Bilan thermique d’un bâtiment
•Connaissances fondamentales
•Les pertes thermiques par transmission.
•Les pertes thermiques...
Le bilan thermique d'un bâtiment.
Régime statique et régime dynamique.
En régime thermique permanent
la température en un point d'une paroi ou d'un local es...
Dans la réalité, tout bâtiment a un comportement
thermique dynamique principalement dû
aux variations climatiques extérieu...
Influence des conditions climatiques.
Température
- action directe perte par infiltration et ventilation
- action indirect...
Calcul des déperditions:
En général, les déperditions de base sont calculés
indépendamment du système et du régime de
chau...
Les pertes thermiques par ventilation.
L’air extérieur s’introduit dans le bâtiment
•par ventilation (effet volontaire)
•p...
Les pertes thermiques par ventilation.
Par contre, les infiltrations d'air dans un bâtiment sont
dues à des différences de...
Les pertes thermiques par ventilation.
Les déperditions thermiques par ventilation sont donc
proportionnelles :
•au volume...
Les gains solaires.
Le rayonnement solaire reçu par un bâtiment dépend
•du climat et de ses variations journalières et
sai...
L ’ensoleillement.
Influence directe
Les gains solaires.
Influence de l’orientation
L’ensoleillement.
Influence directe
Les gains solaires.
Capter par les vitrages.
Le facteur solaire FS représente le pourcentage d’énergie
solaire incidente, ...
Les gains solaires.
Capter par les vitrages.
Les valeurs indiquées ne sont représentatives que
d’un angle d’incidence donn...
84100
8
int.ext.
45100
5
int.ext.
46100
39
int.ext.
vitrage
clair
vitrage
absorbant
vitrage
réfléchissant
Facteur solaireF...
Les gains solaires.
Capter par les parois opaques.
Lorsque les rayons du soleil
frappent une paroi opaque, une
partie de l...
Les gains solaires.
Capter par les parois opaques.
Coefficient d'absorption solaire.
Une valeur approchée peut être déterm...
Coefficient d'absorption solaire de différents matériaux.
Les nombres indiqués expriment la fraction de rayonnement solair...
Les gains solaires.
Capter par les parois opaques.
Evolution de la
température sur la face
externe d’une paroi sud,
par ci...
Les gains internes.
La règlementation.
Pour le logement neuf, l'auteur de projet a le choix
entre le respect
•d'un niveau K (niveau d'isolatio...
Eléments de la superficie de déperdition
kmax
(W/m²K)
Fenêtres et autres parois translucides, portes 3.5
Murs et parois op...
Calcul du K >>uniquement pertes par transmission
Calcul du BE tient compte
•des pertes par transmission,
•des pertes par v...
Avant de continuer les calculs du BE il faut juger si le
lieu d'implantation du bâtiment permet de satisfaire à
cette exig...
Lorsque la hauteur moyenne de l'horizon du secteur " vu
utilement " par les fenêtres orientées SE - S - SW est
trop élevée...
Inclinaison par rapport à l'horizontale
Orientation
0 15 30 45 60 75 90
S 138,2 157,5 168,0 172,7 168,5 158,3 140,2
SSE - ...
Valeurs de Itmax (W/m²) en décembre
Inclinaison par rapport à l'horizontale
orientation
0 15 30 45 60 75 90
S 21,3 38,4 46...
Le facteur d'ombrage f1 dû à
la fenêtre et aux écrans liés à
la façade est déterminé en
fonction des rapports
surplomb X/h...
Le facteur f1 est calculé pour les mois de mars et de
décembre.
Calcul du facteur d ’ombrage f2.
Façade θmoy (°)
N
E
S
W
12
15
11
12
Calcul de f2
f2 pour les fenêtres
au rez-de-chaussée
ou au premier étage.
Fenêtres situées au
rez-de-chaussée
(droite 1)
F...
Calcul de f2
f2 pour les fenêtres
au rez-de-chaussée
ou au deuxième
étage.
Fenêtres situées au
rez-de-chaussée
(droite 1)
...
La valeur de η peut être déterminée à l'aide du
graphique ci-contre.
La courbe I3 est valable pour des maisons de
construc...
 Température moyenne
extérieure : ΘΘemem
 Température de
confort : ΘΘimim
 Température sans
chauffage (avec
apports sol...
L ’ensoleillement.
Influence directe
L ’ensoleillement.
Influence indirecte.
Le vent.
Le vent.
Influence directe.
Influence indirecte.
he = 8.1 + 3,6 v en W/m² K
Pour climat froid Pour climat chaud
Vitrage basse-émissivité.
Déperditions par les parois vitrées.
Différents moyens ont été mis en œuvre pour réduire la
transmission thermique au droi...
Ponts thermiques.
Bilan thermique d’un bâtiment
Bilan thermique d’un bâtiment
Prochain SlideShare
Chargement dans…5
×

Bilan thermique d’un bâtiment

3 961 vues

Publié le

Publié dans : Formation
1 commentaire
5 j’aime
Statistiques
Remarques
Aucun téléchargement
Vues
Nombre de vues
3 961
Sur SlideShare
0
Issues des intégrations
0
Intégrations
6
Actions
Partages
0
Téléchargements
320
Commentaires
1
J’aime
5
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Bilan thermique d’un bâtiment

  1. 1. Bilan thermique d’un bâtiment •Connaissances fondamentales •Les pertes thermiques par transmission. •Les pertes thermiques par ventilation. •Les pertes thermiques par rayonnement. •Les gains solaires. •Les gains internes. •La réglementation thermique.
  2. 2. Le bilan thermique d'un bâtiment.
  3. 3. Régime statique et régime dynamique. En régime thermique permanent la température en un point d'une paroi ou d'un local est indépendante du temps, et donc indépendante •des variations climatiques •des variations des caractéristiques de l'ambiance intérieure. En réalité le régime thermique est dynamique dû •aux variations climatiques •à l’évolution des températures intérieures
  4. 4. Dans la réalité, tout bâtiment a un comportement thermique dynamique principalement dû aux variations climatiques extérieures •température •rayonnement solaire •vent aux régimes d’occupations intérieures •températures de consigne •comportement des occupants (ventilation, apports internes,….) •installation de chauffage et de régulation
  5. 5. Influence des conditions climatiques. Température - action directe perte par infiltration et ventilation - action indirecte évolution de la temp. dans les parois Rayonnement solaire - action directe captage par les fenêtres puis stockage dans les murs et planchers - action indirecte absorption par les parois opaques Vent - action directe taux d ’infiltration et de ventilation - action indirecte le coefficient de transmission de surface est fonction de la vitesse du vent influence sur la temp. dans les parois
  6. 6. Calcul des déperditions: En général, les déperditions de base sont calculés indépendamment du système et du régime de chauffage. Les déperditions par transmission à travers une paroi sont données par la formule suivante: Dt = kc A ( Ti –Te) A: surface de la paroi: m2 Kc: Coefficient W/m2°C Te: Température extérieure: ° C Ti: Température résultante sèche °C Dans le cas des sols, Dt est proportionnelle au périmètre P. Dt= Kc P ( Ti-Te)
  7. 7. Les pertes thermiques par ventilation. L’air extérieur s’introduit dans le bâtiment •par ventilation (effet volontaire) •par infiltration (effet involontaire). La ventilation assure le renouvellement sanitaire (apport d’air frais, évacuation des odeurs, etc.) nécessaire à la bonne santé de l'occupant. Elle peut être assurée •soit naturellement via des orifices d'amenée d'air frais et de rejet d'air vicié, •soit mécaniquement, par des bouches de pulsion et d'extraction.
  8. 8. Les pertes thermiques par ventilation. Par contre, les infiltrations d'air dans un bâtiment sont dues à des différences de pression engendrées •soit par le vent, •soit par l'écart entre les températures intérieure et extérieure Elles sont dues aux défauts d'étanchéité de l'enveloppe.
  9. 9. Les pertes thermiques par ventilation. Les déperditions thermiques par ventilation sont donc proportionnelles : •au volume d'air réchauffé ou rafraîchi, •au taux de renouvellement d'air n (nombre de fois que le volume d'air est renouvelé par de l'air frais par heure, mesuré en h-1), et •à la chaleur volumique de l'air (chaleur nécessaire pour réchauffer 1 m³ d'air de 1 Kelvin, soit 0,34 Wh/m³.K). Qv = 0.34 × n × V × (Tint - Text).
  10. 10. Les gains solaires. Le rayonnement solaire reçu par un bâtiment dépend •du climat et de ses variations journalières et saisonnières. •de l'orientation du bâtiment •de la nature de ses surfaces et de ses matériaux •de la topographie du lieu •de l'ombrage, etc Le soleil peut contribuer au chauffage des bâtiments en hiver, •par effet de serre au droit des parois vitrées •par réchauffement des parois opaques
  11. 11. L ’ensoleillement. Influence directe
  12. 12. Les gains solaires. Influence de l’orientation
  13. 13. L’ensoleillement. Influence directe
  14. 14. Les gains solaires. Capter par les vitrages. Le facteur solaire FS représente le pourcentage d’énergie solaire incidente, transmis au travers d’une paroi vitrée à l’intérieur d’un local. Les gains solaires au travers d'un élément transparent sont fonction de l'angle d'incidence des rayons du soleil avec le vitrage et donc : •de la latitude et la saison (pour la position du soleil) ; •de l'orientation et l'inclinaison de la paroi
  15. 15. Les gains solaires. Capter par les vitrages. Les valeurs indiquées ne sont représentatives que d’un angle d’incidence donné.
  16. 16. 84100 8 int.ext. 45100 5 int.ext. 46100 39 int.ext. vitrage clair vitrage absorbant vitrage réfléchissant Facteur solaireFacteur solaire 6 2 1337 312 494958588686
  17. 17. Les gains solaires. Capter par les parois opaques. Lorsque les rayons du soleil frappent une paroi opaque, une partie de l'énergie est absorbée tandis que le reste est réfléchi. Les gains solaires au droit de l'élément opaque sont fonction • de l'angle d'incidence des rayons du soleil (orientation et inclinaison de la paroi), •de la couleur et de l'aspect de la surface du matériau utilisé.
  18. 18. Les gains solaires. Capter par les parois opaques. Coefficient d'absorption solaire. Une valeur approchée peut être déterminée en fonction de la couleur (surfaces lisses, unies). Blanc 0,25 à 0,40 Gris au gris foncé 0,40 à 0,50 Vert, rouge et brun 0,50 à 0,70 Brun au bleu foncé 0,70 à 0,80 Bleu foncé au noir 0,80 à 0,90
  19. 19. Coefficient d'absorption solaire de différents matériaux. Les nombres indiqués expriment la fraction de rayonnement solaire incident absorbé. Ardoise 0,89 Béton propre à moitié propre sale 0,55 0,70 0,80 Bois clair (pin) foncé (traité) 0,60 0,85 Briques vernissée, blanche 0,26 Calcaire clair sombre 0,35 0,50 Grès beige gris clair rouge 0,54 0,62 0,73 Marbre blanc sombre 0,44 0,66 Granit rougeâtre 0,55 Métaux acier émaillé, blanc aluminium poli cuivre, poli cuivre, terni 0,45 0,15 0,18 0,64 Plâtre 0,07
  20. 20. Les gains solaires. Capter par les parois opaques. Evolution de la température sur la face externe d’une paroi sud, par ciel serein, le 15 juin, en Belgique, pour des coefficients d'absorption solaire suivants : •0,7 rouge et brun •0,45 gris •0,2 blanc
  21. 21. Les gains internes.
  22. 22. La règlementation. Pour le logement neuf, l'auteur de projet a le choix entre le respect •d'un niveau K (niveau d'isolation thermique globale) •ou d'une valeur Bemax (besoins nets en énergie pour le chauffage du bâtiment). •dans tous les cas, des valeurs kmax des parois à ne pas dépasser. Bâtiment Construction neuve Transformation avec changement d’affectation Transformation sans changement d’affectation Logement K55 ou Be 450 valeurs k max K65 Valeurs k max - Valeurs k max Bureaux et écoles K65 Valeurs k max K70 Valeurs k max - Valeurs k max
  23. 23. Eléments de la superficie de déperdition kmax (W/m²K) Fenêtres et autres parois translucides, portes 3.5 Murs et parois opaques verticales : - entre le volume protégé (VP) et l'air extérieur ou entre le volume protégé et un local non chauffé non à l'abri du gel - entre le volume protégé et un local non chauffé à l'abri du gel - entre le volume protégé et le sol 0,6 0,9 0,9 Toiture entre le volume protégé et l'ambiance extérieure ou ensemble de plafond + grenier + toiture 0,4 Plancher : - entre le volume protégé et l'air extérieur ou entre le volume protégé et un local non chauffé non à l'abri du gel - entre le volume protégé et un local non chauffé à l'abri du gel - entre le volume protégé et le sol 0,6 0,9 1,2 Paroi mitoyenne : entre deux volumes protégés ou entre appartements 1 Valeurs des coefficients kmax
  24. 24. Calcul du K >>uniquement pertes par transmission Calcul du BE tient compte •des pertes par transmission, •des pertes par ventilation, •des apports internes (occupation, éclairage, appareils...) •des gains solaires, •de l'inertie du bâtiment. Lorsque le résultat du calcul indique que le niveau K obtenu est supérieur à K55 •améliorer l ’isolation •faire le calcul du BE si le bâtiment peut profiter de gains solaires importants.
  25. 25. Avant de continuer les calculs du BE il faut juger si le lieu d'implantation du bâtiment permet de satisfaire à cette exigence. La ligne d'horizon est relevée dans un secteur d'au moins 45° de part et d'autre de la normale tracée sur la façade projetée.
  26. 26. Lorsque la hauteur moyenne de l'horizon du secteur " vu utilement " par les fenêtres orientées SE - S - SW est trop élevée (par exemple angle>35° ) il n'est généralement pas utile d'essayer de satisfaire à l'exigence relative aux besoins nets en énergie.
  27. 27. Inclinaison par rapport à l'horizontale Orientation 0 15 30 45 60 75 90 S 138,2 157,5 168,0 172,7 168,5 158,3 140,2 SSE - SSW 138,2 154,3 164,8 168,0 163,8 151,9 134,0 SE - SW 138,2 150,4 157,7 157,7 151,1 139,3 125,0 ESE - WSW 138,2 143,2 144,2 141,0 133,7 121,9 107,1 E - W 138,2 136,1 132,4 125,3 117,1 105,3 92,8 ENE - WNW 138,2 127,4 117,4 107,9 97,3 87,1 75,4 NE - NW 138,2 121,1 105,5 92,1 82,3 72,8 58,3 NNE - NNW 138,2 116,3 92,9 80,1 71,8 63,6 52,0 N 138,2 111,8 80,7 68,1 61,3 54,8 46,7 Valeurs de Itmax (W/m²) en mars
  28. 28. Valeurs de Itmax (W/m²) en décembre Inclinaison par rapport à l'horizontale orientation 0 15 30 45 60 75 90 S 21,3 38,4 46,2 57,1 60,0 60,8 61,4 SSE - SSW 21,3 37,3 44,8 55,0 59,3 58,1 57,2 SE - SW 21,3 32,8 41,0 49,2 49,7 49,3 46,1 ESE - WSW 21,3 26,8 30,7 34,8 35,1 35,3 33,0 E - W 21,3 21,3 21,1 21,3 21,4 21,9 20,6 ENE - WNW 21,3 17,8 16,2 15,8 15,4 14,9 14,0 NE - NW 21,3 14,9 12,1 10,9 10,1 9,2 8,0 NNE - NNW 21,3 13,4 11,7 10,6 9,8 8,4 7,4 N 21,3 12,3 11,4 10,5 9,7 8,2 6,9
  29. 29. Le facteur d'ombrage f1 dû à la fenêtre et aux écrans liés à la façade est déterminé en fonction des rapports surplomb X/hauteur de la fenêtre Z et séparation Y/hauteur de la fenêtre Z. Calcul du facteur d ’ombrage f1.
  30. 30. Le facteur f1 est calculé pour les mois de mars et de décembre.
  31. 31. Calcul du facteur d ’ombrage f2. Façade θmoy (°) N E S W 12 15 11 12
  32. 32. Calcul de f2 f2 pour les fenêtres au rez-de-chaussée ou au premier étage. Fenêtres situées au rez-de-chaussée (droite 1) Fenêtres situées au premier étage (droites 1 à 5) droite 1: a>200m droite 2: a=200m droite 3: a=100m droite 4: a=50m droite 5: a=20m
  33. 33. Calcul de f2 f2 pour les fenêtres au rez-de-chaussée ou au deuxième étage. Fenêtres situées au rez-de-chaussée (droite 1) Fenêtres situées au deuxième étage (droites 1 à 5) droite 1: a>200m droite 2: a=200m droite 3: a=100m droite 4: a=50m droite 5: a=20m
  34. 34. La valeur de η peut être déterminée à l'aide du graphique ci-contre. La courbe I3 est valable pour des maisons de construction traditionnelle (classe d'inertie I3) La courbe I5 est valable pour des immeubles d'appartements (classe d'inertie I5).
  35. 35.  Température moyenne extérieure : ΘΘemem  Température de confort : ΘΘimim  Température sans chauffage (avec apports solaires) : ΘΘscsc  Effet des gains internes : Température de non-chauffage ΘΘncnc J A S O N D J F M A M J 0 5 10 15 20 °C ΘΘemem ΘΘimim ΘΘscsc ΘΘncnc 30 jours Degrés- jours éq. en nov. Saison de chauffe 10,5 °C Degrés - jours équivalentsDegrés - jours équivalents en novembre :en novembre : 10,5 °C x 30 j = 315 dj10,5 °C x 30 j = 315 dj
  36. 36. L ’ensoleillement. Influence directe
  37. 37. L ’ensoleillement. Influence indirecte.
  38. 38. Le vent.
  39. 39. Le vent. Influence directe. Influence indirecte. he = 8.1 + 3,6 v en W/m² K
  40. 40. Pour climat froid Pour climat chaud Vitrage basse-émissivité.
  41. 41. Déperditions par les parois vitrées. Différents moyens ont été mis en œuvre pour réduire la transmission thermique au droit des vitrages. •Intercaler entre deux vitrages un excellent isolant, transparent, disponible et gratuit : l'air immobile sec •Agir sur les caractéristiques de surface du verre. Le vitrage à basse émissivité est recouvert d'une mince couche d'oxyde métallique parfaitement transparent, qui permet de réduire considérablement l'émission des infrarouges vers l'extérieur. •L’utilisation de nombreux matériaux expérimentaux •La présence de volet durant la nuit.
  42. 42. Ponts thermiques.

×