beamer

61 vues

Publié le

0 commentaire
0 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Aucun téléchargement
Vues
Nombre de vues
61
Sur SlideShare
0
Issues des intégrations
0
Intégrations
1
Actions
Partages
0
Téléchargements
2
Commentaires
0
J’aime
0
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

beamer

  1. 1. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images TAHIRI Chaimaa BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Jeudi 25 Juin 2015 TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  2. 2. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Plan 1 Introduction 2 Équations aux dérivées partielles en traitement d’images Image numérique Filtrage par convolution Modèles utilisées en traitement d’images Équation de la chaleur Modèle de Pérona-Malik 3 Résolution numérique Équation de la chaleur Équation de Pérona-Malik 4 Résultats numériques 5 Conclusion TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  3. 3. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Introduction La méthodologie adoptée dans ce projet est centrée autour d’utilisation des équations à dérivées partielles (EDP) en traitement d’image. • Débruitage des images avec des EDP. • Équation de la chaleur est la 1ère équation dans le cadre de traitement d’image. • Distinction entre le bruit et les contours. • Introduire le modèle de Pérona-Malik. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  4. 4. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Image numérique Image numérique Une image numérique est une matrice de pixels. Cameraman 256x256 Echantillon de cameraman 8x8 (249 :256,249 :256) Figure: Image numérique TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  5. 5. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Filtrage par convolution Filtrage par convolution Filtre moyenneur • Chaque pixel est remplacé par la moyenne de celui-ci et de ses voisins : uij = 1 5 (ui,j + ui+1,j + ui−1,j + ui,j+1 + ui,j−1). • C’est une opération de convolution I(x, y) ∗ h(x, y) = N −N M −M I(x + i, y + j)h(i, j) • h : noyau de convolution h = 1 5   0 1 0 1 1 1 0 1 0   . • Poids des pixels voisins sont identiques. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  6. 6. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Filtrage par convolution Un autre filtre plus efficace est le filtre gaussien. Filtre gaussien Utilisation d’un masque avec cœfficient plus élevé au centre que sur les contours du noyau. G(x, y) = 1 √ 2πσ2 exp x2 + y2 4σ2 , où σ caractérise l’écart-type soit la largeur du filtre. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  7. 7. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images Équation de chaleur • Koenderink montre que la convolution d’une image bruitée par un filtre gaussien est la solution de l’équation de la chaleur σ = √ 2t. • L’équation de chaleur s’écrit sous la forme :    ∂u ∂t − ∆u(t, x) = 0 si x ∈ Ω et t ∈]0, T] u(x, 0) = u0(x) ∂u ∂N = 0 sur ∂Ω, avec Ω est le domaine de l’image et N le vecteur normal. • Prolongement d’image discrète u par réflexion par rapport à ses bords. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  8. 8. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images • l’équation de la chaleur est facile à résoudre, elle demande résoudre un système linaire. • Présente un défaut majeur. • Lisse toute point de l’image. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  9. 9. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images Modèle de Pérona-Malik L’équation correspondante s’écrit :    ∂u ∂t (x, y, t) = div (g(| u|). u(x, y, t)) u(x, y, 0) = u0(x, y) ∂u ∂N = 0 sur ∂Ω, avec Ω est le domaine de l’image, N est le vecteur normal et | u| est la norme du gradient de u. • Lissage des zones à faible gradient (réduction du bruit). • Atténuation de la diffusion lorsque le gradient est important (préservation des singularités et contours). TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  10. 10. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images La fonction g est décroissante avec g(0) = 1 et lim s→+∞ g(s) = 0. Par exemple : g(s) = 1 1 + ( s λ )2 Le paramètre λ est appelé " seuil ou paramètre contraste ". • Si g = 1 on retrouve l’équation de la chaleur → diffusion. On peut écrire l’équation de Pérona-Malik en termes de dérivées secondes directionnelles, dans la direction du gradient : −→η = ux | u| , uy | u| T , TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  11. 11. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images et dans la direction orthogonale −→ ξ = − uy | u| , ux | u| T , avec u = (−→ux , −→uy ) est le vecteur gradient de u et | u| = u2 x + u2 y est sa norme. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  12. 12. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images Figure: Direction du gradient et direction orthogonale TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  13. 13. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Modèles utilisées en traitement d’images Le modèle de Pérona-Malik en termes de dérivées secondes directionnelles devient sous la forme :    ∂u ∂t = cξ.Uξξ + cη.Uηη cξ = g(| U|) cη = g(| U|) + (| U|)g (| U|) • lissage suivant ξ gérer par la fonction g(| U|). • cη est positif pour des valeurs des gradients inférieurs au seuil. • cη est négatif pour des valeurs des gradients supérieurs au seuil =⇒ un processus inverse de réaction de diffusion qui introduit un rehaussement. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  14. 14. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résolution numérique • On note u l’image considérée et ui,j sa valeur au pixel (i, j). • Le pas d’espace h est pris égal à 1. • Pour approcher les solutions des modèles précédents on aura besoin des approximations en espace des dérivées suivantes. Différences finies centrées : ∂ui,j ∂x ui+1,j − ui−1,j 2 . ∂ui,j ∂y ui,j+1 − ui,j−1 2 . TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  15. 15. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Différences finies décentrées à droite : ∂ui,j ∂x ui+1,j − ui,j . ∂ui,j ∂y ui,j+1 − ui,j . Différences finies décentrées à gauche : ∂ui,j ∂x ui,j − ui−1,j . ∂ui,j ∂y ui,j − ui,j−1. Et les dérivées secondes suivantes : ∂2 u ∂2x ui+1,j − 2ui,j + ui−1,j . ∂2 u ∂2y ui,j+1 − 2ui,j + ui,j−1. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  16. 16. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de la chaleur Discrétisation d’équation de la chaleur Le schéma d’Euler explicite : uk+1 i,j = (1 − 4∆t)uk i,j + ∆t(uk i+1,j + uk i−1,j + uk i,j+1 + uk i,j−1) • L’écriture matricielle de ce schéma est la suivante : Uk+1 = AUk , k = 0, 1, ..., M, où A est une matrice à 5 diagonales et elle ne dépend que de ∆t. • Ce schéma nécessite seulement un produit matrice-vecteur en chaque pas de temps. • La condition de stabilité est : ∆t ∆x2 + ∆t ∆y2 ≤ 1 2 . TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  17. 17. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de la chaleur Le schéma d’Euler implicite : uk i,j = (1 − 4∆t)uk+1 i,j − ∆t(uk+1 i+1,j + uk+1 i−1,j + uk+1 i,j+1 + uk+1 i,j−1) • L’écriture matricielle est la suivante : AUk+1 = Uk , k = 0, 1, .., M. • Inconditionnellement stable. • Coûteuse en temps de calcul. • Il demande la résolution d’un système linéaire en chaque pas du temps. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  18. 18. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de la chaleur • La réduction de la complexité de cette résolution en décomposant la discrétisation suivant x et y séparément. • Obtention de deux systèmes tridiagonales qu’on peut résoudre facilement par l’algorithme de Thomas. Une discretisation suivant x : (1 + 2dt)u k+ 1 2 i,j − dt(u k+ 1 2 i+1,j + u k+ 1 2 i−1,j ) = uk i,j Une discretisation suivant y : (1 + 2dt)uk+1 i,j − dt(uk+1 i,j+1 + uk+1 i,j−1) = u k+ 1 2 i,j • Ce second schéma implicite s’écrit sous la forme : i. Uk+ 1 2 = A−1 x Uk ii. Uk+1 = A−1 y Uk+ 1 2 TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  19. 19. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de Pérona-Malik Discrétisation de Pérona-Malik Schéma explicite : un+1 i,j − un i,j dt = ∂ ∂x g(| un ij |) ∂un ij ∂x ϕn(x,y)i,j + ∂ ∂y g(| un ij |) ∂un ij ∂y ψn(x,y)i,j un+1 i,j = un i,j + dt(gn i+ 1 2 ,j )dEU + dt(gn i− 1 2 ,j )dWU+ dt(gn i,j+ 1 2 )dSU + dt(gn i,j− 1 2 )dNU TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  20. 20. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de Pérona-Malik Figure: la structure du système de calcul discrète pour simuler l’équation de diffusion TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  21. 21. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de Pérona-Malik avec : dEU = un i+1,j − un i,j dWU = un i,j − un i−1,j dSU = un i,j+1 − un i,j dNU = un i,j − un i,j−1 et gn i+ 1 2 ,j = g(|dEU|) gn i− 1 2 ,j = g(|dWU|) gn i,j+ 1 2 = g(|dSU|) gn i,j− 1 2 = g(|dNU|) TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  22. 22. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Équation de Pérona-Malik • Le schéma explicite pour approcher la solution du modèle de Pérona-Malik est facile à implémenter. • Conditionnellement stable. • On peut utiliser un schéma implicite qui est toujours stable, mais il demande la résolution d’un système non-linéaire à chaque pas de temps. • Une autre alternative est d’utiliser schéma semi-implicite. un+1 i,j − un i,j dt = div g(| un ij |) ∂un+1 ij ∂x ∂un+1 ij ∂y TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  23. 23. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques Introduction • Dans cette dernière partie nous présentrons les résultats numérique de simulation de deux modèles basés sur la diffusion isotrope et anisotrope. • Nous terminerons par la discussion de l’éfficacité de la méthode de Pérona-Malik. • Le bruit utilisé est le bruit blanc gaussien, de moyenne nulle et de variance σ2 . • Il est modélisé par l’équation suivante : f (x) = 1 √ 2πσ e − x2 2σ2 . TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  24. 24. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques Critère d’analyse et d’évaluation • Erreur quadratique moyenne (MSE) : Mean Squared Error MSE = 1 MN M i=1 N j=1 (X(i, j) − X(i, j))2 . - X : Image originale, X : Image débruitée, - M : Nombre de lignes de l’image, N : Nombre de colonnes de l’image. • Rapport signal sur bruit (PSNR) : Peak signal to noise Ratio PSNR = 10 log10 2552 MES , où 255 est la valeur maximale d’un pixel pour une image codée par 8 bits/pixel en niveaux de gris. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  25. 25. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques Débruitage par l’équation de la chaleur Figure: Image débruitée par l’équation de la chaleur (schèmas implicite et explicite) avec pas de discrétisation égale 0.2 et le nombre d’itération fixé à 50 • Élimination éfficace du bruit et création d’un flou d’image. • Une légère augmentation du PSNR du schèma implicite. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  26. 26. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques • Le schèma implicite est toujours stable mais couteuse en temps de calcul. • Les calculs sont réduits en transformant le problème en deux systèmes linéaires avec des matrices tridiagonales quand le resoud par l’algorithme de Thomas. Temps de calcul en seconde dt=0.01 dt=0.1 dt=0.5 dt=1 Algorithme d’inversion de la matrice 84.01 37.24 7.24 5.83 Algorithme de Thomas 0.551 0.544 0.541 0.540 Table: Comparaison du temps de calcul pour les deux méthodes du schéma implicite avec un nombre d’itération égal à 10. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  27. 27. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques • Le débruitage par l’équation de la chaleur repose sur un processus de diffusion isotrope. • Il opère de manière identique dans toutes les directions de l’image atténuant ainsi bruits et contours sans distinction. • La diffusion anisotrope introduite par Pérona-Malik remédié a cet inconvénient. • Le principe c’est : diffuser fortement dans les zones à faibles gradients (zones homogènes) et faiblement dans les zones à forts gradients (contours). TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  28. 28. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques Débruitage par le modèle de Pérona-Malik Par l’équation de la chaleur Par Perona-Malik PSNR = 20,93 dB PSNR = 33.30 dB Figure: Débruitage avec pas de discrétisation égale 0.001 et nombre d’itérations égale à 50. • dt est suffisamment petite pour assurer la stabilité du schéma. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  29. 29. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques λ=20 et T=200 λ=50 et T=200 λ=100 et T=200 PSNR = 25,39 dB PSNR = 23,24 dB PSNR = 22,81 dB Figure: Résultats obtenus par variation de λ. • Le seuil λ de la fonction g définie précédemment permet de distinguer les zones à faible gradient de celles à fort gradient. • L’augmentation du paramètre λ dégrade l’image. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  30. 30. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques Figure: Résultats en terme de PSNR avec dt est fixé à 0.1. PSNR en fonction du nombre d’itérations (figure gauche) et PSNR en fonction de λ (figure droite). • L’algorithme de Pérona-Malik donne des résulats satisfaisants pour un bon choix du paramètre λ et du nombre d’itération. • L’augmentation du paramètre λ et du nombre d’itération altére gradement l’image. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  31. 31. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Résultats numériques Image fortement bruitée λ=20 λ=100 Figure: Image débruitée par Pérona-Malik avec nombre d’itérations fixé à 400. • Le débruitage par Pérona-Malik d’une image fortement bruitée présente un risque que le bruit soit intérprété comme un contour. • L’augmentation du paramètre λ altère les images fortement bruitée. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  32. 32. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion La boîte à outils "Imagerie" de Matlab • La boîte à outils image de Matlab permettent le developpement facile et rapide d’un problème. • C’est un outil pour la validation de méthodes de traitement d’image appliquées à un problème particulier. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  33. 33. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion • Le filtre median remplace la valeur d’un pixel par la valeur median dans son voisinage. • C’est un filtre non linéaire. Exemple 1 : Filtrage des images (filtre median) I=imread(’cameraman.tif’) ; figure(1) ; imagesc(I) ; colormap gray ; title(’Image originale’) ; [m,n] = size(I) ; J = imnoise(I, ’gaussian’, 0, 0.001) ; J = im2double(J) ; figure(2) ; imagesc(J) ; colormap gray ; title(’Image bruitee’) ; s= strel(’disk’,1) ; k=imopen(J,s) ; n=imclose(k,s) ; f=imclose(J,s) ; p=imopen(n,s) ; figure(3) ; imagesc(p) ; colormap gray ; title(’Image débruitée’) ; • C’est un filtre qui permet sous certaines conditions de réduire le bruit tout en conservant les contours. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  34. 34. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion • La detection des contours est basée sur les dérivées premières et secondes de l’image. Exemple 2 : Detection de contour img = imread(’cameraman.tif’) ; cont1 = edge(img,’prewitt’) ; cont2 = edge(img,’canny’) ; figure ; imshow (img) ; figure ; imshow (cont2) ; figure ; imshow (cont2) ; • Elle permet de repérer dans les images les objets qui s’y trouvent avant d’appliquer le traitement uniquement sur ces objets. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images
  35. 35. Introduction Équations aux dérivées partielles en traitement d’images Résolution numérique Résultats numériques Conclusion Conclusion • Les résultats obtenus par lissage isotrope sont peu satisfaisants. Il ne permet pas une conservation des contours. • Le modèle de Pérona-Malik peut améliorer les résultats par une forte diffusion dans les zones homogènes et faible diffusion dans les zones non homogènes. • Le débruitage d’une image fortement bruitée présente un risque que le bruit soit intérpreté comme un contour. • La méthode semi-implicite de Perona-Malik est efficace. TAHIRI Chaimaa, BOUDLAL Ayoub Encadré par: Pr. Mohammed ZIANI Étude et résolution numérique de deux modèles basés sur des équations aux dérivées partielles pour le débruitage des images

×