SlideShare une entreprise Scribd logo
1  sur  7
COMPLEMENT DE COURS.


SOMMATIONS DE SERIES ENTIERES.


Le but de ces quelques pages est de présenter quelques techniques de sommations de séries
entières.


DEFINITION.

Une série entière est une série de la forme   ∑a x
                                              k
                                                  k
                                                      k
                                                          , ak étant une expression dépendant de k et x

étant une variable. Si l’on réussit à calculer la somme de la série, le résultat sera donc une
expression, fonction de x.
                                                                                ∞
                                                                                    xk
La série entière la plus célèbre dont on connaît la somme est sans doute : ∑ = e x .
                                                                               k =0 k !
On montre aisément que, si une série entière converge pour une certaine valeur positive r de x,
elle converge aussi pour toutes valeurs comprises entre ∈ [ −r ; r ] . Et inversement, si la série ne
converge pas pour une certaine valeur positive r de x, elle ne convergera pas pour toutes valeurs
de x supérieure à r . Le sup des valeurs absolues de x, pour lesquelles la série converge, sera
appelé le rayon de convergence de la série entière. Par exemple le rayon de convergence de la
       ∞
           xk
série ∑ , donné en exemple ci-dessus, est +∞ car on montre qu’elle converge pour toutes
      k =0 k !
valeurs de x.

Le but de ce complément de cours n’est pas de calculer des rayons de convergence mais de
présenter des techniques de sommations de séries. Par conséquent nous serons très évasifs sur les
rayons de convergence. Pour plus de renseignements sur les rayons de convergence voir les livres
de cours traitant des séries entières.

Nous pouvons aborder le calcul proprement dit de la somme des séries.




http://www.prepa-hec.org/
xk
- SERIE DE TERME GENERAL :                            .
                                                   k!
Bien que connaissant déjà la somme de cette série, nous la choisissons pour illustrer une
                                                                  ∞
                                                                      xk
première technique de calcul. En effet posons f ( x) = ∑ et calculons f’(x) :
                                                                 k =0 k !
             ∞
                 k .x k −1 ∞ x k −1      ∞
                                             xk
 f '( x) == ∑             =∑          = ∑ = f ( x) .
            k =1    k      k =1 k − 1   k =0 k
Par conséquent, nous voyons que f(x) est solution de l’équation différentielle y’ = y.
                                                 ∞
                                                     0k 00
De plus nous constatons que f (0) = ∑ =                     = 1 donc y n’est pas nulle et on a :
                                                k =0 k ! 0!
              y'
 y ' = y ⇔ = 1 ⇔ ln y = x + k
              y
comme pour x = 0 on a y = 1, on doit choisir k = 0 et donc ln(y) = x et par conséquent :
 y = ex .
                                      ∞
                              xk
On trouve bien f ( x) = ∑        = ex
                         k =0 k!
Nous voyons que cette technique consiste à trouver une équation différentielle dont la série
entière est solution. La résolution de cette équation différentielle nous donne donc la somme de
la série entière.



- SERIE DE TERME GENERAL : P(k ).x k , P étant un polynôme.
                         ∞
Posons : f ( x) = ∑ x k . Nous savons que cette série, en tant que somme des termes d’une série
                        k =0

                                                                                1
géométrique, converge pour x < 1 et a pour somme                                    . Si nous calculons les dérivées
                                                                               1− x
successives, nous obtenons :
           ∞                   ∞                   ∞
                                                                           1
f '( x) = ∑ k .x k −1 = ∑ k .x k −1 = ∑ ( k + 1) .x k =
                                                                    (1 − x )
                                                                               2
          k =0                 k =1               k =0

            ∞                               ∞                        ∞
                                                                                                  2
f "( x) = ∑ ( k + 1) .k .x k −1 = ∑ ( k + 1) .k .x k −1 = ∑ ( k + 2 ) . ( k + 1) .x k =
                                                                                               (1 − x )
                                                                                                          3
           k =0                            k =1                     k =0

               ∞                                                ∞                        ∞
                                                                                                                                3!
f ( ) ( x) = ∑ ( k + 2 ) . ( k + 1) .k .x k −1 = ∑ ( k + 2 ) . ( k + 1) .k .x k −1 = ∑ ( k + 3)( k + 2 ) . ( k + 1) .x k =
    3

                                                                                                                             (1 − x )
                                                                                                                                        4
            k =0                                            k =1                        k =0

M
M
f ( ) ( x) = ∑
    n
               ∞
                   ( k + 3) ! x k =             n!
                                                            .
                                          (1 − x )
                                                     n +1
            k =0      k!




http://www.prepa-hec.org/
Supposons que le polynôme p(x) soit de degrés n, nous remarquons que dans                                        n   ( X ) , la
famille : {1, ( X + 1) , ( X + 1)( X + 2 ) ,..., ( X + 1)( X + 2 )( X + 3) ... ( X + n )} forme une base en tant
que famille de n polynômes de degrés gradués.
La technique que l’on utilise, dans ce cas, consiste à décomposer le polynôme p(k) en fonction
des polynômes {1, ( k + 1) , ( k + 1)( k + 2 ) ,..., ( k + 1)( k + 2 )( k + 3) ... ( k + n )} de façon à pouvoir
            ∞

           ∑ P(k ).x       en fonction de f ( x), f '( x), f "( x),..., f ( ) ( x) dont la somme est connue.
                       k                                                                  n
écrire
           k =0
Prenons un exemple.
                       ∞
Soit à calculer : ∑ ( k 3 + 4k 2 + 8k + 1) x k .
                     k =0
On a :
k 3 + 4k 2 + 8k + 1 = (k + 3)(k + 2)(k + 1) − 2k 2 − 3k − 5
                       = (k + 3)(k + 2)(k + 1) − 2(k + 2)(k + 1) + 3k − 1
                = (k + 3)(k + 2)(k + 1) − 2(k + 2)(k + 1) + 3(k + 1) − 4 × 1
Et par conséquent :
 ∞                                     ∞

∑ (k
k =0
       3
           + 4k 2 + 8k + 1) x k = ∑ [ (k + 3)(k + 2)(k + 1) − 2(k + 2)(k + 1) + 3(k + 1) − 4 × 1] x k
                                      k =0
                                       ∞                                            ∞                      ∞                       ∞
                                  = ∑ (k + 3)(k + 2)(k + 1) x k − 2∑ (k + 2)(k + 1) x k + 3∑ (k + 1) x k − 4∑ x k
                                      k =0                                         k =0                   k =0                    k =0

                                  = f   ( 3)
                                               ( x ) − 2 f "( x ) + 3 f ' ( x ) − 4 f ( x )
                                             3!                  2!            1                  1
                                  =                    −2                 +3              −4
                                    (1 − x )      (1 − x ) (1 − x )
                                                   4                  3             2
                                                                                               (1 − x )
                                    6 − 4 (1 − x ) + 3 (1 − x ) − 4 (1 − x )
                                                               2             3

                                  =
                                                    (1 − x )
                                                             4



                                      4 x3 − 9 x 2 + 10 x + 1
                                  =
                                                  (1 − x )
                                                             4


Ceci n’étant vrai que pour x < 1.


- SERIE DE TERME GENERAL : R (k ).x k , R étant une fraction rationnelle à pôles simples.

Le rayon de convergence des séries de ce type est 1. Pour calculer la somme de cette série, nous
commencerons par décomposer R(k) en éléments simples pour pouvoir séparer la série en
plusieurs sommes pouvant chacune, à l’aide d’un changement de variable, se ramener au
développement de ln(1+x) ou ln(1-x). Prenons un exemple.
                   ∞
                         4k 2 + 3k − 19 k
Soit à calculer : ∑ 3                  .x .
                  k = 2 k + 4k + k − 6
                                2

On a alors :



http://www.prepa-hec.org/
∞
     4k 2 + 3k − 19 k ∞              4k 2 + 3k − 19
∑ k 3 + 4k 2 + k − 6
k =2
                     .x = ∑
                          k = 2 ( k + 3 )( k + 2 )( k − 1)
                                                           .x k

                           ∞
                                 2            3        1  k
                        = ∑             +          −         .x
                          k =2  k + 3     k + 2 k −1 
                              ∞                ∞             ∞
                                   xk               xk            xk
                        = 2∑             + 3∑            −∑
                             k =2 k + 3      k =2 k + 2     k =2 k − 1
En faisant des glissements d’indice de façon à avoir seulement k en dénominateur, on obtient :
 ∞
     4k 2 + 3k − 19 k         ∞
                                  x k −3     ∞
                                                 x k − 2 ∞ x k +1
∑ k 3 + 4k 2 + k − 6 .x = 2∑ k + 3∑ k − ∑ k
k =2                         k =5           k =4         k =1

                            2 ∞ xk 3 ∞ xk                ∞
                                                             xk
                          = 3 .∑ + 2 .∑ − x.∑
                           x k =5 k x k = 4 k           k =1 k
Le développement de ln(1-x) étant :
                ∞
                    xk
ln (1 − x ) = −∑
               k =1 k
Nous en déduisons :
 ∞
      4k 2 + 3k − 19 k 2                      4
                                                   xk  3             3
                                                                           xk    
∑ k 3 + 4k 2 + k − 6   .x = 3  − ln(1 − x) − ∑  + 2  − ln(1 − x) − ∑
                           x                 k =1 k     x 
                                                                                  + x.ln(1 − x)
k =2                                                                  k =1 k     
                               2 ln(1 − x) 2 1 2 x 3ln(1 − x) 3 3
                           =−              − 2− − − −                       − − − x + x.ln(1 − x)
                                    x3        x     x 3 2            x2       x 2
                             x − 3x − 2
                              4
                                                         9 x + 13 x + 24 x + 12
                                                            3      2
                           =        3
                                          .ln (1 − x ) −
                                  x                               6 x2


                                                      xk
- SERIE DE TERME GENERAL : R(k ).                        , R étant une fraction rationnelle à pôles simples.
                                                      k!

Prenons un exemple pour voir comment calculer la somme de cette série.
Soit à calculer la somme suivante :
                                     ( k + 3) ( k + 2 )
                                                2
 ∞
        k +3        xk   ∞
                                                                 xk
∑ ( k + 4 )( k + 1) k ! k =0 ( k + 4 )( k + 3)( k + 2 )( k + 1) k !
 k =0
                   . =∑                                        .

On a multiplié le numérateur et le dénominateur de la fraction par (k+3)(k+2) pour obtenir
(k+4) ! en dénominateur.
                            ( k + 3) ( k + 2 ) x k
                                        2
 ∞
        k +3        xk   ∞

∑ ( k + 4 )( k + 1) k ! k =0 ( k + 4 )!
k =0
                   . =∑

                             ∞
                                   k 3 + 8k 2 + 21k + 18 k
                          =∑                                 .x
                              k =0        ( k + 4 )!
Nous allons maintenant décomposer k3+8k2+21k+18 dans la base :
{( k + 4 )( k + 3)( k + 2 ) , ( k + 4 )( k + 3) , ( k + 4 ) ,1}
On a :

http://www.prepa-hec.org/
k 3 + 8k 2 + 21k + 18 = ( k + 4 )( k + 3)( k + 2 ) − k 2 − 5k − 6
                            = ( k + 4 )( k + 3)( k + 2 ) − ( k + 4 )( k + 3) + 2k + 6
                            = ( k + 4 )( k + 3)( k + 2 ) − ( k + 4 )( k + 3) + 2 ( k + 4 ) − 2
et par conséquent :

 ∞
        k +3        xk   ∞
                             k 3 + 8k 2 + 21k + 18 k
∑ ( k + 4 )( k + 1) k ! k =0
k =0
                   . =∑
                                    ( k + 4 )!
                                                  .x


                              =∑
                                   ∞
                                         ( ( k + 4 )( k + 3)( k + 2 ) − ( k + 4 )( k + 3) + 2 ( k + 4 ) − 2 ) .x   k

                                  k =0                                 ( k + 4)!
                              =∑
                                   ∞
                                    ( k + 4 )( k + 3)( k + 2 ) x k − ∞ ( k + 4 )( k + 3) x k
                               k =0            ( k + 4 )!             ∑ ( k + 4)!
                                                                       k =0


                                                              + 2∑
                                                                    ∞
                                                                         ( k + 4) xk − 2 ∞ xk
                                                                   k =0 ( k + 4 ) !
                                                                                        ∑ ( k + 4 )!
                                                                                        k =0

                                   ∞       ∞                     ∞                   ∞
                                  xk               xk                    xk                  xk
                              =∑         −∑               + 2∑                   − 2∑
                        k = 0 ( k + 1) !  k =0 ( k + 2 )!      k = 0 ( k + 3) !     k =0 ( k + 4 ) !

Faisons des glissements d’indice de façon à avoir k! aux dénominateurs.
 ∞
        k +3        xk   ∞
                              x k −1 ∞ x k − 2        ∞
                                                          x k −3        ∞
                                                                            x k −4
∑ ( k + 4 )( k + 1) k ! k =1 k ! k =2 k ! k =3 k ! k =4 k !
k =0
                   . =∑              −∑           + 2∑            − 2∑

                               1 ∞ xk 1                ∞
                                                            xk 2 ∞ xk 2            ∞
                                                                                        xk
                              = ∑ − 2                  ∑ k ! + x3 ∑ k ! − x 4      ∑ k!
                               x k =1 k ! x            k =2       k =3             k =4

                        1  x 0 xk  1  x 1 xk  2  x 2 xk  2  x 3 xk 
                           e − ∑  − 2 e − ∑  + 3 e − ∑  − 4 e − ∑ 
                              =
                        x      k =0 k !  x  k =0 k !  x  k =0 k !  x  k =0 k ! 

En développant, on obtient :
 ∞
        k +3        x k e x 1 e x 1 1 2e x 2 2 1 2e x 2 2 1 1
∑ ( k + 4 )( k + 1) k ! x x x x x x x x x x x x x 3x
k =0
                   . = − − 2+ 2+ − 3 − 3− 2− − 4 + 4+ 3+ 2+


                              =
                                (x     3
                                           − x2 − 2x − 2)
                                                            .e x +
                                                                     2 2
                                                                        −
                                                   4
                                               x                     x 4 3x



- SERIE DE TERME GENERAL : Crr+ k .x k .

La sommation de cette série est importante car elle intervient dans le calcul de l’espérance
mathématique et de la variance de variables aléatoires comme la loi de Pascal ou la loi binomiale
négative.
                      n
Posons un ( r ) = ∑ Crr+ k .x k .
                     k =0




http://www.prepa-hec.org/
Si x ≥ 1 le terme général de la série ne tend pas vers 0 et par conséquent la série n’est pas
convergente. On montre que le rayon de convergence de cette série est 1.
On a alors :
                                                    n                                                 n                          n                         n             n
un ( r − 1) − (1 − x ) un ( r ) = ∑ Crr−1+ k .x k − (1 − x ) ∑ Crr+ k .x k = ∑ Crr−11+ k .x k − ∑ Crr+ k .x k + ∑ Crr+ k .x k +1
                                       −1                                         −

                                                 k =0                                                k =0                       k =0                      k =0          k =0


                                              = ∑ ( Crr−1+ k − Crr+ k ) .x k + ∑ Crr+ k .x k +1 = −∑ Crr−1+ k .x k + ∑ Crr+ k .x k +1
                                                    n                                                       n                             n                       n
                                                       −1

                                                 k =0                                                     k =0                           k =0                    k =0
                                                         n                                   n +1
                                              = −∑ Crr−1+ k .x k + ∑ Crr−1+ k .x k = Crr+ n .x n +1
                                                        k =1                                 k =1
Nous avons obtenu :
un ( r − 1) − (1 − x ) un ( r ) = Crr+ n .x n +1
Calculons lim Crr+ n .x n +1 .
                x →n

On a :

Crr+ n =
           ( n + r )( n + r − 1)( n + r − 2 ) ... ( n + 1)
                                               r!
                                                                                               nr
Et donc quand n tend vers +∞ on a Crr+ n
                                                                                               r!
On déduit par conséquent :
               n r n +1
Crr+ n .x n +1    .x
               r!
Et
                                                                                                       ln ( n.)            
                                                                                                                 + ln ( x ) 
                             (
                           ln n r . x n   )                    r ln ( n.) + n ln ( x )
                                                                                                     n r
                                                                                                                                        n ln ( x )
lim n .x = lim e                              = lim e                                    = lim e                                = lim e                = lim x n = 0
       r    n                                                                                             n                
n →∞            n →∞                            n →∞                                         n →∞                                 n →∞                   n →∞

On en déduit :
                        n r n +1 x               x
lim Crr+ n .x n +1 = lim    .x = lim n r .x n = × 0 = 0
n →∞               n →∞ r !           r!  n →∞   r!
Par conséquent si l’on fait tendre n vers l’infini dans l’expression :
un ( r − 1) − (1 − x ) un ( r ) = Crr+ n .x n +1
On obtient :
lim un ( r − 1) − lim (1 − x ) un ( r ) = 0
n →∞                   n →∞

                                                                                                             1
Si on pose u ( r ) = lim un ( r ) , on obtient : u ( r ) =                                                       u ( r − 1)
                                 n →∞                                                                       1− x
On en déduit par récurrence :
                       r
         1 
u (r) =        u (0)
         1− x 
                                     n                                       n
                                                                                                1
Comme u ( 0 ) = lim ∑ Ck0 .x k = lim ∑ x k =                                                        .
                           n →∞
                                   k =0
                                                                  n →∞
                                                                           k =0                1− x
                       r                                         r +1
          1  1        1                                                              1
u (r ) =        .   =                                                =
                                                                              (1 − x )
                                                                                              r +1
          1− x  1− x  1− x 


http://www.prepa-hec.org/
On peut donc conclure :

                             ∞
                                                       1
                            ∑C     r
                                   r +k   .x k =
                                                   (1 − x )
                                                              r +1
                            k =0




http://www.prepa-hec.org/

Contenu connexe

Tendances

ネットワークフローとその代表的な問題
ネットワークフローとその代表的な問題ネットワークフローとその代表的な問題
ネットワークフローとその代表的な問題紘也 金子
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limiteshassan1488
 
Cours de probabilités chap2.pptx
Cours de probabilités chap2.pptxCours de probabilités chap2.pptx
Cours de probabilités chap2.pptxHanaeElabbas
 
Chap1introductionimagenumerique
Chap1introductionimagenumeriqueChap1introductionimagenumerique
Chap1introductionimagenumeriqueintissar0007
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproquesYessin Abdelhedi
 
165380609 livre-professeur-maths-1ere-s
165380609 livre-professeur-maths-1ere-s165380609 livre-professeur-maths-1ere-s
165380609 livre-professeur-maths-1ere-sEttaoufik Elayedi
 
Dérivation et Intégration numériques
Dérivation et Intégration numériquesDérivation et Intégration numériques
Dérivation et Intégration numériquesJaouad Dabounou
 
Chaînes de Markov et files d'attente
Chaînes de Markov et files d'attenteChaînes de Markov et files d'attente
Chaînes de Markov et files d'attenteGuillaume Matheron
 
Chapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court cheminChapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court cheminSana Aroussi
 
Les algorithmes d’approximation
Les algorithmes d’approximationLes algorithmes d’approximation
Les algorithmes d’approximationWael Ismail
 
3.2 Derivative as a Function
3.2 Derivative as a Function3.2 Derivative as a Function
3.2 Derivative as a Functiongregcross22
 
AtCoder Regular Contest 019 解説
AtCoder Regular Contest 019 解説AtCoder Regular Contest 019 解説
AtCoder Regular Contest 019 解説AtCoder Inc.
 
2.6 more computations of derivatives
2.6 more computations of derivatives2.6 more computations of derivatives
2.6 more computations of derivativesmath265
 
AtCoder Regular Contest 023 解説
AtCoder Regular Contest 023 解説AtCoder Regular Contest 023 解説
AtCoder Regular Contest 023 解説AtCoder Inc.
 

Tendances (20)

ネットワークフローとその代表的な問題
ネットワークフローとその代表的な問題ネットワークフローとその代表的な問題
ネットワークフローとその代表的な問題
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limites
 
Formation traitement d_images
Formation traitement d_imagesFormation traitement d_images
Formation traitement d_images
 
PRML 10.4 - 10.6
PRML 10.4 - 10.6PRML 10.4 - 10.6
PRML 10.4 - 10.6
 
S2- Math
S2- Math S2- Math
S2- Math
 
Cours de probabilités chap2.pptx
Cours de probabilités chap2.pptxCours de probabilités chap2.pptx
Cours de probabilités chap2.pptx
 
Derivadas
DerivadasDerivadas
Derivadas
 
Chap1introductionimagenumerique
Chap1introductionimagenumeriqueChap1introductionimagenumerique
Chap1introductionimagenumerique
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
 
Slides cirm-copulasv3
Slides cirm-copulasv3Slides cirm-copulasv3
Slides cirm-copulasv3
 
165380609 livre-professeur-maths-1ere-s
165380609 livre-professeur-maths-1ere-s165380609 livre-professeur-maths-1ere-s
165380609 livre-professeur-maths-1ere-s
 
Dérivation et Intégration numériques
Dérivation et Intégration numériquesDérivation et Intégration numériques
Dérivation et Intégration numériques
 
Fonctions logarithmes
Fonctions logarithmesFonctions logarithmes
Fonctions logarithmes
 
Chaînes de Markov et files d'attente
Chaînes de Markov et files d'attenteChaînes de Markov et files d'attente
Chaînes de Markov et files d'attente
 
Chapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court cheminChapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court chemin
 
Les algorithmes d’approximation
Les algorithmes d’approximationLes algorithmes d’approximation
Les algorithmes d’approximation
 
3.2 Derivative as a Function
3.2 Derivative as a Function3.2 Derivative as a Function
3.2 Derivative as a Function
 
AtCoder Regular Contest 019 解説
AtCoder Regular Contest 019 解説AtCoder Regular Contest 019 解説
AtCoder Regular Contest 019 解説
 
2.6 more computations of derivatives
2.6 more computations of derivatives2.6 more computations of derivatives
2.6 more computations of derivatives
 
AtCoder Regular Contest 023 解説
AtCoder Regular Contest 023 解説AtCoder Regular Contest 023 解説
AtCoder Regular Contest 023 解説
 

Similaire à Sommation séries entières

Aates ch08 lois-a-densite
Aates ch08 lois-a-densiteAates ch08 lois-a-densite
Aates ch08 lois-a-densiteManar Sefiane
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourierismailkziadi
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourierMehdi Maroun
 
Fonctions exponentielles et puissances
Fonctions exponentielles et puissancesFonctions exponentielles et puissances
Fonctions exponentielles et puissancesĂmîʼndǿ TrànCè
 
Math%E9matiques%20 Ct
Math%E9matiques%20 CtMath%E9matiques%20 Ct
Math%E9matiques%20 Ctglenoo
 
espaces vectoriels et applications linéaires
espaces vectoriels et applications linéairesespaces vectoriels et applications linéaires
espaces vectoriels et applications linéairesAhmedELYAHYAOUI
 
Algebre1 s1 par www.etudecours.com
Algebre1 s1 par www.etudecours.comAlgebre1 s1 par www.etudecours.com
Algebre1 s1 par www.etudecours.cometude cours
 
DS6-CB-sujet (1).pdf
DS6-CB-sujet (1).pdfDS6-CB-sujet (1).pdf
DS6-CB-sujet (1).pdfhajar517389
 
CAPES maths 2019 composition 2
CAPES maths 2019 composition 2CAPES maths 2019 composition 2
CAPES maths 2019 composition 2Dany-Jack Mercier
 
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012Ahmed Ammar Rebai PhD
 
Mathématiques Générales.pdf
Mathématiques Générales.pdfMathématiques Générales.pdf
Mathématiques Générales.pdfKarimBara2
 
Euclidien12octobre
Euclidien12octobreEuclidien12octobre
Euclidien12octobreche7t
 

Similaire à Sommation séries entières (20)

Cours stat2-kharrat
Cours stat2-kharratCours stat2-kharrat
Cours stat2-kharrat
 
Chap9
Chap9Chap9
Chap9
 
Aates ch08 lois-a-densite
Aates ch08 lois-a-densiteAates ch08 lois-a-densite
Aates ch08 lois-a-densite
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
D slides 11
D slides 11D slides 11
D slides 11
 
01 lois-à-densité
01 lois-à-densité01 lois-à-densité
01 lois-à-densité
 
Fonctions exponentielles et puissances
Fonctions exponentielles et puissancesFonctions exponentielles et puissances
Fonctions exponentielles et puissances
 
Math%E9matiques%20 Ct
Math%E9matiques%20 CtMath%E9matiques%20 Ct
Math%E9matiques%20 Ct
 
Video
VideoVideo
Video
 
espaces vectoriels et applications linéaires
espaces vectoriels et applications linéairesespaces vectoriels et applications linéaires
espaces vectoriels et applications linéaires
 
Algebre1 s1 par www.etudecours.com
Algebre1 s1 par www.etudecours.comAlgebre1 s1 par www.etudecours.com
Algebre1 s1 par www.etudecours.com
 
Am4 series
Am4 seriesAm4 series
Am4 series
 
DS6-CB-sujet (1).pdf
DS6-CB-sujet (1).pdfDS6-CB-sujet (1).pdf
DS6-CB-sujet (1).pdf
 
CAPES maths 2019 composition 2
CAPES maths 2019 composition 2CAPES maths 2019 composition 2
CAPES maths 2019 composition 2
 
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
 
Cours integrale riemann
Cours integrale riemannCours integrale riemann
Cours integrale riemann
 
Mathématiques Générales.pdf
Mathématiques Générales.pdfMathématiques Générales.pdf
Mathématiques Générales.pdf
 
Fic00126
Fic00126Fic00126
Fic00126
 
Euclidien12octobre
Euclidien12octobreEuclidien12octobre
Euclidien12octobre
 

Plus de Loïc Dilly

Règlement SIGEM
Règlement SIGEMRèglement SIGEM
Règlement SIGEMLoïc Dilly
 
Reglement sigem 2010
Reglement sigem 2010Reglement sigem 2010
Reglement sigem 2010Loïc Dilly
 
Lycées Francais Etranger
Lycées Francais EtrangerLycées Francais Etranger
Lycées Francais EtrangerLoïc Dilly
 
Couverture Livre Prepa Ecole de commerce / prepa-HEC.org
Couverture Livre Prepa Ecole de commerce / prepa-HEC.orgCouverture Livre Prepa Ecole de commerce / prepa-HEC.org
Couverture Livre Prepa Ecole de commerce / prepa-HEC.orgLoïc Dilly
 
Admission Post Bac Calendrier 2010
Admission Post Bac Calendrier 2010Admission Post Bac Calendrier 2010
Admission Post Bac Calendrier 2010Loïc Dilly
 
Le Foyer Des Lycéennes, Un Internat Taille Patronne
Le Foyer Des Lycéennes, Un Internat Taille PatronneLe Foyer Des Lycéennes, Un Internat Taille Patronne
Le Foyer Des Lycéennes, Un Internat Taille PatronneLoïc Dilly
 
EM Lyon 2006 Concours
EM Lyon 2006 ConcoursEM Lyon 2006 Concours
EM Lyon 2006 ConcoursLoïc Dilly
 
Essec 2004 Concours
Essec 2004 ConcoursEssec 2004 Concours
Essec 2004 ConcoursLoïc Dilly
 
Classe prépa: étudiants en surrégime - Les Echos
Classe prépa: étudiants en surrégime - Les EchosClasse prépa: étudiants en surrégime - Les Echos
Classe prépa: étudiants en surrégime - Les EchosLoïc Dilly
 
Mathématiques - Primitives particulières
Mathématiques - Primitives particulièresMathématiques - Primitives particulières
Mathématiques - Primitives particulièresLoïc Dilly
 
Historique classes prépas
Historique classes prépasHistorique classes prépas
Historique classes prépasLoïc Dilly
 
Jeunes Diplomes 2008
Jeunes Diplomes 2008Jeunes Diplomes 2008
Jeunes Diplomes 2008Loïc Dilly
 
Enquête EM Normandie / Espace Prépas
Enquête EM Normandie / Espace PrépasEnquête EM Normandie / Espace Prépas
Enquête EM Normandie / Espace PrépasLoïc Dilly
 

Plus de Loïc Dilly (14)

Règlement SIGEM
Règlement SIGEMRèglement SIGEM
Règlement SIGEM
 
Reglement sigem 2010
Reglement sigem 2010Reglement sigem 2010
Reglement sigem 2010
 
Lycées Francais Etranger
Lycées Francais EtrangerLycées Francais Etranger
Lycées Francais Etranger
 
Couverture Livre Prepa Ecole de commerce / prepa-HEC.org
Couverture Livre Prepa Ecole de commerce / prepa-HEC.orgCouverture Livre Prepa Ecole de commerce / prepa-HEC.org
Couverture Livre Prepa Ecole de commerce / prepa-HEC.org
 
Admission Post Bac Calendrier 2010
Admission Post Bac Calendrier 2010Admission Post Bac Calendrier 2010
Admission Post Bac Calendrier 2010
 
Le Foyer Des Lycéennes, Un Internat Taille Patronne
Le Foyer Des Lycéennes, Un Internat Taille PatronneLe Foyer Des Lycéennes, Un Internat Taille Patronne
Le Foyer Des Lycéennes, Un Internat Taille Patronne
 
EM Lyon 2006 Concours
EM Lyon 2006 ConcoursEM Lyon 2006 Concours
EM Lyon 2006 Concours
 
Essec 2004 Concours
Essec 2004 ConcoursEssec 2004 Concours
Essec 2004 Concours
 
Classe prépa: étudiants en surrégime - Les Echos
Classe prépa: étudiants en surrégime - Les EchosClasse prépa: étudiants en surrégime - Les Echos
Classe prépa: étudiants en surrégime - Les Echos
 
Mathématiques - Primitives particulières
Mathématiques - Primitives particulièresMathématiques - Primitives particulières
Mathématiques - Primitives particulières
 
Historique classes prépas
Historique classes prépasHistorique classes prépas
Historique classes prépas
 
Etymopub
EtymopubEtymopub
Etymopub
 
Jeunes Diplomes 2008
Jeunes Diplomes 2008Jeunes Diplomes 2008
Jeunes Diplomes 2008
 
Enquête EM Normandie / Espace Prépas
Enquête EM Normandie / Espace PrépasEnquête EM Normandie / Espace Prépas
Enquête EM Normandie / Espace Prépas
 

Dernier

La Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdfLa Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdfbdp12
 
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24BenotGeorges3
 
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...Atelier Canopé 37 - Tours
 
Aux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècleAux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècleAmar LAKEL, PhD
 
L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...
L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...
L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...Unidad de Espiritualidad Eudista
 
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdfBibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdfAtelier Canopé 37 - Tours
 
Chana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienneChana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienneTxaruka
 
Calendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avrilCalendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avrilfrizzole
 
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdfBibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdfAtelier Canopé 37 - Tours
 
Pas de vagues. pptx Film français
Pas de vagues.  pptx   Film     françaisPas de vagues.  pptx   Film     français
Pas de vagues. pptx Film françaisTxaruka
 
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptxPrésentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptxJCAC
 
Copilot your everyday AI companion- OFFICE 365-
Copilot your everyday AI companion- OFFICE 365-Copilot your everyday AI companion- OFFICE 365-
Copilot your everyday AI companion- OFFICE 365-Majida Antonios, M.Ed.
 

Dernier (13)

La Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdfLa Base unique départementale - Quel bilan, au bout de 5 ans .pdf
La Base unique départementale - Quel bilan, au bout de 5 ans .pdf
 
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
Newsletter SPW Agriculture en province du Luxembourg du 10-04-24
 
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
Bibdoc 2024 - L’Éducation aux Médias et à l’Information face à l’intelligence...
 
Aux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècleAux origines de la sociologie : du XIXème au début XX ème siècle
Aux origines de la sociologie : du XIXème au début XX ème siècle
 
L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...
L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...
L'Unité de Spiritualité Eudiste se joint à toute l'Église Universelle et en p...
 
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdfBibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
Bibdoc 2024 - Les intelligences artificielles en bibliotheque.pdf
 
Chana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienneChana Orloff.pptx Sculptrice franco-ukranienne
Chana Orloff.pptx Sculptrice franco-ukranienne
 
Bulletin des bibliotheques Burkina Faso mars 2024
Bulletin des bibliotheques Burkina Faso mars 2024Bulletin des bibliotheques Burkina Faso mars 2024
Bulletin des bibliotheques Burkina Faso mars 2024
 
Calendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avrilCalendrier de la semaine du 8 au 12 avril
Calendrier de la semaine du 8 au 12 avril
 
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdfBibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
Bibdoc 2024 - Sobriete numerique en bibliotheque et centre de documentation.pdf
 
Pas de vagues. pptx Film français
Pas de vagues.  pptx   Film     françaisPas de vagues.  pptx   Film     français
Pas de vagues. pptx Film français
 
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptxPrésentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
Présentation - Initiatives - CECOSDA - OIF - Fact Checking.pptx
 
Copilot your everyday AI companion- OFFICE 365-
Copilot your everyday AI companion- OFFICE 365-Copilot your everyday AI companion- OFFICE 365-
Copilot your everyday AI companion- OFFICE 365-
 

Sommation séries entières

  • 1. COMPLEMENT DE COURS. SOMMATIONS DE SERIES ENTIERES. Le but de ces quelques pages est de présenter quelques techniques de sommations de séries entières. DEFINITION. Une série entière est une série de la forme ∑a x k k k , ak étant une expression dépendant de k et x étant une variable. Si l’on réussit à calculer la somme de la série, le résultat sera donc une expression, fonction de x. ∞ xk La série entière la plus célèbre dont on connaît la somme est sans doute : ∑ = e x . k =0 k ! On montre aisément que, si une série entière converge pour une certaine valeur positive r de x, elle converge aussi pour toutes valeurs comprises entre ∈ [ −r ; r ] . Et inversement, si la série ne converge pas pour une certaine valeur positive r de x, elle ne convergera pas pour toutes valeurs de x supérieure à r . Le sup des valeurs absolues de x, pour lesquelles la série converge, sera appelé le rayon de convergence de la série entière. Par exemple le rayon de convergence de la ∞ xk série ∑ , donné en exemple ci-dessus, est +∞ car on montre qu’elle converge pour toutes k =0 k ! valeurs de x. Le but de ce complément de cours n’est pas de calculer des rayons de convergence mais de présenter des techniques de sommations de séries. Par conséquent nous serons très évasifs sur les rayons de convergence. Pour plus de renseignements sur les rayons de convergence voir les livres de cours traitant des séries entières. Nous pouvons aborder le calcul proprement dit de la somme des séries. http://www.prepa-hec.org/
  • 2. xk - SERIE DE TERME GENERAL : . k! Bien que connaissant déjà la somme de cette série, nous la choisissons pour illustrer une ∞ xk première technique de calcul. En effet posons f ( x) = ∑ et calculons f’(x) : k =0 k ! ∞ k .x k −1 ∞ x k −1 ∞ xk f '( x) == ∑ =∑ = ∑ = f ( x) . k =1 k k =1 k − 1 k =0 k Par conséquent, nous voyons que f(x) est solution de l’équation différentielle y’ = y. ∞ 0k 00 De plus nous constatons que f (0) = ∑ = = 1 donc y n’est pas nulle et on a : k =0 k ! 0! y' y ' = y ⇔ = 1 ⇔ ln y = x + k y comme pour x = 0 on a y = 1, on doit choisir k = 0 et donc ln(y) = x et par conséquent : y = ex . ∞ xk On trouve bien f ( x) = ∑ = ex k =0 k! Nous voyons que cette technique consiste à trouver une équation différentielle dont la série entière est solution. La résolution de cette équation différentielle nous donne donc la somme de la série entière. - SERIE DE TERME GENERAL : P(k ).x k , P étant un polynôme. ∞ Posons : f ( x) = ∑ x k . Nous savons que cette série, en tant que somme des termes d’une série k =0 1 géométrique, converge pour x < 1 et a pour somme . Si nous calculons les dérivées 1− x successives, nous obtenons : ∞ ∞ ∞ 1 f '( x) = ∑ k .x k −1 = ∑ k .x k −1 = ∑ ( k + 1) .x k = (1 − x ) 2 k =0 k =1 k =0 ∞ ∞ ∞ 2 f "( x) = ∑ ( k + 1) .k .x k −1 = ∑ ( k + 1) .k .x k −1 = ∑ ( k + 2 ) . ( k + 1) .x k = (1 − x ) 3 k =0 k =1 k =0 ∞ ∞ ∞ 3! f ( ) ( x) = ∑ ( k + 2 ) . ( k + 1) .k .x k −1 = ∑ ( k + 2 ) . ( k + 1) .k .x k −1 = ∑ ( k + 3)( k + 2 ) . ( k + 1) .x k = 3 (1 − x ) 4 k =0 k =1 k =0 M M f ( ) ( x) = ∑ n ∞ ( k + 3) ! x k = n! . (1 − x ) n +1 k =0 k! http://www.prepa-hec.org/
  • 3. Supposons que le polynôme p(x) soit de degrés n, nous remarquons que dans n ( X ) , la famille : {1, ( X + 1) , ( X + 1)( X + 2 ) ,..., ( X + 1)( X + 2 )( X + 3) ... ( X + n )} forme une base en tant que famille de n polynômes de degrés gradués. La technique que l’on utilise, dans ce cas, consiste à décomposer le polynôme p(k) en fonction des polynômes {1, ( k + 1) , ( k + 1)( k + 2 ) ,..., ( k + 1)( k + 2 )( k + 3) ... ( k + n )} de façon à pouvoir ∞ ∑ P(k ).x en fonction de f ( x), f '( x), f "( x),..., f ( ) ( x) dont la somme est connue. k n écrire k =0 Prenons un exemple. ∞ Soit à calculer : ∑ ( k 3 + 4k 2 + 8k + 1) x k . k =0 On a : k 3 + 4k 2 + 8k + 1 = (k + 3)(k + 2)(k + 1) − 2k 2 − 3k − 5 = (k + 3)(k + 2)(k + 1) − 2(k + 2)(k + 1) + 3k − 1 = (k + 3)(k + 2)(k + 1) − 2(k + 2)(k + 1) + 3(k + 1) − 4 × 1 Et par conséquent : ∞ ∞ ∑ (k k =0 3 + 4k 2 + 8k + 1) x k = ∑ [ (k + 3)(k + 2)(k + 1) − 2(k + 2)(k + 1) + 3(k + 1) − 4 × 1] x k k =0 ∞ ∞ ∞ ∞ = ∑ (k + 3)(k + 2)(k + 1) x k − 2∑ (k + 2)(k + 1) x k + 3∑ (k + 1) x k − 4∑ x k k =0 k =0 k =0 k =0 = f ( 3) ( x ) − 2 f "( x ) + 3 f ' ( x ) − 4 f ( x ) 3! 2! 1 1 = −2 +3 −4 (1 − x ) (1 − x ) (1 − x ) 4 3 2 (1 − x ) 6 − 4 (1 − x ) + 3 (1 − x ) − 4 (1 − x ) 2 3 = (1 − x ) 4 4 x3 − 9 x 2 + 10 x + 1 = (1 − x ) 4 Ceci n’étant vrai que pour x < 1. - SERIE DE TERME GENERAL : R (k ).x k , R étant une fraction rationnelle à pôles simples. Le rayon de convergence des séries de ce type est 1. Pour calculer la somme de cette série, nous commencerons par décomposer R(k) en éléments simples pour pouvoir séparer la série en plusieurs sommes pouvant chacune, à l’aide d’un changement de variable, se ramener au développement de ln(1+x) ou ln(1-x). Prenons un exemple. ∞ 4k 2 + 3k − 19 k Soit à calculer : ∑ 3 .x . k = 2 k + 4k + k − 6 2 On a alors : http://www.prepa-hec.org/
  • 4. 4k 2 + 3k − 19 k ∞ 4k 2 + 3k − 19 ∑ k 3 + 4k 2 + k − 6 k =2 .x = ∑ k = 2 ( k + 3 )( k + 2 )( k − 1) .x k ∞  2 3 1  k = ∑ + −  .x k =2  k + 3 k + 2 k −1  ∞ ∞ ∞ xk xk xk = 2∑ + 3∑ −∑ k =2 k + 3 k =2 k + 2 k =2 k − 1 En faisant des glissements d’indice de façon à avoir seulement k en dénominateur, on obtient : ∞ 4k 2 + 3k − 19 k ∞ x k −3 ∞ x k − 2 ∞ x k +1 ∑ k 3 + 4k 2 + k − 6 .x = 2∑ k + 3∑ k − ∑ k k =2 k =5 k =4 k =1 2 ∞ xk 3 ∞ xk ∞ xk = 3 .∑ + 2 .∑ − x.∑ x k =5 k x k = 4 k k =1 k Le développement de ln(1-x) étant : ∞ xk ln (1 − x ) = −∑ k =1 k Nous en déduisons : ∞ 4k 2 + 3k − 19 k 2  4 xk  3  3 xk  ∑ k 3 + 4k 2 + k − 6 .x = 3  − ln(1 − x) − ∑  + 2  − ln(1 − x) − ∑ x  k =1 k  x   + x.ln(1 − x) k =2 k =1 k  2 ln(1 − x) 2 1 2 x 3ln(1 − x) 3 3 =− − 2− − − − − − − x + x.ln(1 − x) x3 x x 3 2 x2 x 2 x − 3x − 2 4 9 x + 13 x + 24 x + 12 3 2 = 3 .ln (1 − x ) − x 6 x2 xk - SERIE DE TERME GENERAL : R(k ). , R étant une fraction rationnelle à pôles simples. k! Prenons un exemple pour voir comment calculer la somme de cette série. Soit à calculer la somme suivante : ( k + 3) ( k + 2 ) 2 ∞ k +3 xk ∞ xk ∑ ( k + 4 )( k + 1) k ! k =0 ( k + 4 )( k + 3)( k + 2 )( k + 1) k ! k =0 . =∑ . On a multiplié le numérateur et le dénominateur de la fraction par (k+3)(k+2) pour obtenir (k+4) ! en dénominateur. ( k + 3) ( k + 2 ) x k 2 ∞ k +3 xk ∞ ∑ ( k + 4 )( k + 1) k ! k =0 ( k + 4 )! k =0 . =∑ ∞ k 3 + 8k 2 + 21k + 18 k =∑ .x k =0 ( k + 4 )! Nous allons maintenant décomposer k3+8k2+21k+18 dans la base : {( k + 4 )( k + 3)( k + 2 ) , ( k + 4 )( k + 3) , ( k + 4 ) ,1} On a : http://www.prepa-hec.org/
  • 5. k 3 + 8k 2 + 21k + 18 = ( k + 4 )( k + 3)( k + 2 ) − k 2 − 5k − 6 = ( k + 4 )( k + 3)( k + 2 ) − ( k + 4 )( k + 3) + 2k + 6 = ( k + 4 )( k + 3)( k + 2 ) − ( k + 4 )( k + 3) + 2 ( k + 4 ) − 2 et par conséquent : ∞ k +3 xk ∞ k 3 + 8k 2 + 21k + 18 k ∑ ( k + 4 )( k + 1) k ! k =0 k =0 . =∑ ( k + 4 )! .x =∑ ∞ ( ( k + 4 )( k + 3)( k + 2 ) − ( k + 4 )( k + 3) + 2 ( k + 4 ) − 2 ) .x k k =0 ( k + 4)! =∑ ∞ ( k + 4 )( k + 3)( k + 2 ) x k − ∞ ( k + 4 )( k + 3) x k k =0 ( k + 4 )! ∑ ( k + 4)! k =0 + 2∑ ∞ ( k + 4) xk − 2 ∞ xk k =0 ( k + 4 ) ! ∑ ( k + 4 )! k =0 ∞ ∞ ∞ ∞ xk xk xk xk =∑ −∑ + 2∑ − 2∑ k = 0 ( k + 1) ! k =0 ( k + 2 )! k = 0 ( k + 3) ! k =0 ( k + 4 ) ! Faisons des glissements d’indice de façon à avoir k! aux dénominateurs. ∞ k +3 xk ∞ x k −1 ∞ x k − 2 ∞ x k −3 ∞ x k −4 ∑ ( k + 4 )( k + 1) k ! k =1 k ! k =2 k ! k =3 k ! k =4 k ! k =0 . =∑ −∑ + 2∑ − 2∑ 1 ∞ xk 1 ∞ xk 2 ∞ xk 2 ∞ xk = ∑ − 2 ∑ k ! + x3 ∑ k ! − x 4 ∑ k! x k =1 k ! x k =2 k =3 k =4 1  x 0 xk  1  x 1 xk  2  x 2 xk  2  x 3 xk  e − ∑  − 2 e − ∑  + 3 e − ∑  − 4 e − ∑  = x k =0 k !  x  k =0 k !  x  k =0 k !  x  k =0 k !  En développant, on obtient : ∞ k +3 x k e x 1 e x 1 1 2e x 2 2 1 2e x 2 2 1 1 ∑ ( k + 4 )( k + 1) k ! x x x x x x x x x x x x x 3x k =0 . = − − 2+ 2+ − 3 − 3− 2− − 4 + 4+ 3+ 2+ = (x 3 − x2 − 2x − 2) .e x + 2 2 − 4 x x 4 3x - SERIE DE TERME GENERAL : Crr+ k .x k . La sommation de cette série est importante car elle intervient dans le calcul de l’espérance mathématique et de la variance de variables aléatoires comme la loi de Pascal ou la loi binomiale négative. n Posons un ( r ) = ∑ Crr+ k .x k . k =0 http://www.prepa-hec.org/
  • 6. Si x ≥ 1 le terme général de la série ne tend pas vers 0 et par conséquent la série n’est pas convergente. On montre que le rayon de convergence de cette série est 1. On a alors : n n n n n un ( r − 1) − (1 − x ) un ( r ) = ∑ Crr−1+ k .x k − (1 − x ) ∑ Crr+ k .x k = ∑ Crr−11+ k .x k − ∑ Crr+ k .x k + ∑ Crr+ k .x k +1 −1 − k =0 k =0 k =0 k =0 k =0 = ∑ ( Crr−1+ k − Crr+ k ) .x k + ∑ Crr+ k .x k +1 = −∑ Crr−1+ k .x k + ∑ Crr+ k .x k +1 n n n n −1 k =0 k =0 k =0 k =0 n n +1 = −∑ Crr−1+ k .x k + ∑ Crr−1+ k .x k = Crr+ n .x n +1 k =1 k =1 Nous avons obtenu : un ( r − 1) − (1 − x ) un ( r ) = Crr+ n .x n +1 Calculons lim Crr+ n .x n +1 . x →n On a : Crr+ n = ( n + r )( n + r − 1)( n + r − 2 ) ... ( n + 1) r! nr Et donc quand n tend vers +∞ on a Crr+ n r! On déduit par conséquent : n r n +1 Crr+ n .x n +1 .x r! Et  ln ( n.)  + ln ( x )  ( ln n r . x n ) r ln ( n.) + n ln ( x ) n r   n ln ( x ) lim n .x = lim e = lim e = lim e = lim e = lim x n = 0 r n  n  n →∞ n →∞ n →∞ n →∞ n →∞ n →∞ On en déduit : n r n +1 x x lim Crr+ n .x n +1 = lim .x = lim n r .x n = × 0 = 0 n →∞ n →∞ r ! r! n →∞ r! Par conséquent si l’on fait tendre n vers l’infini dans l’expression : un ( r − 1) − (1 − x ) un ( r ) = Crr+ n .x n +1 On obtient : lim un ( r − 1) − lim (1 − x ) un ( r ) = 0 n →∞ n →∞ 1 Si on pose u ( r ) = lim un ( r ) , on obtient : u ( r ) = u ( r − 1) n →∞ 1− x On en déduit par récurrence : r  1  u (r) =   u (0)  1− x  n n 1 Comme u ( 0 ) = lim ∑ Ck0 .x k = lim ∑ x k = . n →∞ k =0 n →∞ k =0 1− x r r +1  1  1  1  1 u (r ) =   . =  = (1 − x ) r +1  1− x  1− x  1− x  http://www.prepa-hec.org/
  • 7. On peut donc conclure : ∞ 1 ∑C r r +k .x k = (1 − x ) r +1 k =0 http://www.prepa-hec.org/