-le-nombre-de-cyber-attaques-recensees-a-progresse-
de-38-dans-le-monde-en-2015.html
69
70
- 75 % des entreprises ont été victimes
d’attaques au cours des deux dernières années.
- 8 sur 10 n’avaient pas conscience d’avoir été
compromises.
- 99 % ne possèdent que les outils basiques de
protection : firewall, antivirus, sauvegardes.
71
Pour détecter les menaces, les mécanismes de sécurité
« traditionnel » se basent aujourd’hui sur des signatures
ou sur des scénarios de malveillance pré-établis, donc
rigides et peu ou pas adaptés aux menaces en évolution
permanente.
Les solutions de cybersécurité classiques sont créées
autour de règles utilisées pour détecter les vulnérabilités
et les activités suspectes. Elles sont en général insensibles
aux APT.
Ces systèmes ont atteint leurs limites fonctionnelles !
L’IA permet de dépasser ces limites.
72
Security Information and Event Management
73
UBA : User Behavior Analytics
74
75
76
77
Fonctionnement d’une solution UBA
Une solution utilisant l’UBA apprend, sans pré-requis de modèle, à
partir de « l’historique de vie » d’un système puis catégorise et
sépare les comportements « anormaux » de ceux qui sont
conformes aux standards de sécurité.
L’UBA est ainsi en mesure de produire des alertes sur des
événements susceptibles de créer un contexte de vulnérabilité.
Le fonctionnement de l’UBA repose sur l’apprentissage statistique.
Celui-ci exploite les données massives qui demeuraient jusqu’à
présent sous-employées ou seulement partiellement utilisées
comme les bases de logs des systèmes connectés.
78
Fonctionnement d’une solution UBA
Les outils UBA exploitent massivement les rapports d’activité, les
fichiers de logs et le SIEM (Security Information Management
System) en tant que base d’apprentissage.
Ils définissent des motifs typiques correspondant statistiquement à
des comportements à risque.
Les solutions UBA contiennent souvent plusieurs moteurs de
détection d’anomalies, complémentaires, qui collaborent pour
couvrir un large spectre de menaces. On y trouve en général un
moteur de détection de signal faible, un moteur de corrélation
métier issu de l’expertise d’ingénieurs en cybersécurité complétés
par une base de connaissance globale régulièrement mise à jour à
partir des retours d’expériences-clients.
79
Fonctionnement d’une solution UBA
Ces moteurs travaillent sur une base (big data) souvent
externalisée qui contient les données d’entrées utilisées ensuite
lors de la phase d’apprentissage.
Ces données proviennent de sources diverses : SIEM et logs via les
connecteurs SIEM, des messages AMQP (Advanced Message
Queuing Protocol) et des requêtes JSON (JavaScript Object
Notation).
Après analyse, le système UBA renvoie les alertes, les seuils et les
sources d’anomalies par logs, Syslogs, AMQP et XML/JSON. Les
règles métiers peuvent être implémentées et suivies dans le
corrélateur métier (cf; Technologie Reveelium développée par
ITrust).
80
Ce que détecte une solution UBA
L’IHM des moteurs UBA permet d’afficher les corrélations, de suivre
les déviances et d’instaurer un dialogue entre l’utilisateur et son
système de détection. Les anomalies affichées peuvent être des
virus connus, des malwares furtifs, des comportements à risque, de
la fraude, une fuite de données, une malveillance numérique…
Les solutions UBA offrent un spectre de détection beaucoup plus
large qu’un système de supervision classique ou qu’un antivirus.
Elles permettent ,entre autres, l’analyse forensique et l’investigation
après une compromission. Elles identifient l’attaque et son
cheminement.
Elles sont en mesure de détecter une utilisation frauduleuse du
système d’information et notamment l’usurpation de droits.
81
Elles réagissent à la perte et au vol de données et se montrent
efficaces face à des attaques de type APT.
Elles peuvent prédire certains crashs entraînant une indisponibilité
de la production et sont utiles pour respecter la conformité aux
réglementations et aux meilleures pratiques.
Elles détectent les pertes et fraudes financières ainsi que les
attaques sur l’image de marque. L’apprentissage statistique permet
souvent de diviser par 50 les temps d’analyse des données par les
superviseurs !
Pour finir, on notera que lorsque la solution UBA est développée en
Europe, sa technologie n’est pas soumise au Patriot Act et les
données des clients restent confidentielles, conformément aux
réglementations européennes.
82
Ce que l’UBA (2016) aurait pu éviter …
Une solution UBA aurait été en mesure de détecter les
agissements de Snowden avant qu’il ne réalise ses vols de
données.
Cette solution UBA aurait également été capable de
détecter la propagation des virus et APT récents (Target,
Sony,…) avant les extractions de données confidentielles
des entreprises concernées.
83
Quelques exemples de solutions
proposant l’approche User Behavior
Analytics (UBA)
SPLUNK – solution UBA
ITRUST - solution Reveelium
DARKTRACE
SENTRYO – solution ICS Cybervision
THALES – Sonde Cybels Sensor
CISCO TALOS
84
Splunk – solution UBA
Société américaine (San Francisco) développe une solution appelée
UBA (User Behavior Analytics) qui se veut « clé en main ». Elle
permet de détecter des menaces connues, inconnues et
dissimulées via l’apprentissage automatisé.
Avant l’UBA, les solutions travaillaient sur la base de règles et de
codification de tous les scénarios qui pouvaient aboutir à une
anormalité. Les limites sont atteintes : impossible de tout codifier
et un taux extrêmement élevé de faux positifs d’autre part. L’UBA
fournit aujourd’hui une approche complémentaire qui permet de
détecter les comportements déviants.
Splunk vient de racheter la start-up Caspida spécialisée dans les
technologies de machine learning.
85
86
87
88
89
90
91
92
93
Solution Itrust Reveelium
94
95
96
97
Darktrace
Start-up britannique fondée en 2013, valorisée à 100 millions de
dollars, utilise des technologies d’UBA issues de recherches menées
à l’Université de Cambridge. Les solutions Darktrace construisent
un modèle comportemental à partir du flux généré par les
machines et les usages des employés. Ce modèle apprend tout au
long de la durée de vie du projet. Il fonctionne comme un système
immunitaire biologique qui devient performant pour détecter les
APT.
La solution Darktrace utilise environ 300 paramètres (heures, IP de
connexion des utilisateurs,…) pour établir un modèle
comportemental dont la première phase d’apprentissage dure
environ une semaine. Le réseau est visualisable en 3D, en temps
réel. Des solutions existent pour la bureautique et pour les
systèmes industriels.
98
99
100
101
102
103
Sentryo ICS Cybervision (startup française)
La start-up lyonnaise Sentryo développe la solution ICS CyberVision
dédiée à la sécurisation « UBA » des sites industriels critiques
SCADA. Sentryo rapproche IT et OT. Ses solutions permettent de
dépasser le périmètre classique d’un système, avec une approche
plus globale de sa cybersécurité.
https://www.sentryo.net/fr/
104
Solution Sentryo surveillant un réseau industriel SCADA
105
Thales –
Sonde de détection Cybels Sensor
Le groupe Thales développe sa sonde de détection
d’intrusion Cybels Sensor qui intègre l’UBA pour détecter
les évènements anormaux en complément des signatures
d’attaques classiques.
https://www.thalesgroup.com/sites/default/files/asset/document/cybels_white_p
aper_uk_08042013.pdf
106
Thales – Cybels Sensor
107
Cisco – Talos
Talos, division sécurité de Cisco développe une solution dédiée aux
sites industriels qui embarque des technologies d’UBA.
108
Perspectives & Prospectives
109
Les programmes DARPA en cybersécurité & UBA
http://www.darpa.mil/program/space-time-analysis-for-cybersecurity
http://www.darpa.mil/program/cyber-grand-challenge
Open Catalog : http://opencatalog.darpa.mil/ADAMS.html
110
111
112
113
Formons des Data scientist !
La montée en puissance de l’IA dans les solutions
de cybersécurité fait appel à de nouvelles
expertises croisant les compétences :
Mathématiciens , statisticiens, scientifiques des
données…
La pénurie de data scientist sur le marché de
l’emploi en Europe est aujourd’hui une réalité …
114
115
Bibliographie - Intelligence Artificielle
Harry Henderson, Artificial Intelligence, Mirrors for the Mind, 2007, Milestones
in Discovery and invention.
Fundamentals of the New Artificial Intelligence , Neural, Evolutionary, Fuzzy and
More, Toshinori Munakata, Second Edition, 2008, Springer.
Max Lungarella, Fumiya Iida, Josh Bongard, Rolf Pfeiffer, 50 Years of Artificial
Intelligence.
Da Duan, Paolo F Fantoni, Martine De Cock, Mike Nachtegael Etienne E Kerre,
Applied Artificial Intelligence, 2006.
Keith Frankish, William M. Ramsey, The Cambridge Handbook of Artificial
Intelligence.
Hsinchun Chen, Christopher CN Yang, Intelligence and Security Informatics,
Studies in Computational Intelligence.
116
Bibliographie - Réseaux de neurones artificiels
Xingui He, Shaohua Xu, Process Neural Networks : Theory and Applications,
2010.
Haykin S, Neural Networks, 2ed, 1999.
Robert A. Dunne, A statistical approach to neural networks for pattern
recognition, 2007.
Dreyfus G. , Neural Networks : Methodology and Applications, Springer,
2005.
Picton P. , Neural Networks, 2002.
Fyfe C. , Artificial Neural Networks and Information Theory, 2000.
Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford:
University Press.
Carling, A. (1992). Introducing Neural Networks. Wilmslow, UK: Sigma
Press.
117
Bibliographie - Réseaux de neurones artificiels
Fausett, L. (1994). Fundamentals of Neural Networks. New York: Prentice
Hall.
Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New
York: Macmillan Publishing.
Kohonen, T. (1982). Self-organized formation of topologically correct
feature maps. Biological Cybernetics, 43:59-69.
Patterson, D. (1996). Artificial Neural Networks. Singapore: Prentice Hall.
Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge
University Press.
Rumelhart, D.E., and J.L. McClelland (1986), Parallel Distributed Processing,
Volume 1. The MIT Press. Foundations.
Tryon, R. C. (1939). Cluster analysis. New York: McGraw-Hill.
118
Bibliographie - Machine Learning & Cybersecurity
Yihong Gong, Wei Xu, Machine Learning for Multimedia Content Analysis
(Multimedia Systems and Applications), 2007.
John D. Kelleher , Brian Mac Namee , Aoiff D’Arcy , Fundamentals of Machine
Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Cases
Studies.
Sumeet Dua, Xian Du, Data Mining and Machine Learning in Cybersecurity, 2011.
Drew Conway, John Miles White, Machine Learning for Email : Spam filtering and
Priority Inbox , 2011.
Drew Conway, John Miles White, Machine Learning for Hackers, 2012.
Dehmer Matthias, Subhash C. Basak, Statistical and Machine Learning
Approaches for Network Analysis, Wiley, 2012.
119
http://cyberland.centerblog.net/
http://echoradar.eu/
http://www.chaire-cyber.fr/
120

Contenu connexe

Tendances

ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiantsChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
Alain Goudey
 
Intelligence artificielle etroite introduction
Intelligence artificielle etroite introductionIntelligence artificielle etroite introduction
Intelligence artificielle etroite introduction
Smals
 
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
OPcyberland
 
Les systèmes intelligents
Les systèmes intelligentsLes systèmes intelligents
Les systèmes intelligents
Nour El Houda Megherbi
 
Introduction to Machine learning
Introduction to Machine learningIntroduction to Machine learning
Introduction to Machine learning
Quentin Ambard
 
Deep learning
Deep learningDeep learning
Deep learning
Bilal Rezkellah
 
06032019 Intelligence Artificielle
06032019 Intelligence Artificielle06032019 Intelligence Artificielle
06032019 Intelligence Artificielle
JordanBrl
 
Introduction au BIG DATA
Introduction au BIG DATAIntroduction au BIG DATA
Introduction au BIG DATA
Zakariyaa AIT ELMOUDEN
 
Comprenez-vous l’intelligence artificielle ?
Comprenez-vous l’intelligence artificielle ?Comprenez-vous l’intelligence artificielle ?
Comprenez-vous l’intelligence artificielle ?
BigBrain Evolution
 
Intelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agentIntelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agent
Noureddine Djebbari
 
Machine Learning et Intelligence Artificielle
Machine Learning et Intelligence ArtificielleMachine Learning et Intelligence Artificielle
Machine Learning et Intelligence Artificielle
Soft Computing
 
COURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptxCOURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptx
PROF ALAIN NDEDI
 
Big data
Big dataBig data
Big data
Yosra ADDALI
 
Introduction: Intelligence Artificielle, Machine Learning et Deep Learning
Introduction: Intelligence Artificielle, Machine Learning et Deep LearningIntroduction: Intelligence Artificielle, Machine Learning et Deep Learning
Introduction: Intelligence Artificielle, Machine Learning et Deep Learning
Ncib Lotfi
 
Rapport pfe isi_Big data Analytique
Rapport pfe isi_Big data AnalytiqueRapport pfe isi_Big data Analytique
Rapport pfe isi_Big data Analytique
Yosra ADDALI
 
Intelligence Artificielle - Systèmes experts
Intelligence Artificielle - Systèmes expertsIntelligence Artificielle - Systèmes experts
Intelligence Artificielle - Systèmes experts
Mohamed Heny SELMI
 
iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney
Hicham Sabre
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
Soft Computing
 
Introduction à la BIG DATA et l'Intelligence Artificielle
Introduction à la BIG DATA et l'Intelligence ArtificielleIntroduction à la BIG DATA et l'Intelligence Artificielle
Introduction à la BIG DATA et l'Intelligence Artificielle
Medhi Corneille Famibelle*
 
L’intelligence artificielle
L’intelligence artificielleL’intelligence artificielle
L’intelligence artificielle
iapassmed
 

Tendances (20)

ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiantsChatGPT et IA : impacts sur le processus d'évaluation des étudiants
ChatGPT et IA : impacts sur le processus d'évaluation des étudiants
 
Intelligence artificielle etroite introduction
Intelligence artificielle etroite introductionIntelligence artificielle etroite introduction
Intelligence artificielle etroite introduction
 
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
Conférence Sécurité et Intelligence Artificielle - INHESJ 2018
 
Les systèmes intelligents
Les systèmes intelligentsLes systèmes intelligents
Les systèmes intelligents
 
Introduction to Machine learning
Introduction to Machine learningIntroduction to Machine learning
Introduction to Machine learning
 
Deep learning
Deep learningDeep learning
Deep learning
 
06032019 Intelligence Artificielle
06032019 Intelligence Artificielle06032019 Intelligence Artificielle
06032019 Intelligence Artificielle
 
Introduction au BIG DATA
Introduction au BIG DATAIntroduction au BIG DATA
Introduction au BIG DATA
 
Comprenez-vous l’intelligence artificielle ?
Comprenez-vous l’intelligence artificielle ?Comprenez-vous l’intelligence artificielle ?
Comprenez-vous l’intelligence artificielle ?
 
Intelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agentIntelligence artificielle et système multi-agent
Intelligence artificielle et système multi-agent
 
Machine Learning et Intelligence Artificielle
Machine Learning et Intelligence ArtificielleMachine Learning et Intelligence Artificielle
Machine Learning et Intelligence Artificielle
 
COURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptxCOURS INTELLIGENCE ARTIFICIELLE.pptx
COURS INTELLIGENCE ARTIFICIELLE.pptx
 
Big data
Big dataBig data
Big data
 
Introduction: Intelligence Artificielle, Machine Learning et Deep Learning
Introduction: Intelligence Artificielle, Machine Learning et Deep LearningIntroduction: Intelligence Artificielle, Machine Learning et Deep Learning
Introduction: Intelligence Artificielle, Machine Learning et Deep Learning
 
Rapport pfe isi_Big data Analytique
Rapport pfe isi_Big data AnalytiqueRapport pfe isi_Big data Analytique
Rapport pfe isi_Big data Analytique
 
Intelligence Artificielle - Systèmes experts
Intelligence Artificielle - Systèmes expertsIntelligence Artificielle - Systèmes experts
Intelligence Artificielle - Systèmes experts
 
iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney iA Générative : #ChatGPT #MidJourney
iA Générative : #ChatGPT #MidJourney
 
Machine Learning
Machine LearningMachine Learning
Machine Learning
 
Introduction à la BIG DATA et l'Intelligence Artificielle
Introduction à la BIG DATA et l'Intelligence ArtificielleIntroduction à la BIG DATA et l'Intelligence Artificielle
Introduction à la BIG DATA et l'Intelligence Artificielle
 
L’intelligence artificielle
L’intelligence artificielleL’intelligence artificielle
L’intelligence artificielle
 

Similaire à Intelligence Artificielle et cybersécurité

Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...
OPcyberland
 
Intelligence Artficielle : nouvel acteur du champ de bataille
Intelligence Artficielle : nouvel acteur du champ de batailleIntelligence Artficielle : nouvel acteur du champ de bataille
Intelligence Artficielle : nouvel acteur du champ de bataille
OPcyberland
 
Convergence NBIC CKTS et RH
Convergence NBIC CKTS et RHConvergence NBIC CKTS et RH
Convergence NBIC CKTS et RH
OPcyberland
 
Ch1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdfCh1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdf
kedegaston39
 
IntelligenceArtificielle.pdf
IntelligenceArtificielle.pdfIntelligenceArtificielle.pdf
IntelligenceArtificielle.pdf
harizi riadh
 
Quel quotidien bercé d'IA créons-nous ?
Quel quotidien bercé d'IA créons-nous ?Quel quotidien bercé d'IA créons-nous ?
Quel quotidien bercé d'IA créons-nous ?
Aymeric
 
La coopération des intelligences
La coopération des intelligencesLa coopération des intelligences
La coopération des intelligences
Aymeric
 
TPE 2005 - Intelligence artificielle
TPE 2005 - Intelligence artificielleTPE 2005 - Intelligence artificielle
TPE 2005 - Intelligence artificielle
Sebastien Warin
 
Intelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdfIntelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdf
Gamal Mansour
 
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier Meïr Long
 
cours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificiellecours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificielle
syliaghz
 
Intelligence Artificielle - La technique et l'éthique
Intelligence Artificielle - La technique et l'éthique Intelligence Artificielle - La technique et l'éthique
Intelligence Artificielle - La technique et l'éthique
Appstud
 
Penser le laboratoire du futur... l'impact de L'IA
 Penser le laboratoire du futur... l'impact de L'IA  Penser le laboratoire du futur... l'impact de L'IA
Penser le laboratoire du futur... l'impact de L'IA
Yvon Gervaise
 
Intelligence Artificielle-course -S1.pdf
Intelligence Artificielle-course -S1.pdfIntelligence Artificielle-course -S1.pdf
Intelligence Artificielle-course -S1.pdf
AbdelghaniBoutlih
 
Le progrès de l'intelligence artificielle et ses conséquences
Le progrès de l'intelligence artificielle et ses conséquencesLe progrès de l'intelligence artificielle et ses conséquences
Le progrès de l'intelligence artificielle et ses conséquences
Fernando Alcoforado
 
1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle
Maxime MAZON
 
Cahier de veille intelligence artificielle
Cahier de veille intelligence artificielleCahier de veille intelligence artificielle
Cahier de veille intelligence artificielle
I MT
 
TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !
TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !
TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !
Daphné Savoundiraradjane
 
I a pdf1
I a pdf1I a pdf1
I a pdf1
Prevost Boupda
 

Similaire à Intelligence Artificielle et cybersécurité (20)

Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...Lorsque l'intelligence artificielle uberise la cybersécurité...
Lorsque l'intelligence artificielle uberise la cybersécurité...
 
Intelligence Artficielle : nouvel acteur du champ de bataille
Intelligence Artficielle : nouvel acteur du champ de batailleIntelligence Artficielle : nouvel acteur du champ de bataille
Intelligence Artficielle : nouvel acteur du champ de bataille
 
Convergence NBIC CKTS et RH
Convergence NBIC CKTS et RHConvergence NBIC CKTS et RH
Convergence NBIC CKTS et RH
 
Ch1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdfCh1-Intro-IA-IFT6261-H-11.pdf
Ch1-Intro-IA-IFT6261-H-11.pdf
 
IntelligenceArtificielle.pdf
IntelligenceArtificielle.pdfIntelligenceArtificielle.pdf
IntelligenceArtificielle.pdf
 
Quel quotidien bercé d'IA créons-nous ?
Quel quotidien bercé d'IA créons-nous ?Quel quotidien bercé d'IA créons-nous ?
Quel quotidien bercé d'IA créons-nous ?
 
La coopération des intelligences
La coopération des intelligencesLa coopération des intelligences
La coopération des intelligences
 
TPE 2005 - Intelligence artificielle
TPE 2005 - Intelligence artificielleTPE 2005 - Intelligence artificielle
TPE 2005 - Intelligence artificielle
 
Intelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdfIntelligenceartificielle catateristiques et definition.pdf
Intelligenceartificielle catateristiques et definition.pdf
 
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
Didier long, EUCLYD-MEDEF; Enjeux de l'intelligence artificielle pour la cons...
 
cours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificiellecours introduction a l'intelligence artificielle
cours introduction a l'intelligence artificielle
 
Ackerman04
Ackerman04Ackerman04
Ackerman04
 
Intelligence Artificielle - La technique et l'éthique
Intelligence Artificielle - La technique et l'éthique Intelligence Artificielle - La technique et l'éthique
Intelligence Artificielle - La technique et l'éthique
 
Penser le laboratoire du futur... l'impact de L'IA
 Penser le laboratoire du futur... l'impact de L'IA  Penser le laboratoire du futur... l'impact de L'IA
Penser le laboratoire du futur... l'impact de L'IA
 
Intelligence Artificielle-course -S1.pdf
Intelligence Artificielle-course -S1.pdfIntelligence Artificielle-course -S1.pdf
Intelligence Artificielle-course -S1.pdf
 
Le progrès de l'intelligence artificielle et ses conséquences
Le progrès de l'intelligence artificielle et ses conséquencesLe progrès de l'intelligence artificielle et ses conséquences
Le progrès de l'intelligence artificielle et ses conséquences
 
1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle1340774899 cahier anr-4-intelligence-artificielle
1340774899 cahier anr-4-intelligence-artificielle
 
Cahier de veille intelligence artificielle
Cahier de veille intelligence artificielleCahier de veille intelligence artificielle
Cahier de veille intelligence artificielle
 
TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !
TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !
TeamWork - Ce qu'est l'IA et ce qu'elle n'est pas !
 
I a pdf1
I a pdf1I a pdf1
I a pdf1
 

Plus de OPcyberland

Conference robots kedge 26 mars 2021
Conference robots kedge   26 mars 2021Conference robots kedge   26 mars 2021
Conference robots kedge 26 mars 2021
OPcyberland
 
Panorama Cybersécurité 2020
Panorama Cybersécurité 2020Panorama Cybersécurité 2020
Panorama Cybersécurité 2020
OPcyberland
 
Synthese ianp2019
Synthese ianp2019Synthese ianp2019
Synthese ianp2019
OPcyberland
 
Ianp 2019
Ianp 2019Ianp 2019
Ianp 2019
OPcyberland
 
Ia et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3ILIa et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3IL
OPcyberland
 
ID FORUM - FIC2020
ID FORUM - FIC2020ID FORUM - FIC2020
ID FORUM - FIC2020
OPcyberland
 
Cybermed ia2020
Cybermed ia2020Cybermed ia2020
Cybermed ia2020
OPcyberland
 
Dut informatique limoges
Dut informatique limogesDut informatique limoges
Dut informatique limoges
OPcyberland
 
Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019
OPcyberland
 
Guide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3emeGuide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3eme
OPcyberland
 
Congres cybermed nice 2019
Congres cybermed nice 2019Congres cybermed nice 2019
Congres cybermed nice 2019
OPcyberland
 
Conférence NAIA Bordeaux
Conférence NAIA Bordeaux Conférence NAIA Bordeaux
Conférence NAIA Bordeaux
OPcyberland
 
Ihedn menace cyber
Ihedn menace cyberIhedn menace cyber
Ihedn menace cyber
OPcyberland
 
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
OPcyberland
 
MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019
OPcyberland
 
ifda financial attacks - Conférence ECW 2018 Rennes
   ifda financial attacks - Conférence ECW 2018 Rennes   ifda financial attacks - Conférence ECW 2018 Rennes
ifda financial attacks - Conférence ECW 2018 Rennes
OPcyberland
 
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote   IA et sécurité numérique - 15 novembre 2018 - Ecole PolytechniqueAristote   IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
OPcyberland
 
Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018
OPcyberland
 
Cyberstrategia
CyberstrategiaCyberstrategia
Cyberstrategia
OPcyberland
 
Conférence NXU SUPAERO ISAE
Conférence NXU SUPAERO ISAE Conférence NXU SUPAERO ISAE
Conférence NXU SUPAERO ISAE
OPcyberland
 

Plus de OPcyberland (20)

Conference robots kedge 26 mars 2021
Conference robots kedge   26 mars 2021Conference robots kedge   26 mars 2021
Conference robots kedge 26 mars 2021
 
Panorama Cybersécurité 2020
Panorama Cybersécurité 2020Panorama Cybersécurité 2020
Panorama Cybersécurité 2020
 
Synthese ianp2019
Synthese ianp2019Synthese ianp2019
Synthese ianp2019
 
Ianp 2019
Ianp 2019Ianp 2019
Ianp 2019
 
Ia et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3ILIa et cybersecurite - conférence 3IL
Ia et cybersecurite - conférence 3IL
 
ID FORUM - FIC2020
ID FORUM - FIC2020ID FORUM - FIC2020
ID FORUM - FIC2020
 
Cybermed ia2020
Cybermed ia2020Cybermed ia2020
Cybermed ia2020
 
Dut informatique limoges
Dut informatique limogesDut informatique limoges
Dut informatique limoges
 
Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019Nouveaux risques cyber - 4 décembre 2019
Nouveaux risques cyber - 4 décembre 2019
 
Guide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3emeGuide survie dans la jungle numérique pour élèves de 3eme
Guide survie dans la jungle numérique pour élèves de 3eme
 
Congres cybermed nice 2019
Congres cybermed nice 2019Congres cybermed nice 2019
Congres cybermed nice 2019
 
Conférence NAIA Bordeaux
Conférence NAIA Bordeaux Conférence NAIA Bordeaux
Conférence NAIA Bordeaux
 
Ihedn menace cyber
Ihedn menace cyberIhedn menace cyber
Ihedn menace cyber
 
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
Colloque IA DEFENSE - CREC SAINT-CYR - 30 janvier 2019
 
MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019MasterClass Intelligence Artificielle et Sécurité FIC 2019
MasterClass Intelligence Artificielle et Sécurité FIC 2019
 
ifda financial attacks - Conférence ECW 2018 Rennes
   ifda financial attacks - Conférence ECW 2018 Rennes   ifda financial attacks - Conférence ECW 2018 Rennes
ifda financial attacks - Conférence ECW 2018 Rennes
 
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote   IA et sécurité numérique - 15 novembre 2018 - Ecole PolytechniqueAristote   IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
Aristote IA et sécurité numérique - 15 novembre 2018 - Ecole Polytechnique
 
Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018Keynote thierry berthier cybersecurite NOVAQ 2018
Keynote thierry berthier cybersecurite NOVAQ 2018
 
Cyberstrategia
CyberstrategiaCyberstrategia
Cyberstrategia
 
Conférence NXU SUPAERO ISAE
Conférence NXU SUPAERO ISAE Conférence NXU SUPAERO ISAE
Conférence NXU SUPAERO ISAE
 

Dernier

1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire
NadineHG
 
apprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdfapprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdf
kamouzou878
 
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
mcevapi3
 
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certificationMS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
OlivierLumeau1
 
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptxMARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
Martin M Flynn
 
A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)
lebaobabbleu
 
Présentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Présentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaPrésentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Présentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024
Friends of African Village Libraries
 
Cours Gestion d’actifs BNP -- CAMGESTION
Cours Gestion d’actifs BNP -- CAMGESTIONCours Gestion d’actifs BNP -- CAMGESTION
Cours Gestion d’actifs BNP -- CAMGESTION
Sékou Oumar SYLLA
 
Zineb Mekouar.pptx Écrivaine marocaine
Zineb Mekouar.pptx   Écrivaine  marocaineZineb Mekouar.pptx   Écrivaine  marocaine
Zineb Mekouar.pptx Écrivaine marocaine
Txaruka
 
Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.
MahouwetinJacquesGBO
 
Formation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimismeFormation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimisme
M2i Formation
 
A2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiquesA2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiques
lebaobabbleu
 
L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...
L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...
L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...
Faga1939
 
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
dokposeverin
 

Dernier (15)

1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire
 
apprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdfapprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdf
 
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
 
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certificationMS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
 
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptxMARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
 
A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)
 
Présentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Présentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaPrésentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Présentation3.pptxaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024
 
Cours Gestion d’actifs BNP -- CAMGESTION
Cours Gestion d’actifs BNP -- CAMGESTIONCours Gestion d’actifs BNP -- CAMGESTION
Cours Gestion d’actifs BNP -- CAMGESTION
 
Zineb Mekouar.pptx Écrivaine marocaine
Zineb Mekouar.pptx   Écrivaine  marocaineZineb Mekouar.pptx   Écrivaine  marocaine
Zineb Mekouar.pptx Écrivaine marocaine
 
Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.
 
Formation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimismeFormation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimisme
 
A2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiquesA2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiques
 
L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...
L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...
L'ÉDUCATION AVEC INTELLIGENCE ARTIFICIELLE ET LES DÉFICIENCES DE SON APPLICAT...
 
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
 

Intelligence Artificielle et cybersécurité

  • 1. Intelligence Artificielle : Quels usages et quels apports en matière de cybersécurité ? Cycle Sécurité numérique – INHESJ Thierry Berthier - 13 juin 2016 Chaire de Cyberdéfense & Cybersécurité Saint-Cyr 1
  • 2. Plan 1 - L’intelligence Artificielle Définitions (tentatives) Historique de l’IA Fondements de l’IA 2 - Apprentissage & réseaux de neurones artificiels Principes et construction d’un RNA Apprentissage supervisé et non supervisé Capacités, cas d’usage, grands exemples 3 - L’IA comme moteur de la cybersécurité Les chiffres de la cybersécurité en 2015 Les apports de l’IA en cybersécurité L’UBA - User Behavior Analytics , une tendance lourde Quelques solutions du marché Perspectives & prospective 2
  • 3. 1 - L’intelligence artificielle 3
  • 4. Ce que déclarait Alan Turing en 1950… “ Instead of trying to produce a program to simulate the adult mind, why not rather try to produce one which simulates the child‘s? If this were then subjected to an appropriate course of education one would obtain the adult brain. Presumably, the child brain is something like a notebook […]. Rather little mechanism, and lots of blank sheets. […]. Our hope is that there is so little mechanism in the child brain that something like it can be easily programmed. The amount of work in the education we can assume, as a first approximation, to be much the same as for the human child. Computing machinery and intelligence (Alan Turing, 1950, Mind, philosophy journal).” 4
  • 5. Des tentatives pour définir l’IA … L’expression IA apparaît en 1956 durant la conférence de Dartmouth dans une première définition (qui s’avère très insuffisante aujourd’hui) : Définition de Marvin Minsky (1927 – 2016) « L’intelligence artificielle est la science qui consiste à faire faire à des machines ce que l’homme fait moyennant une certaine intelligence ». Critique : Cette définition présente une forte récursivité… La « complexité » mentale est-elle comparable à la complexité informatique ? La définition de Minsky exclut des domaines majeurs de l’IA : la perception (vision et parole), la robotique, la compréhension du langage naturel, le sens commun. 5
  • 6. Des tentatives pour définir l’IA … L’IA est-t-elle le contraire de la « bêtise naturelle » ?? Une définition plus opérationnelle : « L’IA est le domaine de l’informatique qui étudie comment faire faire à l’ordinateur des tâches pour lesquelles l’homme est aujourd’hui encore le meilleur. » (Elaine Rich & Knight – Artificial Intelligence) Les grandes dichotomies de l’IA subsistent : - IA forte vs IA faible, - Niveau de compétence vs niveau de performance, - Algorithmique vs non algorithmique, - Vision analytique vs vision émergente de la résolution de problèmes, - Sciences du naturel vs sciences de l’Artificiel. 6
  • 7. Des tentatives pour définir l’IA … IA forte : une machine produisant un comportement intelligent , capable d’avoir conscience d’elle-même en éprouvant des « sentiments » et une compréhension de ses propres raisonnements. IA faible : Machine simulant ces comportements sans conscience d’elle-même. Impossibilité liée au support « biologique » de la conscience. La question centrale : une « conscience » peut-elle émerger de manipulations purement syntaxiques ? C’est l’expérience de la Chambre chinoise imaginée par John Searle en 1981. C’est aussi l’hypothèse (forte) de la pensée singulariste / transhumaniste. 7
  • 8. Le Test de Turing (1950) 8
  • 9. Compétence vs performance : On doit tenir compte de la distinction introduite par Noam Chomsky (MIT) : faire « comme » ou faire « aussi bien que ». L’oiseau et l ’avion volent mais pas de la même façon… Jeux d ’échecs : les grands champions réfléchissent différemment de Deep Blue. Jeu de Go : AlphaGo n’a pas la même approche que celle du champion du monde . Vision analytique vs vision émergente de la résolution de problèmes : D’un côté on procède par décomposition de problèmes en sous- problèmes plus simples à résoudre (analyse procédurale, système experts basés sur la logique des prédicats) et de l’autre, on réalise une distribution des tâches à un ensemble d ’agents qui interagissent (exemple : Ant Algorithm). 9
  • 10. L’histoire de l’IA est très récente… (60 ans) Acte de naissance : 1956, Darmouth College (New Hampshire,USA) John McCarthy (tenant de la logique) et Marvin Minsky (tenant d’une approche par schémas). Genèse autour de la notion de « machines à penser » Comparaison du cerveau avec les premiers ordinateurs Les grands acteurs de l’IA Mc Culloch et Pitts : réseaux neuronaux artificiels (approche physiologique), Wiener : cybernétique, Shannon : théorie de l’information, Von Neumann : architecture d’un calculateur, Alan Turing : théorisation des fonctions calculables par machine, Kurt Gödel : théorème d’incomplétude (1931). 10
  • 11. La machine de Turing universelle (1936) 11
  • 12. Les premiers programmes et systèmes de l’IA Newell, Simon et Shaw proposent un premier programme de démonstration de théorèmes en logique (1956!). Ils généralisent en proposant le General Problem Solver qui progresse dans la résolution en évaluant la différence entre la situation du solveur et le but à atteindre. Les programmes capables de jouer aux échecs : les premières idées apparaissent en 1950 avec Shannon. La première victoire sur un Maître en 1997 Deep Blue bat Kasparov. Jeu de Go: AlphaGo remporte 4 victoires sur 5 au jeu de Go en 2016 Le test « d’intelligence » (Evans 1963) : trouver la suite « logique » (analogique en fait) d’une série de figures. Résolution de problèmes par propagation de contraintes ( Waltz 1975 ). Dialogue en « langage naturel » : Eliza, Weizenbaum en 1965 Système SHRDLU Winograd en 1971. 12
  • 13. L’époque des systèmes experts (1970-1980) Les systèmes experts apparaissent au début des années 1970 et se développent jusqu’à la fin des années 1980 : DENDRAL en chimie, MYCIN en médecine, Hersay II en compréhension de la parole, Prospector en géologie. Apparaissent également les premiers générateurs de systèmes Experts : NEXPERT System, CLIPS, … Les langages de programmation pour l’IA LISP (usa), PROLOG (France - Colmerauer), SmallTalk (langage objet), YAFOOL et KL-ONE (langages de Frame), langages de logique de description. 13
  • 14. Période 70-80 : Systèmes Experts • Chainage avant (Rules) ou arrière (Prolog) • Dendral (1965), Mycin (1974); Prospector(1983) Base de connaissance (BC) mémoire à long terme Base de faits (BF) mémoire de travail Moteur d’inférence (MI) 14
  • 15. Dès 1970, apparaît le concept de Réseaux sémantiques 15
  • 16. Les années 1980 : La période des espoirs déçus de l’IA Recul de l’approche symbolique de l’IA : Après des espoirs déçus : en particulier avec l’échec de la généralisation de la théorie des micromondes et le constat du manque de souplesse des systèmes experts (on parlerait aujourd’hui de manque d’agilité). Ils ont pourtant enregistré des succès dans des domaines bien spécifiques en particulier en informatique de gestion. Renaissance de l’approche connexionniste : - Systèmes multi-agents, concept de « vie artificielle », - Hopfield, mémoire autoassociative, 1982 - Rumelhart & McClelland, Parallel Distributed Processes, MIT Press, 1985 - Réseaux de neurones artficiel (RNA) 16
  • 17. Les défis actuels de l’IA - Attente d’une IA généraliste (?), autonome (?), auto-apprenante - Elle doit devenir performante et adaptative sur des situations dynamiques, changeantes, singulières. - Elle doit être capable d’assister l’apprentissage humain. - Elle doit être en mesure de gérer des dialogues entre « agents » très hétérogènes. Pour cela, il faut traiter la cognition comme une émergence dans l’interaction avec l’environnement. Ceci implique la conception d’une nouvelle génération de systèmes informatiques qui vont privilégier une cognition située, distribuée, émergente (prolifération d’agents intelligents et auto-apprentissage). 17
  • 18. L’agent intelligent comme concept fondamental de l’IA - Le terme « action » est à comprendre au sens large. Cela peut signifier « fournir un diagnostic ». - La boucle systémique Agent/Environnement n’est pas nécessairement fermée. ? senseurs "actionneurs " AGENT perception ENVIRONNEMENT "action" Source – Mines ParisTech 18
  • 19. Source – Mines ParisTech 19
  • 20. Définition de l’apprentissage artificiel : « Capacité d’un système à améliorer ses performances via des interactions avec son environnement » . Spécificité de l’apprentissage : Conception et adaptation de l’agent « intelligent » par analyse automatisée (statistique) de son environnement et de son action dans cet environnement. Exemple typique d’apprentissage artificiel : L’agent « prédicteur » 20
  • 21. Historique Données externes PrédictionAGENT PREDICTEUR Modèle de l’agent prédicteur Performance espérée : minimiser l’erreur de prédiction Méthode : utiliser des données expérimentales pour déterminer le modèle le plus correct du type : Prédiction = F ( historique, données externes ) Source – Mines ParisTech 21
  • 22. Définir précisément le type d’apprentissage recherché En particulier , il faut choisir le modèle de fonctions mathématiques sous-jacent : splines, arbre de décision, réseau de neurones, arbre d’expression, machine à noyau… Il faut définir le type d’interactions avec l’environnement : - apprentissage « hors-ligne » v.s. « en-ligne » - apprentissage « supervisé » ou non, « par renforcement » Il faut définir la mesure de performance du système : fonction de coût, objectif, critère implicite, … Et la façon de l’améliorer : famille d’algorithmes utilisés gradient, résolution exacte, problème quadratique, heuristique. 22
  • 23. 2 - Apprentissage & Réseaux de Neurones Artificiels (RNA) 23
  • 24. Un système d’apprentissage est en général composé : - d’un modèle paramétrique, - d’une façon d’interagir avec l’environnement, - d’une « fonction de coût » à minimiser, - d’un algorithme destiné à adapter le modèle, en utilisant les données issues de l’environnement, avec l’objectif d’optimiser la fonction de coût 24
  • 25. Apprentissage supervisé Exemples entrée-sortie (x1,y1), (x2,y2), … , (xn, yn) H famille de modèles mathématiques Paramètres pour l’algorithme d’apprentissage ALGORITHME D’APPRENTISSAGE hH Source – Mines ParisTech 25
  • 26. APPRENTISSAGE SUPERVISÉ : régression et classification Régression Classification (approximation) (yi = « étiquettes ») ?AGENT Entrée = perception Sortie adéquate (attendue) entrée sortie points = exemples  courbe = régression entrée = position point sortie désirée = classe ( =-1,+=+1)  Fonction étiquette=f(x) (et frontière de séparation) Source – Mines ParisTech 26
  • 27. APPRENTISSAGE NON SUPERVISÉ Deux situations sont possibles : Ou bien on ne dispose que d’exemples de type « entrée », et on cherche à obtenir un agent dont la « sortie » vérifie une certaine propriété (par exemple, sortie obtenue identique ou « proche » pour des entrées « voisines »). Ou bien on ne dispose que d’un environnement (réel ou simulé) dans lequel on peut placer l’agent pour « évaluer » son comportement de façon à l’améliorer. ?AGENT Entrée = perception Sortie voulue INCONNUE ENVIRONNEMENT Source – Mines ParisTech 27
  • 28. Apprentissage NON supervisé à partir de données Base d’exemples de type « entrée seule» : X= {x1, x2, … , xn} (xid, souvent avec d « grand ») H famille de modèles mathématiques [ chaque hH  agent avec comportement y=h(x) ] Hyper-paramètres pour l’algorithme d’apprentissage ALGORITHME D’APPRENTISSAGE hH telle que critère J(h,X) soit vérifié ou optimisé Source – Mines ParisTech 28
  • 29. axone corps cellulaire dendrite synapse Réseaux de neurones artificiels (RNA) Le modèle du neurone biologique 29
  • 31. Utilisation des RNA En classification et catégorisation : Pour répartir en plusieurs classes des objets, Pour transformer des données quantitatives en informations qualitatives, Pour la reconnaissance de formes, d’images, de sons, de textes. En Recherche Opérationnelle : Pour résoudre des problèmes dont on ne connaît pas la solution, En apprentissage profond. En Mémoire Associative : Pour restituer ou reconstituer une donnée à partir d’informations incomplètes et/ou bruitées. 31
  • 32. Bref historique des RNA James [1890] : L’introduction du concept de mémoire associative McCulloch & Pitts [1943] A logical calculus of the ideas immanent in nervous activities Introduction du concept de neurone formel  Les ordinateurs à codage binaire (Von Neumann)  L ’intelligence artificielle (calcul symbolique)  Les réseaux de neurones Hebb [1949] Organisation of behavior le conditionnement comme propriété des neurones artificiels. Les premières lois d’apprentissage. 32
  • 33. Bref historique des RNA Rosenblatt [1957] : Présentation du perceptron comme premier modèle opérationnel Capacité de reconnaissance d ’une configuration apprise Utilisation pour traiter la tolérance aux bruits Widrow [1960] : Réseau Adaline, adaptive linear element Minsky & Papert [1969] : Une limite : impossibilité de classer des configurations non linéairement séparables. Abandon (financier) des recherches sur les RNA durant presque une décennie… 33
  • 34. Bref historique des RNA [1967 - 1982] : Mise en sommeil des recherches sur les RNA. Elles continuent sous le couvert de domaines divers. Grossberg, Kohonen, Anderson, ... Hopfield [1982] : Introduction du modèle des verres de spins Boltzmann [1983] : première réponse à la limite de Minsky et Papert [1985] : la rétro-propagation du gradient et le perceptron multicouche Rumelhart, McClelland, … [1985] : le groupe Parallel Distributed Processing 34
  • 35. Le modèle mathématique d'un neurone artificiel Entrées du neurone Poids du neurone 35
  • 36. Le modèle mathématique d'un neurone artificiel Un neurone est constitué d'un intégrateur qui effectue la somme pondérée de ses entrées. Le résultat de cette somme est ensuite transformée par une fonction de transfert f qui produit la sortie a du neurone. Les R entrées du neurone correspondent au vecteur P noté traditionnellement en ligne. On utilise aussi la transposée. W représente le vecteur des poids du neurone. La sortie n de l'intégrateur est alors définie par une égalité écrite sous forme matricielle. b désigne le « biais du neurone », c’est-à- dire un facteur correctif décidé par tâtonnement. La sortie du neurone est donnée par a = f(WtP-b) 36
  • 37. Sortie n de l’intégrateur : Sous forme matricielle : b = biais du neurone Sortie a du neurone : Principe de fonctionnement du neurone 37
  • 39. Les plus courantes Les plus utilisées fonction seuil (ou "hard limit") fonction sigmoïdefonction linéaire Fonctions de transfert usuelles 39
  • 40. Fonctions de transfert usuelles Le modèle de RNA utilise une fonction d'activation a = f(n) qui peut être définie de plusieurs manières (souvent empiriques) en fonction des situations. Les plus usuelles sont la fonction "seuil" ou "hard limit" en anglais, la fonction "linéaire", et la fonction "sigmoïde". 40
  • 41. Construction du réseau de neurones 41
  • 42. Construction du réseau de neurones Un réseau de neurones est un maillage constitué de plusieurs neurones organisés généralement par couches. wi,j désigne le poids de la connexion qui relie le neurone i à son entrée j. L'ensemble est représenté par une matrice des poids de connexion W de dimension SxR et les S neurones sont représentés par un vecteur de neurones. 42
  • 43. Construction du réseau de neurones Un réseau de neurones est constitué de plusieurs couches de neurones qui sont connectées entre elles (Perceptron Multi- Couches). Les réseaux multicouches sont beaucoup plus puissants que les réseaux simples à une seule couche. Les réseaux de neurones exploitent en général deux ou trois couches mais parfois plus (DeepFace de Facebook RN à 9 couches). En utilisant deux couches et en employant une fonction d'activation sigmoïde sur la couche cachée, il est possible d' "entraîner" un réseau à produire une approximation de la plupart des fonctions, avec une précision arbitraire. 43
  • 46. La phase d'apprentissage d'un réseau de neurones se décompose en cinq étapes : Etape 1 - Présenter au réseau un couple entrée-cible. Etape 2 - Calculer les prévisions du réseau pour les cibles. Etape 3 - Utiliser la fonction d'erreur pour calculer la différence entre les prévisions (sorties) du réseau et les valeurs cible. Reprendre les étapes 1 et 2 jusqu'à ce que tous les couples entrée-cible aient été présentés au réseau. Etape 4 - Utiliser l'algorithme d'apprentissage afin d'ajuster les poids du réseau de telle sorte qu'il produise de meilleures prévisions à chaque couple entrée-cible. Remarque : les étapes 1 à 5 constituent un seul cycle d'apprentissage ou itération. Le nombre de cycles nécessaire pour entraîner un modèle de réseaux de neurones n'est pas connu a priori mais peut être défini dans le cadre du processus d'apprentissage. Etape 5 - Répéter à nouveau les étapes 1 à 5 pendant un certain nombre de cycles d'apprentissage ou d'itérations jusqu'à ce que le réseau commence à produire des résultats suffisamment fiables (c'est-à-dire des sorties qui se trouvent assez proches des cibles compte tenu des valeurs d'entrée). Un processus d'apprentissage type pour les réseaux de neurones est constitué de plusieurs centaines de cycles. 46
  • 47. Les réseaux de neurones sont performants dans les taches suivantes : Traitement du signal, Maîtrise des processus, Robotique, Classification, Pré-traitement des données Reconnaissance de formes, Analyse de l'image et synthèse vocale, Diagnostics et suivi médical, Marché boursier et prévisions, Demande de crédits ou de prêts immobiliers. 47
  • 48. Deep Learning et Réseaux de Neurones On enregistre les premiers succès du Deep Learning (apprentissage profond) en 2006. Les réseaux de neurones accompagnent les avancées du Deep Learning . Ces réseaux sont multicouches. Ils effectuent une série de traitements hiérarchisés dans le but de classer des objets en catégories, sans critères prédéfinis. Il s'agit d'un apprentissage non supervisé. Google, Facebook, IBM les utilisent partout aujourd’hui… Donnons quelques exemples : 48
  • 49. DeepFace de Facebook Facebook a développé DeepFace, une application de reconnaissance de visages qui atteint des taux de réussite de plus de 97 %. DeepFace utilise un réseau de neurones à 9 couches. 49
  • 50. 50
  • 51. AlphaGo – DeepMind Google 51
  • 52. AlphaGo – DeepMind Google 52
  • 53. 53
  • 54. Google Car & Deep Learning 54
  • 55. Dans les rêves des couches profondes des réseaux de neurones de Google… 55
  • 56. Dans les rêves des couches profondes des réseaux de neurones de Google… 56
  • 57. TensorFlow, la bibliothèque « Machine Learning » de Google https://www.tensorflow.org/ 57
  • 60. Les dérives de TAY, l’IA de Microsoft qui apprenait trop bien … 60
  • 61. Les dérives de TAY, l’IA de Microsoft qui apprenait trop bien … 61
  • 62. 3 - L’IA comme moteur de la cybersécurité 62
  • 64. Les chiffres de la cybersécurité en 2015 Etude Pwc – The Global State of Information Security Survey 2016 Au niveau mondial : - Une augmentation de 38 % du nombre de cyberattaques. - Une augmentation de 24 % des budgets sécurité des entreprises (correction par rapport à la tendance en baisse constatée en 2014) - En France, le nombre de cyberattaques a progressé de 51 % au cours des 12 derniers mois et les budgets de sécurité des entreprises françaises ont progressé en moyenne de 29 % alors que les pertes estimées liées aux cyberattaques ont augmenté de 28 % en une année. 64
  • 65. Pourcentage d’augmentation du nombre d’incident de cybersécurité en 2015 en France et dans le monde Source d’incident de cybersécurité en 2015 en France et dans le monde 65
  • 66. Au niveau mondial comme en France, la source des menaces reste majoritairement interne aux entreprises. En effet, les employés actuels constituent, cette année encore, la principale source des compromissions de données. Cependant les sources qui ont progressé le plus en 2015 sont, elles, externes aux entreprises. L’étude révèle que la responsabilité des fournisseurs et des prestataires de service actuels est de plus en plus importante ; elle a augmenté d’environ 32% pour les fournisseurs et de 30% pour les prestataires de services. Cela est dû au fait que les entreprises travaillent de plus en plus en collaboration avec des partenaires externes, ce qui participe à l’expansion de la surface d’attaque. Augmentation du budget moyen « cybersécurité » des entreprises en 2015 66
  • 67. Le budget moyen de cybersécurité des entreprises françaises interrogées s’est établi à 4,8 millions d’euros par entreprise en 2015, soit un budget en hausse de 29% par rapport à l’année dernière – un chiffre quelque peu supérieur à la moyenne mondiale de 24%. Les répondants ont affirmé que l’implication de plus en plus poussée du comité exécutif a permis d’améliorer leurs pratiques de cybersécurité. Ces investissements budgétaires répondent à une menace réelle pesant sur les résultats des entreprises. En effet, les pertes financières liées à des incidents de cybersécurité sont estimées en moyenne à 3,7 millions d’euros par entreprise en France, soit une augmentation de 28% par rapport à 2014. Alors que les cyber-risques deviennent des préoccupations clés des comités exécutifs, les dirigeants repensent leurs pratiques en matière de cybersécurité et se concentrent sur un mix de technologies innovantes qui peuvent réduire les risques, tout en améliorant la performance commerciale de l’entreprise. Ces technologies permettent de construire des dispositifs de protection intégrés et holistiques contre les cyberattaques. 91% des organisations interrogées ont mis en place des frameworks pour la sécurité, ou, plus souvent, une fusion de différents frameworks. 67
  • 70. 70
  • 71. - 75 % des entreprises ont été victimes d’attaques au cours des deux dernières années. - 8 sur 10 n’avaient pas conscience d’avoir été compromises. - 99 % ne possèdent que les outils basiques de protection : firewall, antivirus, sauvegardes. 71
  • 72. Pour détecter les menaces, les mécanismes de sécurité « traditionnel » se basent aujourd’hui sur des signatures ou sur des scénarios de malveillance pré-établis, donc rigides et peu ou pas adaptés aux menaces en évolution permanente. Les solutions de cybersécurité classiques sont créées autour de règles utilisées pour détecter les vulnérabilités et les activités suspectes. Elles sont en général insensibles aux APT. Ces systèmes ont atteint leurs limites fonctionnelles ! L’IA permet de dépasser ces limites. 72
  • 73. Security Information and Event Management 73
  • 74. UBA : User Behavior Analytics 74
  • 75. 75
  • 76. 76
  • 77. 77
  • 78. Fonctionnement d’une solution UBA Une solution utilisant l’UBA apprend, sans pré-requis de modèle, à partir de « l’historique de vie » d’un système puis catégorise et sépare les comportements « anormaux » de ceux qui sont conformes aux standards de sécurité. L’UBA est ainsi en mesure de produire des alertes sur des événements susceptibles de créer un contexte de vulnérabilité. Le fonctionnement de l’UBA repose sur l’apprentissage statistique. Celui-ci exploite les données massives qui demeuraient jusqu’à présent sous-employées ou seulement partiellement utilisées comme les bases de logs des systèmes connectés. 78
  • 79. Fonctionnement d’une solution UBA Les outils UBA exploitent massivement les rapports d’activité, les fichiers de logs et le SIEM (Security Information Management System) en tant que base d’apprentissage. Ils définissent des motifs typiques correspondant statistiquement à des comportements à risque. Les solutions UBA contiennent souvent plusieurs moteurs de détection d’anomalies, complémentaires, qui collaborent pour couvrir un large spectre de menaces. On y trouve en général un moteur de détection de signal faible, un moteur de corrélation métier issu de l’expertise d’ingénieurs en cybersécurité complétés par une base de connaissance globale régulièrement mise à jour à partir des retours d’expériences-clients. 79
  • 80. Fonctionnement d’une solution UBA Ces moteurs travaillent sur une base (big data) souvent externalisée qui contient les données d’entrées utilisées ensuite lors de la phase d’apprentissage. Ces données proviennent de sources diverses : SIEM et logs via les connecteurs SIEM, des messages AMQP (Advanced Message Queuing Protocol) et des requêtes JSON (JavaScript Object Notation). Après analyse, le système UBA renvoie les alertes, les seuils et les sources d’anomalies par logs, Syslogs, AMQP et XML/JSON. Les règles métiers peuvent être implémentées et suivies dans le corrélateur métier (cf; Technologie Reveelium développée par ITrust). 80
  • 81. Ce que détecte une solution UBA L’IHM des moteurs UBA permet d’afficher les corrélations, de suivre les déviances et d’instaurer un dialogue entre l’utilisateur et son système de détection. Les anomalies affichées peuvent être des virus connus, des malwares furtifs, des comportements à risque, de la fraude, une fuite de données, une malveillance numérique… Les solutions UBA offrent un spectre de détection beaucoup plus large qu’un système de supervision classique ou qu’un antivirus. Elles permettent ,entre autres, l’analyse forensique et l’investigation après une compromission. Elles identifient l’attaque et son cheminement. Elles sont en mesure de détecter une utilisation frauduleuse du système d’information et notamment l’usurpation de droits. 81
  • 82. Elles réagissent à la perte et au vol de données et se montrent efficaces face à des attaques de type APT. Elles peuvent prédire certains crashs entraînant une indisponibilité de la production et sont utiles pour respecter la conformité aux réglementations et aux meilleures pratiques. Elles détectent les pertes et fraudes financières ainsi que les attaques sur l’image de marque. L’apprentissage statistique permet souvent de diviser par 50 les temps d’analyse des données par les superviseurs ! Pour finir, on notera que lorsque la solution UBA est développée en Europe, sa technologie n’est pas soumise au Patriot Act et les données des clients restent confidentielles, conformément aux réglementations européennes. 82
  • 83. Ce que l’UBA (2016) aurait pu éviter … Une solution UBA aurait été en mesure de détecter les agissements de Snowden avant qu’il ne réalise ses vols de données. Cette solution UBA aurait également été capable de détecter la propagation des virus et APT récents (Target, Sony,…) avant les extractions de données confidentielles des entreprises concernées. 83
  • 84. Quelques exemples de solutions proposant l’approche User Behavior Analytics (UBA) SPLUNK – solution UBA ITRUST - solution Reveelium DARKTRACE SENTRYO – solution ICS Cybervision THALES – Sonde Cybels Sensor CISCO TALOS 84
  • 85. Splunk – solution UBA Société américaine (San Francisco) développe une solution appelée UBA (User Behavior Analytics) qui se veut « clé en main ». Elle permet de détecter des menaces connues, inconnues et dissimulées via l’apprentissage automatisé. Avant l’UBA, les solutions travaillaient sur la base de règles et de codification de tous les scénarios qui pouvaient aboutir à une anormalité. Les limites sont atteintes : impossible de tout codifier et un taux extrêmement élevé de faux positifs d’autre part. L’UBA fournit aujourd’hui une approche complémentaire qui permet de détecter les comportements déviants. Splunk vient de racheter la start-up Caspida spécialisée dans les technologies de machine learning. 85
  • 86. 86
  • 87. 87
  • 88. 88
  • 89. 89
  • 90. 90
  • 91. 91
  • 92. 92
  • 93. 93
  • 95. 95
  • 96. 96
  • 97. 97
  • 98. Darktrace Start-up britannique fondée en 2013, valorisée à 100 millions de dollars, utilise des technologies d’UBA issues de recherches menées à l’Université de Cambridge. Les solutions Darktrace construisent un modèle comportemental à partir du flux généré par les machines et les usages des employés. Ce modèle apprend tout au long de la durée de vie du projet. Il fonctionne comme un système immunitaire biologique qui devient performant pour détecter les APT. La solution Darktrace utilise environ 300 paramètres (heures, IP de connexion des utilisateurs,…) pour établir un modèle comportemental dont la première phase d’apprentissage dure environ une semaine. Le réseau est visualisable en 3D, en temps réel. Des solutions existent pour la bureautique et pour les systèmes industriels. 98
  • 99. 99
  • 100. 100
  • 101. 101
  • 102. 102
  • 103. 103
  • 104. Sentryo ICS Cybervision (startup française) La start-up lyonnaise Sentryo développe la solution ICS CyberVision dédiée à la sécurisation « UBA » des sites industriels critiques SCADA. Sentryo rapproche IT et OT. Ses solutions permettent de dépasser le périmètre classique d’un système, avec une approche plus globale de sa cybersécurité. https://www.sentryo.net/fr/ 104
  • 105. Solution Sentryo surveillant un réseau industriel SCADA 105
  • 106. Thales – Sonde de détection Cybels Sensor Le groupe Thales développe sa sonde de détection d’intrusion Cybels Sensor qui intègre l’UBA pour détecter les évènements anormaux en complément des signatures d’attaques classiques. https://www.thalesgroup.com/sites/default/files/asset/document/cybels_white_p aper_uk_08042013.pdf 106
  • 107. Thales – Cybels Sensor 107
  • 108. Cisco – Talos Talos, division sécurité de Cisco développe une solution dédiée aux sites industriels qui embarque des technologies d’UBA. 108
  • 110. Les programmes DARPA en cybersécurité & UBA http://www.darpa.mil/program/space-time-analysis-for-cybersecurity http://www.darpa.mil/program/cyber-grand-challenge Open Catalog : http://opencatalog.darpa.mil/ADAMS.html 110
  • 111. 111
  • 112. 112
  • 113. 113
  • 114. Formons des Data scientist ! La montée en puissance de l’IA dans les solutions de cybersécurité fait appel à de nouvelles expertises croisant les compétences : Mathématiciens , statisticiens, scientifiques des données… La pénurie de data scientist sur le marché de l’emploi en Europe est aujourd’hui une réalité … 114
  • 115. 115
  • 116. Bibliographie - Intelligence Artificielle Harry Henderson, Artificial Intelligence, Mirrors for the Mind, 2007, Milestones in Discovery and invention. Fundamentals of the New Artificial Intelligence , Neural, Evolutionary, Fuzzy and More, Toshinori Munakata, Second Edition, 2008, Springer. Max Lungarella, Fumiya Iida, Josh Bongard, Rolf Pfeiffer, 50 Years of Artificial Intelligence. Da Duan, Paolo F Fantoni, Martine De Cock, Mike Nachtegael Etienne E Kerre, Applied Artificial Intelligence, 2006. Keith Frankish, William M. Ramsey, The Cambridge Handbook of Artificial Intelligence. Hsinchun Chen, Christopher CN Yang, Intelligence and Security Informatics, Studies in Computational Intelligence. 116
  • 117. Bibliographie - Réseaux de neurones artificiels Xingui He, Shaohua Xu, Process Neural Networks : Theory and Applications, 2010. Haykin S, Neural Networks, 2ed, 1999. Robert A. Dunne, A statistical approach to neural networks for pattern recognition, 2007. Dreyfus G. , Neural Networks : Methodology and Applications, Springer, 2005. Picton P. , Neural Networks, 2002. Fyfe C. , Artificial Neural Networks and Information Theory, 2000. Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford: University Press. Carling, A. (1992). Introducing Neural Networks. Wilmslow, UK: Sigma Press. 117
  • 118. Bibliographie - Réseaux de neurones artificiels Fausett, L. (1994). Fundamentals of Neural Networks. New York: Prentice Hall. Haykin, S. (1994). Neural Networks: A Comprehensive Foundation. New York: Macmillan Publishing. Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59-69. Patterson, D. (1996). Artificial Neural Networks. Singapore: Prentice Hall. Ripley, B.D. (1996). Pattern Recognition and Neural Networks. Cambridge University Press. Rumelhart, D.E., and J.L. McClelland (1986), Parallel Distributed Processing, Volume 1. The MIT Press. Foundations. Tryon, R. C. (1939). Cluster analysis. New York: McGraw-Hill. 118
  • 119. Bibliographie - Machine Learning & Cybersecurity Yihong Gong, Wei Xu, Machine Learning for Multimedia Content Analysis (Multimedia Systems and Applications), 2007. John D. Kelleher , Brian Mac Namee , Aoiff D’Arcy , Fundamentals of Machine Learning for Predictive Data Analytics : Algorithms, Worked Examples, and Cases Studies. Sumeet Dua, Xian Du, Data Mining and Machine Learning in Cybersecurity, 2011. Drew Conway, John Miles White, Machine Learning for Email : Spam filtering and Priority Inbox , 2011. Drew Conway, John Miles White, Machine Learning for Hackers, 2012. Dehmer Matthias, Subhash C. Basak, Statistical and Machine Learning Approaches for Network Analysis, Wiley, 2012. 119