SlideShare une entreprise Scribd logo
Cours de M
Mécanique des s
sols II – Été 2012
2

M. Karray & F. Ghobrial

Chapitre 0
03
Fondat
tions Supe
erficielles
Problèm 3.1
me
Pour les conditions du sol, de g
s
s
géométrie e de chargem
et
ment donné à la figur ci-dessou :
ées
re
us
(a) calc
culer le fact
teur de sécur contre l rupture d sol.
rité
la
du
(b) Si l remblayag de la sem
le
age
melle se fait uniquemen après une charge de 100kN ait a
t
nt
e
appliquée,
est- que le fa
-ce
acteur de séc
curité est mo
odifié?
(c) Si l nappe d’e est à 1.5 au lieu d 3.0m, est-ce que le fac
la
eau
5m
de
cteur de sécu
urité est mo
odifié?

Solutio
on
(a) La fo
ormule utilise pour l calcul d la capacité
le
de
porta
ante dans l’a
argile est:
=5

1 + 0.2
2

1 + 0.2

+

 Pour la rupture locale, on considère cu=30kPa (la
r
e
n
couch d’argile e
he
en-dessous de la semel
lle)
= 5 × 1 × 30 1 + 0.2

.
.

1 + 0.2

.

+ 16 × 1.5
	

Figure 1: Ca (a) du prob
as
blème 3.1

=2
204
Suppo
osons que µ
µ=1.0

Fondations Superficielles
s

Page 1 de 14
Cours de Mécanique des sols II – Été 2012

=

=

100
= 66.67	
1.5
=

. .=	

M. Karray & F. Ghobrial

204
= .
66.67

 Pour la rupture générale, on considère une valeur moyenne de cu. (les deux couches d’argile
en-dessous et au-dessus de la semelle)1

	

.

=

(35 + 30) + (30 + 30)
= 31.25
4

= 5 × 1 × 31.25 1 + 0.2
. .=	

=

.
.

=5

(b)

1.5
(1 + 0) + 16 × 1.5 = 211.5	
1.5

= .

1 + 0.2

= 5 × 1 × 30 1 + 0.2

1 + 0.2
0
1.5

+

1 + 0.2

1.5
+0
∞

= 150
. .=	

=

.

= .
Figure 2: Cas (b) du problème 3.1

(c) Non, on utilise la contrainte totale dans le calcul. Par conséquent, le niveau de la nappe ne
représente aucune importance.

1

Pour les étudiants acharnés
Au lieu d’utiliser seulement la moyenne arithmétique, on utilise la moyenne pondérée et puisque la zone d’influence
sous la semelle, Dmax, est dans l’ordre de 0.71B où B est la largeur de la semelle. Donc, Dmax=1.07m.
	

. (1è

	

. (2è

	

.

=

	

ℎ )=
	

ℎ 	

(35 + 30)
= 32.5
2
	 	

32.5 × 1.5 + 30 × 1.07
(1.5 + 1.07 )

Fondations Superficielles

	 ′

)=

(30 + 30)
= 30.0
2

= 31.46

Page 2 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Problème 3.2
La semelle montrée à la figure ci-dessous exerce au contact avec le sol une pression de 250 kPa.
Évaluer la sécurité de cette semelle contre la rupture.
1) Semelle filante.
2) Semelle carrée.

Solution
Ce cas représente le cas d’une couche d’argile en profondeur (Notes de cours, Page 23).

Fondations Superficielles

Page 3 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

(a) Semelle Filante

=

+

	

+

+

Nc=5.14

Où :

1+

D=1.5m

H=2.8m

Pour φ=35 : Nq=33

Abaque : φ =35 et 			

=

∴

	

N=34

=

× .

20 × 5.14 + 18 × 2.8

×

=0.168 Ks2.4

1+

2 × 1.5
tan 35
2.4
+ 18 × 1.5 = 375.42
2.8
2

1
× 18 × 2 × 34 + 18 × 1.5 × 33 = 1503
2

= 375.42
=

. .=	

375.42
= .
250

(b) Semelle Carrée

=

	

=

∴

1 + 0.2

	

+
1
2

1+

2

1 − 0.4

20 × 5.14(1 + 0.2) + 18 × 2.8

tan

1+

+

+

1+

2 × 1.5
tan 35
(1 + 1) + 18 × 1.5 = 641.6
2.4
2.8
2

1
× 18 × 2 × 34(1 − 0.4) + 18 × 1.5 × 33 = 1258.2
2

= 641.6
. .=	

=

641.6
= .
250

Fondations Superficielles

Page 4 de 14
Cours de M
Mécanique des s
sols II – Été 2012
2

M. Karray & F. Ghobrial

Problèm 3.3
me
On prév
voit de con
nstruire une semelle r
rectangulair pour pre
re
endre une c
charge exce
entrée. On
dispose de 2.2m de largeur pou construir cette sem
ur
re
melle et on v
vous demande d’en déte
erminer la
longueu pour qu’elle puisse ré
ur
ésister à la rupture. Les conditions de chargem
s
s
ment, de géo
ométrie et
du sol en place sont illustrées sur la figure ci-dessous
e
s.

Solutio
on
=

+

+ 0.5

é

Pour φ =35°  Nc=
=46, Nq=33, Nγ=34
Bien qu le 1er term soit négl
ue
me
ligé, on calc
cule Nc
pour la formule de Sq qui vient après.
t
= 2.2 − 2 × 0.35 = 1.5 ,							
2
=1+

=?

1.2										 										

×

	

=

	

=1+

= 1 − 0.4 ×

×

Cette hy
ypothèse ve dire que l’on suppo une vale de Sq plu petite qu 1.2. Aprè que l’on
eut
e
ose
eur
us
ue
ès
calcule L il faut vér
L,
rifier si cette hypothèse est correct ou non.
e
e
te
∴

= 20 × 1.5 × 33 × 1 +

=9
990 1 +

1.076

Fondations Superficielles
s

1.5
1

×

+ 255 1 −

1
33
0.4 × 1.5
+ × (20 − 1 × 1.5 × 3 × 1 −
10)
34
2
46

0.6

= 990 +

5.326
1065

+ 255 −

153

= 12 +
245

26
912.32

Page 5 de 14
Cours de Mécanique des sols II – Été 2012

. .=	

=

M. Karray & F. Ghobrial

=3

×

×

= 1.5

1245 +

912.326

∴ 3 × 3000 = 1867.5 + 1368.489				
é

	

	 ’ℎ

ℎè 	:

=1+

										 										 = 3000

= 4.09 	

1.5 33
×
= 1.263 > 1.2			 ℎ
4.09 46

ℎè 	 é

	

	

Donc on suppose que Sq=1.2. Cette hypothèse, en réalité, veut dire que l’on suppose une valeur
de Sq plus grand que 1.2, mais puisque la valeur de Sq doit ne pas dépasser 1.2, donc on utilise
une valeur de 1.2.
∴

1
0.4 × 1.5
= 20 × 1.5 × 33 × 1.2 + 	 × (20 − 10) × 1.5 × 34 × 1 −
2
= 1188 + 	255 1 −

. .=	

=

0.6

= 1443 −

153

=3

×

×

= 1.5

1443 −

153

∴ 3 × 3000 = 2164.5 − 229.5				
Vérification de l’hypothèse :

=1+

										 										 = 3000

= .
.
.

×

	

= 1.25 > 1.2			ℎ

ℎè 	é

	

Problème 3.4
Un essai de plaque a été effectué dans un dépôt de sable à l’aide d’une plaque de 0.5m de côté.
La charge a été augmentée progressivement jusqu’à ce que la charge maximale de 600kN (charge
à la rupture) soit atteinte. Quelle serait la capacité portante d’une fondation de 2m x 2m.

Fondations Superficielles

Page 6 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Solution
Plaque : 0.5x0.5m

Fondation : 2.0x2.0m

QP= 600 kN

QF= ? kN

Pour un dépôt du sable :
+
2

=

=
=

2 + 0.5
600
0.5 × 0.5 2 × 2
×

= 937.5	

= 937.5	 × (2 × 2) = 3750	

Problème 3.5
Dans un dépôt de sable silteux, des essais de pénétration standard (SPT) ont fourni les valeurs
suivantes de N
Profondeur (m)

1.5

3.0

4.5

6.0

7.5

9.0

10.5

12.0

Valeur de N

15

19

24

28

26

30

28

31

Le poids volumique de ce sable est 20kN /m³. Une semelle carrée de 2.5m x 2.5m est assise dans
ce dépôt à une profondeur de 2.5m.
Déterminer la capacité admissible pour cette semelle si le tassement maximum permis est de
15mm. Vérifier également la sécurité contre la rupture.

Solution
Du profile de SPT, les valeurs aux profondeurs de 3.0, 4.5, 6.0 et 7.5 sont utilisées dans le calcul.

Fondations Superficielles

Page 7 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Prof. (m)

3.0

4.5

6.0

7.5

N

19

24

28

26

’v (kPa)

60

90

120

150

CN

1.16

1.02

0.93

0.85

Ncor.

22.04

24.48

26.04

22.1

= 0.77 log
.

.

.

.

1920

= 24.25,

	

= 23.67,

	

Notez que si l’on prend la valeur de N à 9.0m
(ce qui pourrait être correct), la valeur de
. sera aussi 24
.

(1) Approche de Meyerhof (1956)
> 1.2 	 → 	

=8

= 8 × 24 × 1.3

	

=

	

×

2.5 + 0.3
2.5

+ 0.3

						 				

= 313.1	

= 1.3,

=

	

	

−

é

						

15
15
= 313.1 ×
= 187.86	
25
25

(2) Approche de Peck et coll. (1974)
Pour D/B=1, B=2.5m et N=24 (la valeur corrigée)
La valeur de qadm261 kPa (à partir de l’abaque)

	

=

	

×

15
15
= 261 ×
= 156.6	
25
25

(3) Vérification de la sécurité contre la rupture

Fondations Superficielles

Page 8 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Pour N=24 coups   35°
=

+

+ 0.5

Pour φ =35° Nc=46, Nq=33, Nγ=34
Semelle Carrée  Sq=1.2, Sγ=0.6
= 0 + (20 × 2.5) × 33 × 1.2 + 0.5 × 20 × 2.5 × 34 × 0.6
= 2490
=

. .

=

2490
= 830	
3

Problème 3.6
Une semelle de 4.5m x 4.5m sera soumise en son centre à une charge R=3000kN inclinée de 15° pa
rapport à la verticale avant que l’on procède au remplissage de l’excavation. Après le
remplissage la semelle sera soumise à une charge de 4000kN inclinée de 15°.
(a) Déterminer le facteur de sécurité contre le glissement avant le remplissage.
(b) Déterminer le facteur de sécurité contre la rupture après le remplissage.

Extra-travail :
(c) Déterminer le facteur de sécurité contre la rupture avant le remplissage.

Fondations Superficielles

Page 9 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Solution
(1) Vérification du glissement avant le remplissage
×

. .=	

. .=	

× +

50 × 4.5 × 4.5 + (3000 cos 15) ×
3000 sin 15

0

= 1.304

(2) Vérification de la capacité portante après le remplissage
1 + 0.2

=5

=

= 1−

90

1 + 0.2

= 1−

= 5 × 1 × 50 1 + 0.2

15
90

2
4.5

×

+

×

= 0.694

1 + 0.2

4.5
× 0.694 + 20 × 2 × 0.694
4.5

= 254.63	
=

4000
= 197.53	
4.5 × 4.5

. .=	

=

,									

	

	 	 ℎ

	

è 	 	

	

	4000	

254.63
= 1.28
197.53

(3) Vérification de la capacité portante avant le remplissage
=5

1 + 0.2

1 + 0.2

×

+

×

	

Avant le remplissage (juste après la construction), le remblai du sable n’est pas encore mis alors
D=zéro.
= 5 × 1 × 50 1 + 0.2

0
4.5

1 + 0.2

4.5
× 0.694 + 20 × 0 × 0.694
4.5

= 208.2	
=

3000
= 148.15	
4.5 × 4.5

Fondations Superficielles

,									

	

	 	 ℎ

	

è 	 	

	

	3000	

Page 10 de 14
Cours de Mécanique des sols II – Été 2012

. .=	

=

M. Karray & F. Ghobrial

208.2
= 1.4
148.15

Problème 3.8
Dimensionnez selon les règles de l’Art une semelle filante qui sera construite à 2.0m de
profondeur et qui devra transmettre au sol de fondation une charge de 300kN/m.l.

Solution
(1) Détermination de B
Prof. (m)

2.25

3.0

3.75

N

34

37

38

’v (kPa)

45

60

75

CN

1.26

1.16

1.08

Ncor.

42.68

42.88

41.21

.

.

= 42.25,
= 0.77 log

Fondations Superficielles

	
1920

Page 11 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Notez que on va utiliser une valeur de N=42 dans toutes les itérations car quel que soit le
nombre de coups utilisé, la moyenne est toujours 42.
En général, il faut calculer dans chaque itération la profondeur 2.5B et calculer ensuite la
moyenne des N limités par cette profondeur.
 Supposons que B=1.0m  D/B=2
qadm=458.8 kPa
=

=

300

= 458.8 ⇒

= 0.654

 Supposons que B=0.65m  D/B=3.08
qadm=447 kPa
=

=

300

= 447 ⇒

= 0.67

Soit B=0.7m
Si l’on vérifie la profondeur 2.5B
∴ 2.5 = 2.5 × 0.7 = 1.75
 Il faut considérer les valeurs de N limitées entre 2,0m et 3,75m  Il faut utiliser les trois
valeurs de N déjà utilisées.
(2) Vérification de la sécurité contre la rupture
=

+

+ 0.5

Semelle Filante  Sq=1.0, Sγ=1.0
 Pour φ =39°  Nq=57.8, Nγ=70.8 (Par interpolation)
= 0 + (20 × 2) × 57.8 × 1.0 + 0.5 × 20 × 0.7 × 70.8 × 1.0
= 2807.6
=

. .

=

2807.6
≈ 936	
3

Fondations Superficielles

Page 12 de 14
Cours de M
Mécanique des s
sols II – Été 2012
2

M. Karray & F. Ghobrial

 Pour φ =38°  Nq=51.6, Nγ=
r
=61.6 (Par in
nterpolation
n)
= 0 + (20 × 2) × 51.6 × 1.0 + 0.5 × 20 × 0.7 × 61.6	 × 1.0
= 2495.2
=


. .

.

=

≈ 831.7	

Pour φ =37°  Nq=45.4, Nγ=52.4 (Par i
r
interpolation)
= 0 + (20 × 2) × 45.4 × 1.0 + 0.5 × 20 × 0.7 × 52.4	 × 1.0
= 2182.8
=

. .

=

2182.8
≈ 727
7.6
3

Problèm 3.10
me
Si la charge transm
mise par la c
colonne à la semelle es la même d
a
st
dans chacun des 3 cas suivants ;
n
sans fai de calcul :
ire
ls
(a) Dit lequel de 3 cas suiv
tes
es
vants est le m
moins sécur
ritaire au po
oint de vue rupture.
(b) Dit lequel ta
tes
assera le plu
us.

Solutio
on
(a) La c
capacité por
rtante ultim dans le sa
me
able est calc
culée à l’aide de la form
e
mule suivant
te
=

+

Fondations Superficielles
s

+ 0.5

Page 13 de 14
Cours de Mécanique des sols II – Été 2012

M. Karray & F. Ghobrial

Mettons 1 le poids volumique au-dessus du niveau de la fondation et 2 le poids volumique endessous du niveau de la fondation.
Nc, Nq et N sont constants pour les trois cas.
Sc, Sq et S sont aussi constants pour les trois cas.
cNcSc est égal à zéro (c=0)
Donc les seules variables sont 1D et 2B
Pour le cas 1, il y a deux possibilités pour la mise du remblai : soit le remblai est mis après la
mise de la charge Q (le cas le plus critique et qui sera considéré), soit le remblai est mis avant la
mise de la charge Q.
Cas 1

Cas 2

Cas 3

Remarques

[D]1

=

[D]2

=

[D]3

-

[1]1=1’

<

[1]2=1

>

[1]3=1’

[1]1 = [1]3

[1D]3

<

[1D]2

>

[1D]3

[1D]3 = [1D]3

2B

[2B]1

=

[2B]2

=

[2B]3

-

qult

[qult]1

<

[qult]2

>

[qult]3

[qult]1 = [qult]3

 1D

Donc, le cas le plus critique est le cas 3 ou le cas 1.
Notons que si l’on considère la mise du remblai avant la mise de Q, [D]1 sera plus élevé que [D]3
et [qult]1 sera plus élevé que [qult]3. Donc, le cas 3 sera seulement le cas le plus critique.
(b) En utilisant la méthode de Peck et coll. (1974), le tassement des cas 1, cas 2 et cas 3 est le
même bien que le niveau de la nappe ne soit pas le même. Ce niveau varie au-dessus du
niveau de la fondation. Ainsi, cette variation du niveau n’affecte pas la valeur de qadm
correspondant au tassement de 25mm puisque la valeur de B et de D/B.
Donc, la mise du remblai causera une sollicitation supplémentaire ce qui augmentera le
tassement. Ainsi, le cas 1 tassera le plus.
Fondations Superficielles

Page 14 de 14

Contenu connexe

Tendances

Etude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_desEtude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_des
Mohamed OULAHBIB
 
Cours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang HuyCours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang Huy
Quang Huy Nguyen
 
poussees-et-butees
poussees-et-buteespoussees-et-butees
poussees-et-butees
SoumiaNadiri
 
Cours Béton Armé II _ Nguyen Quang Huy
Cours Béton Armé II _ Nguyen Quang HuyCours Béton Armé II _ Nguyen Quang Huy
Cours Béton Armé II _ Nguyen Quang Huy
Quang Huy Nguyen
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsSami Sahli
 
12 plancher-Eurocode 2
12 plancher-Eurocode 212 plancher-Eurocode 2
12 plancher-Eurocode 2
Smee Kaem Chann
 
Méthode bielles-tirants
Méthode bielles-tirantsMéthode bielles-tirants
Méthode bielles-tirants
Quang Huy Nguyen
 
Matériaux de chaussée
Matériaux de chausséeMatériaux de chaussée
Matériaux de chaussée
adel213
 
Calcul voiles (BA M1).pptx
Calcul voiles (BA M1).pptxCalcul voiles (BA M1).pptx
Calcul voiles (BA M1).pptx
PierreJeanmax2
 
Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2
Quang Huy Nguyen
 
SBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 2 - Evolution - réglementationSBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 2 - Evolution - réglementation
Marwan Sadek
 
Passage du bael à l'eurocode 2
Passage du bael à l'eurocode 2Passage du bael à l'eurocode 2
Passage du bael à l'eurocode 2
Quang Huy Nguyen
 
137021322 ch-4-les-ouvrages-de-soutenement
137021322 ch-4-les-ouvrages-de-soutenement137021322 ch-4-les-ouvrages-de-soutenement
137021322 ch-4-les-ouvrages-de-soutenement
riad taftaf
 
SBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELSSBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELS
Marwan Sadek
 
Mur de soutènement
Mur de soutènementMur de soutènement
Mur de soutènement
Mamane Awel BANKA
 
Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2
Quang Huy Nguyen
 
L'essai et la méthode CBR
L'essai et la méthode CBRL'essai et la méthode CBR
L'essai et la méthode CBR
Ghiles MEBARKI
 
Méthode de caquot
Méthode de caquotMéthode de caquot
Méthode de caquot
ayoub hachcham
 
Mur de soutènement
Mur de soutènementMur de soutènement
Mur de soutènement
Hassane Genie
 

Tendances (20)

Etude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_desEtude de coffrage_et_de_ferraillage_des
Etude de coffrage_et_de_ferraillage_des
 
Cours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang HuyCours Béton Armé I _ Nguyen Quang Huy
Cours Béton Armé I _ Nguyen Quang Huy
 
poussees-et-butees
poussees-et-buteespoussees-et-butees
poussees-et-butees
 
Cours Béton Armé II _ Nguyen Quang Huy
Cours Béton Armé II _ Nguyen Quang HuyCours Béton Armé II _ Nguyen Quang Huy
Cours Béton Armé II _ Nguyen Quang Huy
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacements
 
12 plancher-Eurocode 2
12 plancher-Eurocode 212 plancher-Eurocode 2
12 plancher-Eurocode 2
 
Méthode bielles-tirants
Méthode bielles-tirantsMéthode bielles-tirants
Méthode bielles-tirants
 
Matériaux de chaussée
Matériaux de chausséeMatériaux de chaussée
Matériaux de chaussée
 
Calcul voiles (BA M1).pptx
Calcul voiles (BA M1).pptxCalcul voiles (BA M1).pptx
Calcul voiles (BA M1).pptx
 
Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2
 
SBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 2 - Evolution - réglementationSBA1 - EC2 - Chap 2 - Evolution - réglementation
SBA1 - EC2 - Chap 2 - Evolution - réglementation
 
Passage du bael à l'eurocode 2
Passage du bael à l'eurocode 2Passage du bael à l'eurocode 2
Passage du bael à l'eurocode 2
 
137021322 ch-4-les-ouvrages-de-soutenement
137021322 ch-4-les-ouvrages-de-soutenement137021322 ch-4-les-ouvrages-de-soutenement
137021322 ch-4-les-ouvrages-de-soutenement
 
SBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELSSBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELS
 
Mur de soutènement
Mur de soutènementMur de soutènement
Mur de soutènement
 
Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2
 
L'essai et la méthode CBR
L'essai et la méthode CBRL'essai et la méthode CBR
L'essai et la méthode CBR
 
Méthode de caquot
Méthode de caquotMéthode de caquot
Méthode de caquot
 
Mur de soutènement
Mur de soutènementMur de soutènement
Mur de soutènement
 
Cours de beton_precontraint_
Cours de beton_precontraint_Cours de beton_precontraint_
Cours de beton_precontraint_
 

Similaire à 03 fondations superficielles - solutionnaire (étudiants)

Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01
Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01
Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01eugene tra bi
 
st-genie_civil-fondations_superficielles.pdf
st-genie_civil-fondations_superficielles.pdfst-genie_civil-fondations_superficielles.pdf
st-genie_civil-fondations_superficielles.pdf
geotechniquegcb
 
Tps exercices corriges de mecanique des sols
Tps    exercices corriges de mecanique des solsTps    exercices corriges de mecanique des sols
Tps exercices corriges de mecanique des sols
abdelkrim abdellaoui
 
Mécanique des-sols4
Mécanique des-sols4Mécanique des-sols4
Mécanique des-sols4
abdelkrim abdellaoui
 
46919779 se31009-murs-de-soutأ-nement
46919779 se31009-murs-de-soutأ-nement46919779 se31009-murs-de-soutأ-nement
46919779 se31009-murs-de-soutأ-nement
riad taftaf
 
cours_radier_general.docx
cours_radier_general.docxcours_radier_general.docx
cours_radier_general.docx
MBEMBA2
 
2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf
2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf
2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf
ManouJataw
 
340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf
340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf
340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf
AymenBaccouche1
 
103433 flexion hyperstatique
103433 flexion hyperstatique103433 flexion hyperstatique
103433 flexion hyperstatiqueAissa Ouai
 
Chapitre 11 etude de l'infrastructure.fini
Chapitre 11 etude de l'infrastructure.finiChapitre 11 etude de l'infrastructure.fini
Chapitre 11 etude de l'infrastructure.fini
Sara TACHOUA
 
Dimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductiles
Dimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductilesDimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductiles
Dimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductilesChakir ZAKARIAE
 
Etude-Dalot-Avec-Robot.pdf
Etude-Dalot-Avec-Robot.pdfEtude-Dalot-Avec-Robot.pdf
Etude-Dalot-Avec-Robot.pdf
sabdou
 
Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]
Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]
Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]
Moussa Alain K. GLELE
 
c7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptx
c7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptxc7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptx
c7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptx
MohamedMohamed216790
 
geot_barrage en geo pour géo bdjboshikdsn
geot_barrage en geo pour géo bdjboshikdsngeot_barrage en geo pour géo bdjboshikdsn
geot_barrage en geo pour géo bdjboshikdsn
zouggikhla
 
La Soutenace
La SoutenaceLa Soutenace
La SoutenaceDavid Sar
 
Chapitre iii application pratique 1
Chapitre iii application pratique 1Chapitre iii application pratique 1
Chapitre iii application pratique 1
felfoula Rossa
 
Feuilletage.pdf
Feuilletage.pdfFeuilletage.pdf
Feuilletage.pdf
BENKADDOURAbdelhaq
 
Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...
Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...
Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...
Seckou Fossar SOUANE
 

Similaire à 03 fondations superficielles - solutionnaire (étudiants) (20)

Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01
Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01
Tpsexercicescorrigesdemecaniquedessols 141119165834-conversion-gate01
 
st-genie_civil-fondations_superficielles.pdf
st-genie_civil-fondations_superficielles.pdfst-genie_civil-fondations_superficielles.pdf
st-genie_civil-fondations_superficielles.pdf
 
Tps exercices corriges de mecanique des sols
Tps    exercices corriges de mecanique des solsTps    exercices corriges de mecanique des sols
Tps exercices corriges de mecanique des sols
 
Mécanique des-sols4
Mécanique des-sols4Mécanique des-sols4
Mécanique des-sols4
 
46919779 se31009-murs-de-soutأ-nement
46919779 se31009-murs-de-soutأ-nement46919779 se31009-murs-de-soutأ-nement
46919779 se31009-murs-de-soutأ-nement
 
cours_radier_general.docx
cours_radier_general.docxcours_radier_general.docx
cours_radier_general.docx
 
2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf
2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf
2-compactageavecapplication-pwr-120906150132-phpapp01 (1).pdf
 
340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf
340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf
340360213-Chapitre-IV-Pression-Des-Terres-Murs-de-Soutenements (1).pdf
 
103433 flexion hyperstatique
103433 flexion hyperstatique103433 flexion hyperstatique
103433 flexion hyperstatique
 
Chapitre 11 etude de l'infrastructure.fini
Chapitre 11 etude de l'infrastructure.finiChapitre 11 etude de l'infrastructure.fini
Chapitre 11 etude de l'infrastructure.fini
 
Dimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductiles
Dimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductilesDimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductiles
Dimensionnement d’un bâtiment de 6 étages avec murs de contreventements ductiles
 
Etude-Dalot-Avec-Robot.pdf
Etude-Dalot-Avec-Robot.pdfEtude-Dalot-Avec-Robot.pdf
Etude-Dalot-Avec-Robot.pdf
 
Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]
Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]
Etude d'un tablier de pont mixte ferroviaire [A TELECHARGER]
 
c7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptx
c7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptxc7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptx
c7139314-7b48-4659-832a-820da3b92f14-151010191850-lva1-app6891.pptx
 
geot_barrage en geo pour géo bdjboshikdsn
geot_barrage en geo pour géo bdjboshikdsngeot_barrage en geo pour géo bdjboshikdsn
geot_barrage en geo pour géo bdjboshikdsn
 
La Soutenace
La SoutenaceLa Soutenace
La Soutenace
 
rapport
rapportrapport
rapport
 
Chapitre iii application pratique 1
Chapitre iii application pratique 1Chapitre iii application pratique 1
Chapitre iii application pratique 1
 
Feuilletage.pdf
Feuilletage.pdfFeuilletage.pdf
Feuilletage.pdf
 
Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...
Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...
Dimensionnement des pannes et traverses, et pré-Dimensionnement des montants ...
 

03 fondations superficielles - solutionnaire (étudiants)

  • 1. Cours de M Mécanique des s sols II – Été 2012 2 M. Karray & F. Ghobrial Chapitre 0 03 Fondat tions Supe erficielles Problèm 3.1 me Pour les conditions du sol, de g s s géométrie e de chargem et ment donné à la figur ci-dessou : ées re us (a) calc culer le fact teur de sécur contre l rupture d sol. rité la du (b) Si l remblayag de la sem le age melle se fait uniquemen après une charge de 100kN ait a t nt e appliquée, est- que le fa -ce acteur de séc curité est mo odifié? (c) Si l nappe d’e est à 1.5 au lieu d 3.0m, est-ce que le fac la eau 5m de cteur de sécu urité est mo odifié? Solutio on (a) La fo ormule utilise pour l calcul d la capacité le de porta ante dans l’a argile est: =5 1 + 0.2 2 1 + 0.2 +  Pour la rupture locale, on considère cu=30kPa (la r e n couch d’argile e he en-dessous de la semel lle) = 5 × 1 × 30 1 + 0.2 . . 1 + 0.2 . + 16 × 1.5 Figure 1: Ca (a) du prob as blème 3.1 =2 204 Suppo osons que µ µ=1.0 Fondations Superficielles s Page 1 de 14
  • 2. Cours de Mécanique des sols II – Été 2012 = = 100 = 66.67 1.5 = . .= M. Karray & F. Ghobrial 204 = . 66.67  Pour la rupture générale, on considère une valeur moyenne de cu. (les deux couches d’argile en-dessous et au-dessus de la semelle)1 . = (35 + 30) + (30 + 30) = 31.25 4 = 5 × 1 × 31.25 1 + 0.2 . .= = . . =5 (b) 1.5 (1 + 0) + 16 × 1.5 = 211.5 1.5 = . 1 + 0.2 = 5 × 1 × 30 1 + 0.2 1 + 0.2 0 1.5 + 1 + 0.2 1.5 +0 ∞ = 150 . .= = . = . Figure 2: Cas (b) du problème 3.1 (c) Non, on utilise la contrainte totale dans le calcul. Par conséquent, le niveau de la nappe ne représente aucune importance. 1 Pour les étudiants acharnés Au lieu d’utiliser seulement la moyenne arithmétique, on utilise la moyenne pondérée et puisque la zone d’influence sous la semelle, Dmax, est dans l’ordre de 0.71B où B est la largeur de la semelle. Donc, Dmax=1.07m. . (1è . (2è . = ℎ )= ℎ (35 + 30) = 32.5 2 32.5 × 1.5 + 30 × 1.07 (1.5 + 1.07 ) Fondations Superficielles ′ )= (30 + 30) = 30.0 2 = 31.46 Page 2 de 14
  • 3. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Problème 3.2 La semelle montrée à la figure ci-dessous exerce au contact avec le sol une pression de 250 kPa. Évaluer la sécurité de cette semelle contre la rupture. 1) Semelle filante. 2) Semelle carrée. Solution Ce cas représente le cas d’une couche d’argile en profondeur (Notes de cours, Page 23). Fondations Superficielles Page 3 de 14
  • 4. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial (a) Semelle Filante = + + + Nc=5.14 Où : 1+ D=1.5m H=2.8m Pour φ=35 : Nq=33 Abaque : φ =35 et = ∴ N=34 = × . 20 × 5.14 + 18 × 2.8 × =0.168 Ks2.4 1+ 2 × 1.5 tan 35 2.4 + 18 × 1.5 = 375.42 2.8 2 1 × 18 × 2 × 34 + 18 × 1.5 × 33 = 1503 2 = 375.42 = . .= 375.42 = . 250 (b) Semelle Carrée = = ∴ 1 + 0.2 + 1 2 1+ 2 1 − 0.4 20 × 5.14(1 + 0.2) + 18 × 2.8 tan 1+ + + 1+ 2 × 1.5 tan 35 (1 + 1) + 18 × 1.5 = 641.6 2.4 2.8 2 1 × 18 × 2 × 34(1 − 0.4) + 18 × 1.5 × 33 = 1258.2 2 = 641.6 . .= = 641.6 = . 250 Fondations Superficielles Page 4 de 14
  • 5. Cours de M Mécanique des s sols II – Été 2012 2 M. Karray & F. Ghobrial Problèm 3.3 me On prév voit de con nstruire une semelle r rectangulair pour pre re endre une c charge exce entrée. On dispose de 2.2m de largeur pou construir cette sem ur re melle et on v vous demande d’en déte erminer la longueu pour qu’elle puisse ré ur ésister à la rupture. Les conditions de chargem s s ment, de géo ométrie et du sol en place sont illustrées sur la figure ci-dessous e s. Solutio on = + + 0.5 é Pour φ =35°  Nc= =46, Nq=33, Nγ=34 Bien qu le 1er term soit négl ue me ligé, on calc cule Nc pour la formule de Sq qui vient après. t = 2.2 − 2 × 0.35 = 1.5 , 2 =1+ =? 1.2 × = =1+ = 1 − 0.4 × × Cette hy ypothèse ve dire que l’on suppo une vale de Sq plu petite qu 1.2. Aprè que l’on eut e ose eur us ue ès calcule L il faut vér L, rifier si cette hypothèse est correct ou non. e e te ∴ = 20 × 1.5 × 33 × 1 + =9 990 1 + 1.076 Fondations Superficielles s 1.5 1 × + 255 1 − 1 33 0.4 × 1.5 + × (20 − 1 × 1.5 × 3 × 1 − 10) 34 2 46 0.6 = 990 + 5.326 1065 + 255 − 153 = 12 + 245 26 912.32 Page 5 de 14
  • 6. Cours de Mécanique des sols II – Été 2012 . .= = M. Karray & F. Ghobrial =3 × × = 1.5 1245 + 912.326 ∴ 3 × 3000 = 1867.5 + 1368.489  é ’ℎ ℎè : =1+ = 3000 = 4.09 1.5 33 × = 1.263 > 1.2  ℎ 4.09 46 ℎè é Donc on suppose que Sq=1.2. Cette hypothèse, en réalité, veut dire que l’on suppose une valeur de Sq plus grand que 1.2, mais puisque la valeur de Sq doit ne pas dépasser 1.2, donc on utilise une valeur de 1.2. ∴ 1 0.4 × 1.5 = 20 × 1.5 × 33 × 1.2 + × (20 − 10) × 1.5 × 34 × 1 − 2 = 1188 + 255 1 − . .= = 0.6 = 1443 − 153 =3 × × = 1.5 1443 − 153 ∴ 3 × 3000 = 2164.5 − 229.5  Vérification de l’hypothèse : =1+ = 3000 = . . . × = 1.25 > 1.2  ℎ ℎè é Problème 3.4 Un essai de plaque a été effectué dans un dépôt de sable à l’aide d’une plaque de 0.5m de côté. La charge a été augmentée progressivement jusqu’à ce que la charge maximale de 600kN (charge à la rupture) soit atteinte. Quelle serait la capacité portante d’une fondation de 2m x 2m. Fondations Superficielles Page 6 de 14
  • 7. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Solution Plaque : 0.5x0.5m Fondation : 2.0x2.0m QP= 600 kN QF= ? kN Pour un dépôt du sable : + 2 = = = 2 + 0.5 600 0.5 × 0.5 2 × 2 × = 937.5 = 937.5 × (2 × 2) = 3750 Problème 3.5 Dans un dépôt de sable silteux, des essais de pénétration standard (SPT) ont fourni les valeurs suivantes de N Profondeur (m) 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 Valeur de N 15 19 24 28 26 30 28 31 Le poids volumique de ce sable est 20kN /m³. Une semelle carrée de 2.5m x 2.5m est assise dans ce dépôt à une profondeur de 2.5m. Déterminer la capacité admissible pour cette semelle si le tassement maximum permis est de 15mm. Vérifier également la sécurité contre la rupture. Solution Du profile de SPT, les valeurs aux profondeurs de 3.0, 4.5, 6.0 et 7.5 sont utilisées dans le calcul. Fondations Superficielles Page 7 de 14
  • 8. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Prof. (m) 3.0 4.5 6.0 7.5 N 19 24 28 26 ’v (kPa) 60 90 120 150 CN 1.16 1.02 0.93 0.85 Ncor. 22.04 24.48 26.04 22.1 = 0.77 log . . . . 1920 = 24.25, = 23.67, Notez que si l’on prend la valeur de N à 9.0m (ce qui pourrait être correct), la valeur de . sera aussi 24 . (1) Approche de Meyerhof (1956) > 1.2 → =8 = 8 × 24 × 1.3 = × 2.5 + 0.3 2.5 + 0.3 = 313.1 = 1.3, = − é 15 15 = 313.1 × = 187.86 25 25 (2) Approche de Peck et coll. (1974) Pour D/B=1, B=2.5m et N=24 (la valeur corrigée) La valeur de qadm261 kPa (à partir de l’abaque) = × 15 15 = 261 × = 156.6 25 25 (3) Vérification de la sécurité contre la rupture Fondations Superficielles Page 8 de 14
  • 9. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Pour N=24 coups   35° = + + 0.5 Pour φ =35° Nc=46, Nq=33, Nγ=34 Semelle Carrée  Sq=1.2, Sγ=0.6 = 0 + (20 × 2.5) × 33 × 1.2 + 0.5 × 20 × 2.5 × 34 × 0.6 = 2490 = . . = 2490 = 830 3 Problème 3.6 Une semelle de 4.5m x 4.5m sera soumise en son centre à une charge R=3000kN inclinée de 15° pa rapport à la verticale avant que l’on procède au remplissage de l’excavation. Après le remplissage la semelle sera soumise à une charge de 4000kN inclinée de 15°. (a) Déterminer le facteur de sécurité contre le glissement avant le remplissage. (b) Déterminer le facteur de sécurité contre la rupture après le remplissage. Extra-travail : (c) Déterminer le facteur de sécurité contre la rupture avant le remplissage. Fondations Superficielles Page 9 de 14
  • 10. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Solution (1) Vérification du glissement avant le remplissage × . .= . .= × + 50 × 4.5 × 4.5 + (3000 cos 15) × 3000 sin 15 0 = 1.304 (2) Vérification de la capacité portante après le remplissage 1 + 0.2 =5 = = 1− 90 1 + 0.2 = 1− = 5 × 1 × 50 1 + 0.2 15 90 2 4.5 × + × = 0.694 1 + 0.2 4.5 × 0.694 + 20 × 2 × 0.694 4.5 = 254.63 = 4000 = 197.53 4.5 × 4.5 . .= = , ℎ è 4000 254.63 = 1.28 197.53 (3) Vérification de la capacité portante avant le remplissage =5 1 + 0.2 1 + 0.2 × + × Avant le remplissage (juste après la construction), le remblai du sable n’est pas encore mis alors D=zéro. = 5 × 1 × 50 1 + 0.2 0 4.5 1 + 0.2 4.5 × 0.694 + 20 × 0 × 0.694 4.5 = 208.2 = 3000 = 148.15 4.5 × 4.5 Fondations Superficielles , ℎ è 3000 Page 10 de 14
  • 11. Cours de Mécanique des sols II – Été 2012 . .= = M. Karray & F. Ghobrial 208.2 = 1.4 148.15 Problème 3.8 Dimensionnez selon les règles de l’Art une semelle filante qui sera construite à 2.0m de profondeur et qui devra transmettre au sol de fondation une charge de 300kN/m.l. Solution (1) Détermination de B Prof. (m) 2.25 3.0 3.75 N 34 37 38 ’v (kPa) 45 60 75 CN 1.26 1.16 1.08 Ncor. 42.68 42.88 41.21 . . = 42.25, = 0.77 log Fondations Superficielles 1920 Page 11 de 14
  • 12. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Notez que on va utiliser une valeur de N=42 dans toutes les itérations car quel que soit le nombre de coups utilisé, la moyenne est toujours 42. En général, il faut calculer dans chaque itération la profondeur 2.5B et calculer ensuite la moyenne des N limités par cette profondeur.  Supposons que B=1.0m  D/B=2 qadm=458.8 kPa = = 300 = 458.8 ⇒ = 0.654  Supposons que B=0.65m  D/B=3.08 qadm=447 kPa = = 300 = 447 ⇒ = 0.67 Soit B=0.7m Si l’on vérifie la profondeur 2.5B ∴ 2.5 = 2.5 × 0.7 = 1.75  Il faut considérer les valeurs de N limitées entre 2,0m et 3,75m  Il faut utiliser les trois valeurs de N déjà utilisées. (2) Vérification de la sécurité contre la rupture = + + 0.5 Semelle Filante  Sq=1.0, Sγ=1.0  Pour φ =39°  Nq=57.8, Nγ=70.8 (Par interpolation) = 0 + (20 × 2) × 57.8 × 1.0 + 0.5 × 20 × 0.7 × 70.8 × 1.0 = 2807.6 = . . = 2807.6 ≈ 936 3 Fondations Superficielles Page 12 de 14
  • 13. Cours de M Mécanique des s sols II – Été 2012 2 M. Karray & F. Ghobrial  Pour φ =38°  Nq=51.6, Nγ= r =61.6 (Par in nterpolation n) = 0 + (20 × 2) × 51.6 × 1.0 + 0.5 × 20 × 0.7 × 61.6 × 1.0 = 2495.2 =  . . . = ≈ 831.7 Pour φ =37°  Nq=45.4, Nγ=52.4 (Par i r interpolation) = 0 + (20 × 2) × 45.4 × 1.0 + 0.5 × 20 × 0.7 × 52.4 × 1.0 = 2182.8 = . . = 2182.8 ≈ 727 7.6 3 Problèm 3.10 me Si la charge transm mise par la c colonne à la semelle es la même d a st dans chacun des 3 cas suivants ; n sans fai de calcul : ire ls (a) Dit lequel de 3 cas suiv tes es vants est le m moins sécur ritaire au po oint de vue rupture. (b) Dit lequel ta tes assera le plu us. Solutio on (a) La c capacité por rtante ultim dans le sa me able est calc culée à l’aide de la form e mule suivant te = + Fondations Superficielles s + 0.5 Page 13 de 14
  • 14. Cours de Mécanique des sols II – Été 2012 M. Karray & F. Ghobrial Mettons 1 le poids volumique au-dessus du niveau de la fondation et 2 le poids volumique endessous du niveau de la fondation. Nc, Nq et N sont constants pour les trois cas. Sc, Sq et S sont aussi constants pour les trois cas. cNcSc est égal à zéro (c=0) Donc les seules variables sont 1D et 2B Pour le cas 1, il y a deux possibilités pour la mise du remblai : soit le remblai est mis après la mise de la charge Q (le cas le plus critique et qui sera considéré), soit le remblai est mis avant la mise de la charge Q. Cas 1 Cas 2 Cas 3 Remarques [D]1 = [D]2 = [D]3 - [1]1=1’ < [1]2=1 > [1]3=1’ [1]1 = [1]3 [1D]3 < [1D]2 > [1D]3 [1D]3 = [1D]3 2B [2B]1 = [2B]2 = [2B]3 - qult [qult]1 < [qult]2 > [qult]3 [qult]1 = [qult]3  1D Donc, le cas le plus critique est le cas 3 ou le cas 1. Notons que si l’on considère la mise du remblai avant la mise de Q, [D]1 sera plus élevé que [D]3 et [qult]1 sera plus élevé que [qult]3. Donc, le cas 3 sera seulement le cas le plus critique. (b) En utilisant la méthode de Peck et coll. (1974), le tassement des cas 1, cas 2 et cas 3 est le même bien que le niveau de la nappe ne soit pas le même. Ce niveau varie au-dessus du niveau de la fondation. Ainsi, cette variation du niveau n’affecte pas la valeur de qadm correspondant au tassement de 25mm puisque la valeur de B et de D/B. Donc, la mise du remblai causera une sollicitation supplémentaire ce qui augmentera le tassement. Ainsi, le cas 1 tassera le plus. Fondations Superficielles Page 14 de 14