SlideShare une entreprise Scribd logo
1  sur  136
Télécharger pour lire hors ligne
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Modelling of the non-linear behaviour of
composite beams
taking into account the time effects
Quang-Huy NGUYEN
INSA de Rennes - Structural Engineering Research Group
University of Wollongong - Faculty of Engineering
13 July 2009
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
3 Time-Dependent Behaviour
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
3 Time-Dependent Behaviour
4 Nonlinear Behaviour of Materials
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
3 Time-Dependent Behaviour
4 Nonlinear Behaviour of Materials
5 Finite Element Formulations
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
3 Time-Dependent Behaviour
4 Nonlinear Behaviour of Materials
5 Finite Element Formulations
6 Time-Dependent Behaviour In the Plastic Range
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
3 Time-Dependent Behaviour
4 Nonlinear Behaviour of Materials
5 Finite Element Formulations
6 Time-Dependent Behaviour In the Plastic Range
7 Conclusions and Futur works
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
2 Elastic analysis of composite beams
3 Time-Dependent Behaviour
4 Nonlinear Behaviour of Materials
5 Finite Element Formulations
6 Time-Dependent Behaviour In the Plastic Range
7 Conclusions and Futur works
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
1 Introduction
General
Background: Analysis of composite beams
Research questions
Objectives
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
General
Introduction to steel-concrete composite beam
Steel-concrete composite structure are widely used in the construction
industry
Economic
Reduced live load deflections
Reduced weight
Fast erection process
Increased span lengths are possible
Stiffer floors
Composite beam system (Ricker 1989)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
General
Introduction to steel-concrete composite beam
Steel-concrete composite structure are widely used in the construction
industry
Economic
Reduced live load deflections
Reduced weight
Fast erection process
Increased span lengths are possible
Stiffer floors
Composite beam system (Ricker 1989)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
General
Introduction to steel-concrete composite beam
Composite beams consist of steel beam and concrete slab joint
together as a unit by shear studs
steel beam
shear stud
concrete slab
profile sheeting
reinforcement
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Bond models
A
A
B
B
section A-A section B-B
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Bond models
A
A
B
B
section A-A section B-B
Discrete bond model
Aribert (1982, France)
Schanzenback (1988, Germany)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Bond models
A
A
B
B
section A-A section B-B
Discrete bond model
Aribert (1982, France)
Schanzenback (1988, Germany)
Distributed bond model
Newmark (1951, US)
Adekola (1968, Nigeria)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Analysis Type
Elastic Analysis Inelastic Analysis
Newmark, 1951
Adekola, 1968
N
N
tM
x
scd
X
Y
2
2
12
d ( )
( ) ( )
d
t
N x
N x C M x
x
μ− = ⇒ Analytical solution
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Displacement-based Force-based Mixed
1v
2v
2u
1u
θ1
θ2
x
( )v x
( )u x
X
Y
θ
θ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎡ ⎤ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
1
1
1
2
2
2
( )
( )
( )
u
v
u x
x uv x
v
a
Assumed displacement field
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Displacement-based Force-based Mixed
Arizumi et al., 1981
Schanzenbach, 1988
Daniels, 1989
Boerave, 1990
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Displacement-based Force-based Mixed
⎡ ⎤
⎡ ⎤ ⎢ ⎥
=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥⎣ ⎦
1
2
2
( )
( )
( )
M
N x
x M
M x
N
b
X
Y
1M
1M
2N
( )N x
( )M x
x
Assumed force field
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Displacement-based Force-based Mixed
Arizumi et al., 1981
Schanzenbach, 1988
Daniels, 1989
Boerave, 1990
Salari et al., 1998
Vieira, 2000
Alemdar, 2001
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Displacement-based Force-based Mixed
θ
θ
⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥
= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
⎢ ⎥⎣ ⎦
1
1
1
1
2
2
22
2
( ) ( )
( ) & ( )
( ) ( )
u
v
M
u x N x
x x Muv x M x
Nv
a b
X
Y
1M
1M
2N
( )N x
( )M x
x
1v
2v
2u
1u
θ1
θ2
x
( )v x
( )u x
Both fields are assumed
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Displacement-based Force-based Mixed
Arizumi et al., 1981
Schanzenbach, 1988
Daniels, 1989
Boerave, 1990
Salari et al., 1998
Vieira, 2000
Alemdar, 2001
Salari et al., 1998
Ayoub, 1999
Alemdar, 2001
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Concentrated Plasticity Distributed Plasticity
-endi -endj
Inelasticity is lumped at member ends
elastic member
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Concentrated Plasticity Distributed Plasticity
The element behavior is
monitored along its length
-endi -endj
Fiber element model
Fiber section
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Concentrated Plasticity Distributed Plasticity
Fiber section model
εc
σc
σs
εs
Concrete fiber
Steel fiber
σ σ
σ σ
=
=
=
=
∑∫
∑∫
1
1
d
d
n
i i
iA
n
y i i i
iA
N A A
M z A A z
Fiber discretization
of cross-section
y
z
Arizumi et al., 1981
Fiber element model
Cross-section behavior
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Inelastic Analysis
Concentrated Plasticity Distributed Plasticity
Fiber element model
Cross-section behavior
Fiber section model
Macro model
El-Tawil and Deierlein, 2001
Bounding Surface
Axial Force
Moment
Loading Surface
Compression Region
Tension Region
Stress-resultant Plasticity Models
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Analysis Type
Elastic Analysis
Time effects
Inelastic Analysis
Time Effects
Gilbert, 1989
Boerave, 1991
Amadio and Fragiacomo, 1993
Dezi and Tarantino, 1993
...
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Background: Analysis of composite beams
Analysis Type
Elastic Analysis
Time effects
Inelastic Analysis
Time Effects
Gilbert, 1989
Boerave, 1991
Amadio and Fragiacomo, 1993
Dezi and Tarantino, 1993
...
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Research questions
1 Discrete bond model or distributed bond model?
2 Displacement-based, Force-based or Mixed formulation?
3 What is the influence of creep and shrinkage on the
behaviour of composite beams?
4 How to take into account the time effects in inelastic
analysis?
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Objectives
The main objectives are:
1 Discrete versus distributed bond modelling
2 To study the time effects in composite beams
(viscoelastic model)
3 To develop three non-linear F.E. formulations and to
study their performances for both bond models
4 To combine time effects and cracking of concrete
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
2 Elastic analysis of composite beams
Basic assumptions
Governing Equations of Composite Steel-Concrete Beams
Exact Stiffness Matrix - Elastic behaviour
Comparison of the two bond models
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Basic assumptions
1 Euler-Bernoulli’s assumption for both the slab and the profile
2 Slip can occur at the slab/profile interface but no uplift
3 Deformations and displacements remain small
4 Local buckling and torsional stress are not accounted for
5 Fiber discretization to describe section behaviour
6 Spring model to describe the force transfer mechanism through
bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Basic assumptions
1 Euler-Bernoulli’s assumption for both the slab and the profile
2 Slip can occur at the slab/profile interface but no uplift
3 Deformations and displacements remain small
4 Local buckling and torsional stress are not accounted for
5 Fiber discretization to describe section behaviour
6 Spring model to describe the force transfer mechanism through
bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Basic assumptions
1 Euler-Bernoulli’s assumption for both the slab and the profile
2 Slip can occur at the slab/profile interface but no uplift
3 Deformations and displacements remain small
4 Local buckling and torsional stress are not accounted for
5 Fiber discretization to describe section behaviour
6 Spring model to describe the force transfer mechanism through
bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Basic assumptions
1 Euler-Bernoulli’s assumption for both the slab and the profile
2 Slip can occur at the slab/profile interface but no uplift
3 Deformations and displacements remain small
4 Local buckling and torsional stress are not accounted for
5 Fiber discretization to describe section behaviour
6 Spring model to describe the force transfer mechanism through
bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Basic assumptions
1 Euler-Bernoulli’s assumption for both the slab and the profile
2 Slip can occur at the slab/profile interface but no uplift
3 Deformations and displacements remain small
4 Local buckling and torsional stress are not accounted for
5 Fiber discretization to describe section behaviour
6 Spring model to describe the force transfer mechanism through
bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Basic assumptions
1 Euler-Bernoulli’s assumption for both the slab and the profile
2 Slip can occur at the slab/profile interface but no uplift
3 Deformations and displacements remain small
4 Local buckling and torsional stress are not accounted for
5 Fiber discretization to describe section behaviour
6 Spring model to describe the force transfer mechanism through
bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing Equations of Composite Steel-Concrete Beams
1 Equilibrium
Distributed bond
Discrete bond
2 Compatibility
3 Constitutive relations
2
2
d ( )
( ) 0
d
d ( )
( ) 0
d
d ( ) d ( )
0
dd
c
sc
s
sc
sc
z
N x
D x
x
N x
D x
x
M x D x
H p
xx
+ =
− =
+ + =
=sc sc eD∂ − ∂ −D P 0
Matrix form
zp
cH
cM dc cM M+
dc cN N+
dc cT T+
cN
cT
scV
scD
dx
ds sM M+
ds sN N+
ds sT T+
sM
sN
sT
scD
sH
x
z
y
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing Equations of Composite Steel-Concrete Beams
1 Equilibrium
Distributed bond
Discrete bond
2 Compatibility
3 Constitutive relations
unconnected element
cN +
cM +
sN +
sM +
sN −
sM −
cN −
cM −
cN
cM
sN
sM
stQ
stQ
0xΔ =
connector element
=e∂ −D P 0
Unconnected beam segment Single connector
1
1
s
c st
N
N Q
M H
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−
⎣ ⎦ ⎣ ⎦
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing Equations of Composite Steel-Concrete Beams
1 Equilibrium
Distributed bond
Discrete bond
2 Compatibility
3 Constitutive relations
H
scd
su
cu θ
θ
v
x
z
y
2
2
d ( )
( )
d
d ( )
( )
d
d
d ( )
( ) (
( )
) ( )
d
( )
d
c
c
s
sc s c
s
u x
x
x
u x
x
x
v x
x
v x
d x u x u x H
x
x
ε
ε
κ
=
=
=
+
−
= −
Matrix form
T
sc scd = ∂
= ∂e d
d
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing Equations of Composite Steel-Concrete Beams
1 Equilibrium
Distributed bond
Discrete bond
2 Compatibility
3 Constitutive relations
[ ]nonlinear( ) ( )x f x=D e
( ) ( )x x=D k e
Section constitutive law
Section stiffness matrix
[ ]nonlinear( ) ( )sc scD x f d x=
( ) ( )sc sc scD x k d x=
Bond constitutive law
linear elastic
behaviour
Bond stiffness
Fiber discretization
of cross-section
y
z
linear elastic
behaviour
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Exact Stiffness Matrix - Elastic behaviour
Distributed bond
Equilibrium in term of the displacements
5 3
2
15 3
3 4 2
2 33 4 2
2
4 2
d d
d d
d d d
d d d
d d
dd
s s
s s
s
c s
u u
x x
v u u
x x x
u v
u u H
xx
μ ζ
ζ ζ
ζ
⎧
− =⎪
⎪
⎪
= +⎨
⎪
⎪
= + +⎪
⎩
Analytical solution
compatibility relations
constitutive relations
Exact displacement fields
( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )
)
) (
(s s
c c
s
c
v v
u x Z x
u x x Z x
x
v x x Z x
x x Z xθ θθ
= +
= +
= +
= +
X C
X C
X C
X C
Exact force fields
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
s s
c c
s N N
c N N
M M
T T
N x x Z x
N x x Z x
M x x Z x
T x x Z x
= +
= +
= +
= +
X C
X C
X C
X C ( ) ( ) 2
sinh cos( h 1 0 0) 0s x x xx xμ μ⎡ ⎤=
⎣ ⎦
X
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Exact Stiffness Matrix - Elastic behaviour
Distributed bond
0= +eK q Q Q
1 1,Q q
2 2,Q q
3 3,Q q
4 4,Q q
5 5,Q q
6 6,Q q
7 7,Q q
8 8,Q q
L
1 8( 0) ... ( )
z
c
p
Q N x Q M x L= − = = =
↔ = +Q YC Q
Static boundary conditions
( )
1 8
1
( 0) ... ( )
z
c
p
q u x q x Lθ
−
= = = =
→ = −C X q q
Kinematic boundary conditions
Exact siffness matrix
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Exact Stiffness Matrix - Elastic behaviour
Discrete bond
Composite beam element
with discrete bond
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
θ
( )j
cu
( )i
v
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
v
( )j
θ
( )j
su
( )j
θ
( )j
v
( )j
θ
+= +
( )i
v
( )i
cu
( )i
su
Connector
element
Unconnected
beam element
Connector
element
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Exact Stiffness Matrix - Elastic behaviour
Discrete bond
Composite beam element
with discrete bond
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
θ
( )j
cu
( )i
v
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
v
( )j
θ
( )j
su
( )j
θ
( )j
v
( )j
θ
+= +
( )i
v
( )i
cu
( )i
su
Connector
element
Unconnected
beam element
Connector
element
nc
eK
Exact sitffness
matrix
Analytical
solution
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Exact Stiffness Matrix - Elastic behaviour
Discrete bond
Composite beam element
with discrete bond
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
θ
( )j
cu
( )i
v
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
v
( )j
θ
( )j
su
( )j
θ
( )j
v
( )j
θ
+= +
( )i
v
( )i
cu
( )i
su
Connector
element
Unconnected
beam element
Connector
element
nc
eK
Exact sitffness
matrix
Analytical
solution
st
iK
Exact sitffness
matrix
Analytical
solution
st
jK
Exact sitffness
matrix
Analytical
solution
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Exact Stiffness Matrix - Elastic behaviour
Discrete bond
Composite beam element
with discrete bond
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
θ
( )j
cu
( )i
v
( )i
cu
( )i
su
( )i
θ
( )j
cu
( )j
su
( )j
v
( )j
θ
( )j
su
( )j
θ
( )j
v
( )j
θ
+= +
( )i
v
( )i
cu
( )i
su
Connector
element
Unconnected
beam element
Connector
element
nc
eK
Exact sitffness
matrix
Analytical
solution
st
iK
Exact sitffness
matrix
Analytical
solution
st
jK
Exact sitffness
matrix
Analytical
solution
Exact sitffness
matrix
eK
assembly
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
20kN/m
6m 12m
40kN/m
12mmφ
800mm
100mm
IPE 200
200mm
80mm
Nelson 75-16
34GPa
210GPa
300000kN/m
1m
c
s
st
E
E
k
s
=
=
=
=
:stiffness of a single row of shears studs
:connector spacing
:equivalent distributed bond stiffness
st
sc
k
s
k
300MPast
sc
k
k
s
= =
Discrete bond model: using 18 elements
Distributed bond model: using 2 elements
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
0 2 4 6 8 10 12 14 16 18
-20
0
20
40
60
80
100
120
140
160
180
200
Distance from left support [m]
Deflection[mm]
Discrete bond model
Distributed bond model
176 mm
180 mm
20kN/m40kN/m
Deflection distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
0 2 4 6 8 10 12 14 16 18
-1.5
-1
-0.5
0
0.5
1
1.5
2
Distance from left support [m]
Slip[mm]
Discrete bond model
Distributed bond model
20kN/m40kN/m
0.7−
1.1−
Slip distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
0 2 4 6 8 10 12 14 16 18
-0.03
-0.02
-0.01
0
0.01
0.02
Distance from left support [m]
Curvature[1/m]
Discrete bond model
Distributed bond model
20kN/m40kN/m
Curvature distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
0 2 4 6 8 10 12 14 16 18
-1000
-800
-600
-400
-200
0
200
400
600
800
1000
Distance from left support [m]
Axialforceintheconcreteslab[kN]
Discrete bond model
Distributed bond model
20kN/m40kN/m
Axial force distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
Conclusions
Discrete bond model: Discontinuities of axial force and curvature
Distributed bond model: all fields are continuous
Two distributed bond elements gives nearly identical results as
eighteen discrete bond elements
The discrete bond model represents the true connection and it is
simple to use but it requires a large number of elements
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
3 Time-Dependent Behaviour
Time Effects in Concrete
Time-discretized analytical solution for composite beams
Applications
Conclusions
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time Effects in Concrete
1 Strain in concrete grow in
time
2 Shrinkage
3 Creep
4 Aging material
5 Play an important role in
serviceability
Curves of shrinkage, creep
and recovery after unloading
0t (start of drying)
loading
2t unloading1t
εsh = DRYING SHRINKAGE
ELASTIC RECOVERY
CREEP RECOVERY
σε ε ε= − sh
εsh
σ
εv = CREEP
εe= INITIAL ELASTIC STRAIN
t
t
t
εsh(t)
σε ( )t
ε( )t
Recovery
Load - free
Companion
Specimen
Loaded
(Creep)
Specimen
Specimen
Unloaded
σ
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Linear viscoelastic model for concrete
Linear creep assumption: εc(t) = σcJ(t, t1)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Linear viscoelastic model for concrete
Linear creep assumption: εc(t) = σcJ(t, t1)
Principle of superposition in time (Boltzmann, 1874)
cε
1t
2t
2t
1σ
2σ
1 2σ σ+
2( )tε
1( )tε
cσ cε
cε
1t
cσ
cσ
1t
2t
2t1t
2( )tε
1( )tε
t
t
t
t
t
t
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Linear viscoelastic model for concrete
Linear creep assumption: εc(t) = σcJ(t, t1)
Principle of superposition in time (Boltzmann, 1874)
cε
1t
2t
2t
1σ
2σ
1 2σ σ+
2( )tε
1( )tε
cσ cε
cε
1t
cσ
cσ
1t
2t
2t1t
2( )tε
1( )tε
t
t
t
t
t
t
Integral-type relation
εc(t) = σc(t1)J(t, t1) +
t
t1
J(t, τ)
dσc(τ)
dτ
dτ + εsh(t)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time discrete approach
General method (step-by-step)
1
,
1
( ) ( )( ) ( ) ( )
n
c n sh n n i c i
i
c n c nE t t tt t εε σσ
−
=
≅ − + Ψ⎡ ⎤⎣ ⎦ ∑
2 1
1
,
1
1 1
1
( , ) ( , )
if i 1
( , ) ( , )
2
( )
( , ) ( , )
( , ) ( , )
if i 1
( , ) (
d
,
an
)
n n
n n n n
c n n i
n n n n
n i k i
n n n n
J t t J t t
J t t J t t
E t
J t t J t t
J t t J t t
J t t J t t
−
−
+ −
−
⎧ −
⎪ =
+⎪
⎪
= Ψ = ⎨
+ ⎪
−⎪ >
⎪ +⎩
[ ][ ]
1
1
1 1
1
d ( ) 1
( , ) d ( , ) ( , ) ( ) ( )
d 2
nt n
n n i n i i i
it
J t J t t J t t t t
σ τ
τ τ σ σ
τ
−
+ +
=
≅ + −∑∫
Trapezoidal rule
Time-discrete constitutive relation
where
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time discrete approach
Algebraic method (one step)
[ ]
1
1 1
d ( )
( , ) d ( ) ( )
d
( , ) with
nt
n n n
t
nJ t t tJt t tτ
σ τ
τ τ σ σ τ
τ
≅ − ≤ ≤∫
Effective modulus (EM) method (McMilan, 1916)
1
1
1
1 ( , )
(( , )) ,
( )
n
n
n
c
J
t t
J t t
E
t
t
ϕ
τ
+
= =
Time-discrete constitutive relation
1( ) ( ))( ) ( ( )c nc n c n sh n ct tE t t tσ ε ε σ≅ − + Ψ⎡ ⎤⎣ ⎦
[ ]1( , )
1
( , ) ( , )
2
n n nn J t t JJ t tt τ = +
Mean stress (MS) method (Hansen, 1964)
Age adjusted effective modulus (AAEM) method (Bažant, 1972)
1 1
1
1 ( , ) ( , )
( , )
( )
n
c
n
n
J
t t t t
E t
t
χ ϕ
τ
+
=
creep coefficient
aging coefficient
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time discrete approach
Rate-type (internal variables) method (Bažant, 1971)
0 1
1 1
( , ) 1 exp
( )
m
i ii
t
J t
E D
τ
τ
τ τ=
⎡ ⎤⎛ ⎞−
≅ + −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑
The creep function is approximated by the Dirichlet series
0 1 0
( ) 1
( ) ( ) with ( ) 1 exp
( )
tm
i i
i ii
t t
t t t d
E D
σ τ
ε ε ε τ
τ τ=
⎡ ⎤⎛ ⎞−
= + = −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦
∑ ∫
The integral-type relation becomes
Time-discrete constitutive relation
( )shE εσ ε ε′Δ ′− Δ − ΔΔ=
0E
( ) ( ) ( )i i i iE t D t D tτ= −
( ) ( )i i it D tη τ= ( )m tη
( )mE t
1( )tη
1( )E t
( )tσ( )tσ
Aging Kelvin chain
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time-discretized analytical solution for composite beams
1 For one-step method
Faella et al. 2002
Ranzi and Bradford 2005
2 For rate-type (internal variables) method
Jurkiewiez et al. 2005
3 For general method
The solution is presented in the following
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time-discretized analytical solution for composite beams
1 For one-step method
Faella et al. 2002
Ranzi and Bradford 2005
2 For rate-type (internal variables) method
Jurkiewiez et al. 2005
3 For general method
The solution is presented in the following
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time-discretized analytical solution for composite beams
Time-discrete force-deformation relations
N(n)
s = (EA)s ε(n)
s
N(n)
c = (EA)(n)
c ε(n)
c − (EA)(n)
co ε
(n)
sh + (EB)(n)
c κ(n)
+
n−1
i=1
Ψn,i N(i)
co
M(n)
= (EB)(n)
c ε(n)
c − (EB)(n)
co ε
(n)
sh + (EI)(n)
κ(n)
+
n−1
i=1
Ψn,i M(i)
co
where
N(i)
co = α
(i)
1 x2
+ α
(i)
2 x + α
(i)
3 +
i
j=1
β
(i,j)
1 sinh(µjx) + β
(i,j)
2 cosh(µjx)
M(i)
co = α
(i)
4 x2
+ α
(i)
5 x + α
(i)
6 +
i
j=1
β
(i,j)
3 sinh(µjx) + β
(i,j)
4 cosh(µjx)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time-discretized analytical solution for composite beams
Equilibrium in term of displacements
d5
u
(n)
s
dx5
− µ2
n
d3
u
(n)
s
dx3
= ζ
(n)
1 + ζ
(n)
2
n−1
i=1
Ψn,i
d2
M
(i)
co
dx2
+ ζ
(n)
3
n−1
i=1
Ψn,i
d2
N
(i)
co
dx2
d3
v(n)
dx3
= ζ
(n)
4
d4
u
(n)
s
dx4
+ ζ
(n)
5
d2
u
(n)
s
dx2
+ ζ
(n)
6
n−1
i=1
Ψn,i
dN
(i)
co
dx
Analytical solution
u(n)
s = X(n)
s C(n)
+ Z(n)
s (x) +
n−1
i=1
a(n,i)
s sinh(µix) + b(n,i)
s cosh(µix)
v(n)
= X(n)
v C(n)
+ Z(n)
v (x) +
n−1
i=1
a(n,i)
v sinh(µix) + b(n,i)
v cosh(µix)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Time-discretized analytical solution for composite beams
Time-discretized exact stiffness matrix
( )( )(
0
) ( )n nn n
= +e q Q QK
( ) ( )
1 1,n n
Q q
Exact siffness matrix at the instant
( ) ( )
2 2,n n
Q q
( ) ( )
3 3,n n
Q q
( ) ( )
4 4,n n
Q q
( ) ( )
8 8,n n
Q q
( ) ( )
5 5,n n
Q q
( ) ( )
6 6,n n
Q q
( ) ( )
7 7,n n
Q q
L
( ) ( )( ) ( )
1 8( 0) ... ( )n nn n
cq u x q x Lθ= = = =
Kinematic boundary conditions
( ) ( )( ) ( )
1 8( 0) ... ( )n nn n
cQ N x Q M x L= − = = =
Static boundary conditions
Composite beam element
nt
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Applications
2300mm
200mm
934 mm
64.56kN/m
25m 25m
cG
sG
2
20 300mm×
2
1550 15mm×
2
30 450mm×
2
3
8 4
2
3
8 4
100mm
460000mm
0m
15.3310 mm
934 mm
42800mm
0m
159.4910 mm
c
c
c
c
s
s
c
s
H
A
S
I
H
A
S
I
=
=
=
=
=
=
=
=
666mm
Creep and shrinkage functions are defined in CEB-FIP Model Code 1990
0 0 28 030days, 30MPa, 80%, 196mm, 0.25sh ct t f RH h s= = = = = =
Two-span composite beam analyzed by Dezi and Tarantino, 1993
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison with existing model
10
1
10
2
10
3
10
4
10
5
-2017
-2016
-2015
-2014
-2013
-2012
-2011
-2010
-2009
-2008
-2007
-2006
Time [days]
RedundantreactionR[kN]
Distributed bond - general method
Dezi and Tanrantino
64.56kN/m
25m 25m
= 0.4 kN/mm²sck
= 0.1kN/mm²sck
2007.16
2012.30
2013.51
2015.60
2007.72
2013.08
2016.30
2013.87
R
Time evolution of the redundant reaction at intermediate support
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the two bond models
0 10 20 30 40 50
0
5
10
15
20
25
30
Distance from left support [m]
Deflection[mm]
Discrete bond model (80 elements)
Distributed bond model (2 elements)
64.56kN/m
25550days
30days
Deflection distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of time-discrete approaches
10
1
10
2
10
3
10
4
10
5
17
18
19
20
21
22
23
24
Time [days]
Midspandeflection[mm]
Step-by-step method
"Rate-type" method
AAEM method
EM method
MS method
64.56kN/m
25m 25m
Creep effect only
Time evolution of midspan deflection
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Effect of Creep and Shrinkage on Deflection
0 10 20 30 40 50
0
5
10
15
20
25
30
35
40
Distance from left support [m]
Deflection[mm]
30 days
25550 days: creep only
t=25550 days: creep + shrinkage
64.56kN/m
27%
39%
Deflection distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Effect of Creep and Shrinkage on Bending Moment
0 10 20 30 40 50
-10000
-8000
-6000
-4000
-2000
0
2000
4000
Distance from left support [m]
Bendingmoment[kN.m]
30 days
25550 days: creep only
t=25550 days: creep + shrinkage
70%
Bending moment distribution along the beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Conclusions
An original time-discretized analytical solution has been derived
Compare to discrete bond model, the distributed bond model
leads to a quite complexe solution but it reduces significantly the
number of elements
General method gives precise results but it requires the storage of
the whole stress history
"Rate-type" method gives nearly identical results as general
method. This method avoids almost data storage but the
determination of model parameters is quite complexe
Among algebraic methods, AAEM method seems to perform very
well
A significant impact of shrinkage
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
4 Nonlinear Behaviour of Materials
Constitutive Models of Steel
Constitutive Models of Shear Stud
Constitutive Models of Concrete
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Constitutive models of steel
1 Models based on explicit stress-strain relationship
2 Models based on plasticity framework
One-dimensional problem
Easy to implement for
monotonic loading
Cyclic models not easy to
formulate
Menegotto-Pinto model
( )1 0 r 1
ξ ε ε−
( )2 0 r 2
ξ ε ε−
0E 0E0E
hE
hE
( )0
,r rε σ
( )0 0 1
,ε σ
( )0 0 0
,ε σ
( )0 0 2
,ε σ
( )2
,r rε σ
( )1
,r rε σ
σ
ε
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Constitutive models of steel
1 Models based on explicit stress-strain relationship
2 Models based on plasticity framework
( )e p
Eσ ε ε= −
Elastic stress-strain relationship
Yield condition and closure of the elastic range
Flow rule, isotropic and kineatic hardening laws
Kunh-Tucker complementarity conditions
Consistency condition
( ) ( )0 , , , 0 , , , 0f f XR RXλ σ λ σ≥ ≤ =
( ) ( ), , 0 if , , 0f fRX X Rλ σ σ= =
p
sign( )Xε λ σ= −
p λ=
sign( )Xα λ σ= −
Kinematic hardening stress-like variable
Kinematic hardening strain-like variable
( ) ( )(, 0), ( )yR R pf X X ασ σ σ= − − + ≤
Isotropic hardening strain-like variable
Isotropic hardening stress-like variable
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Constitutive models of steel
1 Models based on explicit stress-strain relationship
2 Models based on plasticity framework
More involved
Cyclic behaviour is included in the model
Serveral physical phenomena can be coupled: damage, time effects ...
yε
σ
ε
yσ
uσ
hε uε
yε−hε−uε−
yσ−
uσ−
O 1O2O 3O4O
Monotonic loading
Cyclic loading
Linear isotropic hardening model
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Constitutive models of shear stud
1 Discrete bond: The following models are selected to describe the
behaviour of one shear stud
P
δ
δ δ δ
P P P
uPuP uP
1 u0.95P P=
2 fu1.05P P=
fuP
uδ 1δ 2δ
( ) 2
u 11 exp
c
P P c δ= −⎡ ⎤⎣ ⎦
0E0E
0E
0E
Elastic-perfectly
plastic model
Ollgaard et al., 1971 Salari, 1999
2 Distributed bond: The equivalent distributed bond strength and
stiffness are calculated by dividing the strength and stiffness of a
single row of shear studs by their distance along the beam.
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Constitutive models of concrete
Explicit stress-strain relationship recommended by CEB-FIP Model
Code 1990
Good approach of stress-strain
monotonic curve in compression
No unloading information
No ascending branch of stress-strain
monotonic curve in tension 1cE
c
E 1c
ε ,limc
ε
cm
f−
0.5 cm
f−
0.9 ctm
f
ctm
f
15%
cε
Compression
Tension
cσ
Goals: To develop a model for concrete based on the elasto-plastic
damage theory
1 Reproduce exactly stress-strain monotonic curve in compression
of CEB-FIP Model Code 1990
2 Take into account the degradation of the elastic moduli
3 Take into account the tension softening response
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Constitutive models of concrete
Explicit stress-strain relationship recommended by CEB-FIP Model
Code 1990
Good approach of stress-strain
monotonic curve in compression
No unloading information
No ascending branch of stress-strain
monotonic curve in tension 1cE
c
E 1c
ε ,limc
ε
cm
f−
0.5 cm
f−
0.9 ctm
f
ctm
f
15%
cε
Compression
Tension
cσ
Goals: To develop a model for concrete based on the elasto-plastic
damage theory
1 Reproduce exactly stress-strain monotonic curve in compression
of CEB-FIP Model Code 1990
2 Take into account the degradation of the elastic moduli
3 Take into account the tension softening response
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing equation of the elasto-plastic damage model
Assumption of a Helmholtz-free energy
Change of the compliance as internal variable (Govindjee at al., 1995)d
D
( ) ( )
1 2d 0 pdp p1
( , , ) ( )
2
DD Dp pεε ε ε
−
Ψ − = + − + Ψ
Elastic damage part plastic part
Thermodynamically associated variables
( )p
2
d
1ˆ; ;
2p
R Y
D
σ
ε ε
σ
∂Ψ ∂Ψ ∂Ψ
= = = = −
∂ − ∂ ∂
ε
σ
σ
p
ε
ε
0E
d
ε
e
ε
0EE
( )
1d d
D E
−
=
e
ε
( )
2d d d1
2
E εΨ =
( )
2e 0 e1
2
E εΨ =
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing equation of the elasto-plastic damage model
Assumption of a Helmholtz-free energy
Change of the compliance as internal variable (Govindjee at al., 1995)d
D
( ) ( )
1 2d 0 pdp p1
( , , ) ( )
2
DD Dp pεε ε ε
−
Ψ − = + − + Ψ
Elastic damage part plastic part
Thermodynamically associated variables
( )p
2
d
1ˆ; ;
2p
R Y
D
σ
ε ε
σ
∂Ψ ∂Ψ ∂Ψ
= = = = −
∂ − ∂ ∂
( ) ( )ˆ, , ( ) 0yf R Y pRσ σ σ= − − ≤
Yield/damage condition
ε
σ
σ
p
ε
ε
0E
d
ε
e
ε
0EE
( )
1d d
D E
−
=
e
ε
( )
2d d d1
2
E εΨ =
( )
2e 0 e1
2
E εΨ =
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Governing equation of the elasto-plastic damage model
Assumption of a Helmholtz-free energy
Change of the compliance as internal variable (Govindjee at al., 1995)d
D
( ) ( )
1 2d 0 pdp p1
( , , ) ( )
2
DD Dp pεε ε ε
−
Ψ − = + − + Ψ
Elastic damage part plastic part
Thermodynamically associated variables
( )p
2
d
1ˆ; ;
2p
R Y
D
σ
ε ε
σ
∂Ψ ∂Ψ ∂Ψ
= = = = −
∂ − ∂ ∂
Flow rule, damage and hardning/softening laws
( ) ( )ˆ, , ( ) 0yf R Y pRσ σ σ= − − ≤
Yield/damage condition
( ) ( )p d 1
1 1 sign( ) ; sign( ) ;
ˆ
f f f
D p
RY
ε λ λ σ λ λ σ λ λ
σ
β β β β
σ
∂ ∂ ∂
= − = − − = = − − = = −
∂ ∂∂
β : scalar paramater, proposed by Meschke et al, 1997
ε
σ
σ
p
ε
ε
0E
d
ε
e
ε
0EE
( )
1d d
D E
−
=
e
ε
( )
2d d d1
2
E εΨ =
( )
2e 0 e1
2
E εΨ =
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Determination of the hardening/softening functions
Introducing a scalar parameter ζ
( )
0
1 p
E
ζ
σ
ε − = +
ε
σ
σ
0E 0EE
e
ε
p
ε d
ε
e
ε
d
E
( )p d
1 pζε ε+ = +
Assumption
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Determination of the hardening/softening functions
Introducing a scalar parameter ζ
Monitonic loading condition
( ) ( )ˆ, , ( ) 0yf R Y R pσ σ σ= − + =
( )
0
1 p
E
ζ
σ
ε − = +
ε
σ
σ
0E 0EE
e
ε
p
ε d
ε
e
ε
d
E
( )p d
1 pζε ε+ = +
Assumption
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Determination of the hardening/softening functions
Introducing a scalar parameter ζ
Monitonic loading condition
( ) ( )ˆ, , ( ) 0yf R Y R pσ σ σ= − + =
( )σ σ ε=
( )
0
1 p
E
ζ
σ
ε − = +
Explicit stress-strain relationship ε
σ
σ
0E 0EE
e
ε
p
ε d
ε
e
ε
d
E
( )p d
1 pζε ε+ = +
Assumption
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Determination of the hardening/softening functions
Introducing a scalar parameter ζ
Monitonic loading condition
( ) ( )ˆ, , ( ) 0yf R Y R pσ σ σ= − + =
( )σ σ ε=
( )
0
1 p
E
ζ
σ
ε − = +
( )R R p=
Hardening/softening functions may be explicitly obtained
Explicit stress-strain relationship ε
σ
σ
0E 0EE
e
ε
p
ε d
ε
e
ε
d
E
( )p d
1 pζε ε+ = +
Assumption
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Determination of the hardening/softening functions
In compression
In tension
( )
1
2 2 2
1 2 2 3 4
1 3
2 2 32 2
1 2
0 0 0
ˆ( )
1
ˆ cos arccos
3
c
i i i
i i i
i i i
R p p p p p p
p p p p p p
ζ ζ ζ ζ ζ
β β η η μ
+
−
= = =
⎡ ⎤
= − + + − − +⎢ ⎥
⎢ ⎥⎣ ⎦
⎧ ⎫⎡ ⎤⎛ ⎞
⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟+ − + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭
∑ ∑ ∑
By using the stress-strain relationship of the
CEB-FIP Model Code 1990, we obtain
Hyperbolic softening law (Meschke et al., 1997)
2( )
1
ct
t
u
f
R p
p
p
=
⎛ ⎞
+⎜ ⎟
⎝ ⎠ 0E
ctf
σ
εctε
p
tR
relation σ ε−
( )tR p
0
d
01
E
E D+
tension
( )1
t
u
ct c
G
p
f l ζ
=
+
fracture energy
characteristic length
:tG
:cl
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Integration algorithm for the elasto-plastic damage model I
1 Data at the time tn: {σn, εn, εp
n, pn, Dd
n}
2 Give at the time tn+1: ∆ε ⇒ εn+1 = εn + ∆ε
3 Predictor: compute elastic trial stress and test for inelastic
loading
σtrial
n+1 =
1
Dn
(εn+1 − εp
n)
Rtrial
= R(pn)
f trial
n+1 = σtrial
n+1 − Rtrial
IF f trial
n+1 ≤ 0 THEN
εp
n+1 = εp
n
pn+1 = pn
Dd
n+1 = Dd
n
σn+1 = σtrial
n+1
END → EXIT
ELSE proceed to step 4
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Integration algorithm for the elasto-plastic damage model II
4 Corrector: by using the Kuhn-Tucker’s conditions, compute
∆λ and then update the other variables
∆λ = ∆p = pn+1 − pn
εp
n+1 = εp
n + (1 − β) ∆λsign(σtrial
n+1 )
σn+1 =
1
Dn
(εn+1 − εp
n) −
∆λ
Dn
sign σtrial
n+1
Dd
n+1 = Dd
n + ∆Dd
= Dd
n + β∆λ
sign(σtrial
n+1 )
σn+1
Compute the tangent modulus
Etg
n+1 =
∂σ
∂ε n+1
=
1
Dn+1
−
1
Dn+1 − (Dn+1)
2 ∂R
∂p n+1
END → EXIT
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Numerical comparisons
-7-6-5-4-3-2-10
-30
-25
-20
-15
-10
-5
0
ζ
β
=
=
= −
=
0
Material parameters
27.9[MPa]
30000[MPa]
0.647
0.4
cmf
E
[mm/m]ε
[MPa]σ
Proposed model
Karsan and Jirsa, 1969
Simulation of cyclic compression test
0 0.1 0.2 0.3 0.4 0.5 0.6
0
1
2
3
4
[MPa]σ
[mm/m]ε
ζ
=
=
=
=
= −
0
Material parameters
3.5[MPa]
31000[MPa]
65[N/m]
68[mm]
0.2
ct
t
c
f
E
G
l
Proposed model
Gopalaratnam and Shah, 1987
Simulation of cyclic tension test
Good agreement of the calculated curve with the experiments is
observed
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
5 Finite Element Formulations
Displacement-Based Formulation
Force-Based Formulation
Two-field Mixed Formulation
State Determination Algorithm
Applications
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Displacement-Based Formulation
Assuming continuous displacement fields
Compatibility is satisfied in strict sense
Linearization of the constitutive equations
Equilibrium is satisfied in weak form
1q
2q
3q
4q
5q
6q
7q
8q
9q
10q
Element 10 DOF
( ) ( )x x=d a q
( ) ( ) ; ( ) ( )scx x d x x= = sce B q B q
1 1 1 1
;i i i i i i i
sc sc sc scD D k d− − − −
= + Δ = + ΔD D k e
( )T
d d 0 dsc sc e
L
D xδ δ∂ − ∂ − = ∀∫ D P
8 DOF: Xu and Aribert, 1995
10 DOF: Daniels and Crisinel, 1989
16 DOF: Dall'Asta and Zona, 2002
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Displacement-Based Formulation
Assuming continuous displacement fields
Compatibility is satisfied in strict sense
Linearization of the constitutive equations
Equilibrium is satisfied in weak form
Governing equation of the finite element
1q
2q
3q
4q
5q
6q
7q
8q
9q
10q
Element 10 DOF
( ) ( )x x=d a q
( ) ( ) ; ( ) ( )scx x d x x= = sce B q B q
1 1 1 1
;i i i i i i i
sc sc sc scD D k d− − − −
= + Δ = + ΔD D k e
( )T
d d 0 dsc sc e
L
D xδ δ∂ − ∂ − = ∀∫ D P
0
1i
R
−
Δ = + −q Q Q QK
T 1 T 1
d di i
sc sc sc
L L
x k x− −
= +∫ ∫B k B BK BElement stiffness matrix
Element resisting forces T 1 T 11
d di i
s sc
L L
i
R cx D x−− −
= +∫ ∫B D BQ
8 DOF: Xu and Aribert, 1995
10 DOF: Daniels and Crisinel, 1989
16 DOF: Dall'Asta and Zona, 2002
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Force-Based Formulation
Assuming continuous force fields
Equilibrium is satisfied in strict sense
0
( ) ( ) ( )
( ) ( ) ( ) ( )
sc sc sc sc
sc
D
x
x x x
x x x
= +
= + +
b Q c Q
D Db Q c Q
1Q
2Q
3Q
4Q
5Q
1scQ 2scQ 3scQ
/2L
( )scD x
( )scD x
/2L
Parabolic approximation of scD
zp
Discrete bond: exact force fields
Distributed bond: parabolic bond force distribution
(cubic approximation:
Salari 1999; Alemdar 2001)
2
2 0
d
0
d
d
0
d
d d
0
dd
c
sc
s
sc
sc
N
D
x
N
D
x
M D
H p
xx
+ =
− =
+ + =
Distributed bond
Element is internally determinate
Equilibrium Exact force fields
Element is internally indeterminate
A bond force distribution is assumed
Discrete bond ( )0scD =
Is a particular solution of equilibrium equations0( )xDEquilibrium equations
→
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Force-Based Formulation
Assuming continuous force fields
Compatibility is enforced in a integral form
Linearization of the constitutive equations
Equilibrium is satisfied in strict sense
0
( ) ( ) ( )
( ) ( ) ( ) ( )
sc sc sc sc
sc
D
x
x x x
x x x
= +
= + +
b Q c Q
D Db Q c Q
1 1 1 1
;i i i i i i i
sc sc sc scd d f D− − − −
= + Δ = + Δe e f D
( ) ( )T T
d d 0 ,sc
L L
x D d x Dδ δ δ δ∂ − + ∂ − = ∀∫ ∫D d e d Dsc sc sc
1Q
2Q
3Q
4Q
5Q
1scQ 2scQ 3scQ
/2L
( )scD x
( )scD x
/2L
Parabolic approximation of scD
zp
Discrete bond: exact force fields
Distributed bond: parabolic bond force distribution
(cubic approximation:
Salari 1999; Alemdar 2001)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Force-Based Formulation
Assuming continuous force fields
Compatibility is enforced in a integral form
Linearization of the constitutive equations
Equilibrium is satisfied in strict sense
Governing equation of the force-based element
0
( ) ( ) ( )
( ) ( ) ( ) ( )
sc sc sc sc
sc
D
x
x x x
x x x
= +
= + +
b Q c Q
D Db Q c Q
1 1 1 1
;i i i i i i i
sc sc sc scd d f D− − − −
= + Δ = + Δe e f D
( ) ( )T T
d d 0 ,sc
L L
x D d x Dδ δ δ δ∂ − + ∂ − = ∀∫ ∫D d e d Dsc sc sc
1Q
2Q
3Q
4Q
5Q
1scQ 2scQ 3scQ
/2L
( )scD x
( )scD x
/2L
Parabolic approximation of scD
zp
Discrete bond: exact force fields
Distributed bond: parabolic bond force distribution
1
0
i
r
−
Δ = − − ΔQ qF q q
Element flexibility matrix
(cubic approximation:
Salari 1999; Alemdar 2001)
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Two-field Mixed Formulation
Assuming continuous force fields
0( ) ( ) ( )x x x= + DD b Q
( ) ( )x x=d a q
Assuming continuous displacement fields
Ayoub and Filippou 2000
2Q
zp
1Q
3Q 4Q
5Q
6Q
6 force DOF
1q
2q
3q4q
5q
6q
7q
8q9q
10q
10 displacement DOF
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Two-field Mixed Formulation
Assuming continuous force fields
Slip compatibility is satisfied in strict sense
0( ) ( ) ( )x x x= + DD b Q
( ) ( )x x=d a q
Assuming continuous displacement fields
( ) ( )scd x x= scB q
Linearization of the constitutive equations
1 1 11
; i i i i
sc sc sc s
i i i
cD D k d−− − −
= + Δ= + Δe e f D Ayoub and Filippou 2000
2Q
zp
1Q
3Q 4Q
5Q
6Q
6 force DOF
1q
2q
3q4q
5q
6q
7q
8q9q
10q
10 displacement DOF
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Two-field Mixed Formulation
Assuming continuous force fields
Slip compatibility is satisfied in strict sense
0( ) ( ) ( )x x x= + DD b Q
( ) ( )T T
d d d ,sc sc e
L L
D x xδ δ δ δ∂ − ∂ − + ∂ − ∀∫ ∫D P D d e d D
( ) ( )x x=d a q
Assuming continuous displacement fields
( ) ( )scd x x= scB q
Linearization of the constitutive equations
1 1 11
; i i i i
sc sc sc s
i i i
cD D k d−− − −
= + Δ= + Δe e f D
Equilibrium and section strain compatiblity are enforced in a integral
form (Hellinger Reissner variational principle)
Ayoub and Filippou 2000
2Q
zp
1Q
3Q 4Q
5Q
6Q
6 force DOF
1q
2q
3q4q
5q
6q
7q
8q9q
10q
10 displacement DOF
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Two-field Mixed Formulation
Assuming continuous force fields
Slip compatibility is satisfied in strict sense
0( ) ( ) ( )x x x= + DD b Q
( ) ( )T T
d d d ,sc sc e
L L
D x xδ δ δ δ∂ − ∂ − + ∂ − ∀∫ ∫D P D d e d D
( ) ( )x x=d a q
Assuming continuous displacement fields
( ) ( )scd x x= scB q
Linearization of the constitutive equations
1 1 11
; i i i i
sc sc sc s
i i i
cD D k d−− − −
= + Δ= + Δe e f D
Equilibrium and section strain compatiblity are enforced in a integral
form (Hellinger Reissner variational principle)
Governing equation of the two-field mixed element
1 1
0
T 1
i i
sc e sc
i
r
− −
−
⎡ ⎤ ⎡ ⎤Δ + − −⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥
⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣
Δ
⎦
K G q Q Q GQ Q
G F qQ 0
1
e
i
R
−
Δ = + −q Q Q QK
condense out
ΔQ
Ayoub and Filippou 2000
2Q
zp
1Q
3Q 4Q
5Q
6Q
6 force DOF
1q
2q
3q4q
5q
6q
7q
8q9q
10q
10 displacement DOF
Q-H. Nguyen PhD Thesis Defense
State determination algorithm: Displacement vs. Force models
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Displacement-based element
Equilibrium?
Element resisting forces
T T
d di i
sc sc
L L
i
R x D x= +∫ ∫BQ B D
Constitutive laws
( ) ; ( )i i
R scR sc scD D d= =D D e
Compute deformations
( ) ; ( )i i
scx d xe
yes
Exit
no
1i i= +
General purpose finite element
program
Given displacements at the
structural nodes
Determinate resisting forces
and stiffness matrix
1i
g
−
q
1i
gR
−
P
1i
gU
−
ΔP
A
B
D
i
gΔq
gq
gP
1i
g
−
K
1
State determination algorithm: Displacement vs. Force models
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Displacement-based element
Equilibrium?
Element resisting forces
T T
d di i
sc sc
L L
i
R x D x= +∫ ∫BQ B D
Constitutive laws
( ) ; ( )i i
R scR sc scD D d= =D D e
Compute deformations
( ) ; ( )i i
scx d xe
yes
Exit
no
1i i= + Element resisting forces
i
RQ
Constitutive laws
( ) ; ( )i i
R scR sc scD D d= =D D e
Compute deformations
( ) ; ( )i i
scx d xe
Compute element forces
;i i
scQ Q
Force-based element
Compute internal forces
( ) ; ( )i i
scx D xD
State determination algorithm: Displacement vs. Force models
Element resisting forces
i
RQ
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Force-based element
Introduce an iteration scheme at the
element level
Consider element distributed loading
For regular beams: Spacone, 1994; Spacone
et al., 1996
For composite beams: Salari 1999; Alemdar 2001
Iteration sheme at the element level
No element internal loading
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Force-based element
Itearative element
state determination
Nodal displacements
i
q
State determination algorithm: Displacement vs. Force models
Element resisting forces
i
RQ
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Force-based element
Introduce an iteration scheme at the
element level
Consider element distributed loading
For regular beams: Spacone, 1994; Spacone
et al., 1996
For composite beams: Salari 1999; Alemdar 2001
Iteration sheme at the element level
No element internal loading
Propose a new state determination for composite
beam with element distributed loading
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Force-based element
Itearative element
state determination
Nodal displacements
i
q
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
Element displacements
1i i i−
= + Δq q q
n
gP
1n
g
+
P
101in
gg
−=+
Δ=ΔPP
1 0i n
g g
− =
=q q 1i
g
−
q i
gq 1n
g
+
q
1i
gR
−
P
1i
gU
−
ΔP
A
B
D
i
gΔq
Convergence
gq
gP
1i
g
−
K
1
Structure level
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Element displacements
1i i i−
= + Δq q q
A
B
C
D
1i−
q i
q q
1j =
Δq
2j =
Δq
3j =
Δq
2j =
ΔQ
3j =
ΔQ
1i−
Q
i
Q
1j =
ΔQ
Q
1 1
1j =
K
1
1i−
K 2j =
K
j=3 convergence
1i−
q i
q q
1j =
Δq
2j =
Δq
3j =
Δq
scQ
1
12 2
sc sc
j j
sc
−= =
⎡ ⎤− Δ⎣ ⎦Q QF q
1
sc
i−
QK
1
sc
j =
QK
2
sc
j =
QK
1
1
13 3
sc sc
j j
sc
−= =
⎡ ⎤− Δ⎣ ⎦Q QF q
1j
sc
=
ΔQ
2j
sc
=
ΔQ
3j
sc
=
ΔQ
1i
sc
−
Q
i
scQ
j=3 convergence
A
B
C
D
Elementlevel
1
11 1
sc sc sc
j j j
j j j j j
sc sc
−
−− −
Δ = Δ
⎡ ⎤Δ = Δ − Δ⎣ ⎦Q Q Q
Q K q
Q K q F q
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Element displacements
1i i i−
= + Δq q q
1
0
j j j
sc sc sc sc
j j i jj
sc
D
= =
+
+ + Δ
=
=
b Q c Q
D bQ cQ D
Particular solution due to the
element distributed loads
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations
Element displacements
1i i i−
= + Δq q q
( )xD
1
( )xe
1j =
ΔD
1i−
D
i
D
2j =
ΔD
3j =
ΔD
1i−
e
1j =
Δe
i
e
2j =
Δe
3j =
Δe
1j
R
=
D 2j
R
=
D
1j =
r
2j =
r
1j =
f
2j =
f
1
1
1i−
f
A
B
C
D
1 1j j j j j j− −
Δ = Δ → = + Δe f D e e e
( )j j j j
R= −r f D D
Gauss-Labatto integration points
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations 1j j −
⎡ ⎤= ⎣ ⎦K F
Element stiffness
Convergence?
,j j j j
scR scRD D tol− − ≤D D
Element displacements
1i i i−
= + Δq q q
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations 1j j −
⎡ ⎤= ⎣ ⎦K F
Element stiffness
Element residual
1j+
Δq
displacements
Convergence?
,j j j j
scR scRD D tol− − ≤D D
Element displacements
1i i i−
= + Δq q q
no
next iteration j
( )
( )
T T
T T
1
1
d
dsc sc sc
j j
sc sc
L
j j j j
sc s
j
c
L
r x
r x
−
+
= − +
⎡ ⎤− ⎣ ⎦
Δ
+
∫
∫QQ Q Q
b r b
F F c r c
q
A
B
C
D
1i−
q i
q q
1j =
Δq
2j =
Δq
3j =
Δq
2j =
ΔQ
3j =
ΔQ
1i−
Q
i
Q
1j =
ΔQ
Q
1 1
1j =
K
1
1i−
K 2j =
K
j=3 convergence
Elementlevel
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations 1j j −
⎡ ⎤= ⎣ ⎦K F
Element stiffness
Element residual
1j+
Δq
displacements
Convergence?
,j j j j
scR scRD D tol− − ≤D D
Element displacements
1i i i−
= + Δq q q
Element resisting forces
ji
R Q=Q
yes
no
next iteration j
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations 1j j −
⎡ ⎤= ⎣ ⎦K F
Element stiffness
Element residual
1j+
Δq
displacements
Convergence?
,j j j j
scR scRD D tol− − ≤D D
Element displacements
1i i i−
= + Δq q q
Element resisting forces
ji
R Q=Q
Structure resisting forces
assemble( )i
R
i
R=P Q
1i
gU tol+
Δ ≤P
Convergence?
1i i
gU ext R
+
Δ = −P P P
Structure unbalanced forces
yes
no
next iteration j
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations 1j j −
⎡ ⎤= ⎣ ⎦K F
Element stiffness
Element residual
1j+
Δq
displacements
Convergence?
,j j j j
scR scRD D tol− − ≤D D
Element displacements
1i i i−
= + Δq q q
Element resisting forces
ji
R Q=Q
Structure resisting forces
assemble( )i
R
i
R=P Q
1i
gU tol+
Δ ≤P
Convergence?
1i i
gU ext R
+
Δ = −P P P
Structure unbalanced forces
Exit yes
yes
no
next iteration j
State determination algorithm for force-based element
Structure equilibrium
-1
Solve i i i
g gUΔ = ΔK q P
1j i=
Δ = Δq q
Imposed displacements
Element forces
;j j
scQ Q
Internal forces
;j j
scDD
Deformations
;j j
scde
Constitutive laws
; ; ;j j j j
scR scRD fD f ;j j
scrr
Residual deformations 1j j −
⎡ ⎤= ⎣ ⎦K F
Element stiffness
Element residual
1j+
Δq
displacements
Convergence?
,j j j j
scR scRD D tol− − ≤D D
Element displacements
1i i i−
= + Δq q q
Element resisting forces
ji
R Q=Q
Structure resisting forces
assemble( )i
R
i
R=P Q
1i
gU tol+
Δ ≤P
Convergence?
1i i
gU ext R
+
Δ = −P P P
Structure unbalanced forces
Exit yes
yes
no
no
next iteration j
next NR iteration i
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison with experimental data
8φ
100
800
IPE 400
5 10φ
5 10φ
section A A
length unit: mm
650 650 650 650650 650 650 650
P
200 2500 2500 200
A
A
Poutre PI4
Load-deflection diagrams
Simply-supported composite beam (Aribert et al., 1983)
0 50 100 150
0
100
200
300
400
500
Midspan displacement [mm]
ForceP[kN]
18 Displacement-based elements
4 Force-based elements
4 Mixed element
Experiment (Ariber al al., 1983)
0 50 100 150
0
100
200
300
400
500
Midspan displacement [mm]
18 Displacement-based elements
12 Force-based elements
12 Mixed element
Experiment (Ariber al al., 1983)
33.3 mm30.7 mm
Distributed bond Discrete bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison with experimental data
Slip distribution
0
0.5
1
1.5
Glissement[mm]
12 E.F. mixte
Résultat exprérimental
650 mm 650 mm 650 mm 650 mm650 mm 650 mm 650 mm 650 mm
P=257 kN
P=334 kNP=366 kN
P
-1.5
-1
-0.5
0
Glissement[mm]
6 E.F. mixte
Résultat exprérimental
P=297 kN
P=257 kN
P=297 kN
P=334 kN
P=366 kN
Discrete bond
9 connector element
Distributed bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison with experimental data
P P
10 350× 10 350×
7 300×
100 2250 2250 2250 2250 100
B
B
C
C
Poutre PH3
10φ
100
800
HEA200
7.67 cm²
section CC
8.04 cm²
10φ
100
800
HEA200
1.6cm²
section BB
1.6cm²
Two-span composite beam (Ansourian 1981)
0 10 20 30 40 50 60
0
50
100
150
200
250
300
Midspan displacement [mm]
ForceP[kN]
24 Displacement-based elements
6 Force-based elements
6 Mixed element
Experiment
Load-deflection diagrams
Distributed bond
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison with experimental data
-0.15 -0.1 -0.05 0 0.05 0.1 0.15
0
50
100
150
200
250
300
Courbures [1/m]
ForceP[kN]
24 E.F. déplacement
6 E.F. équilibre
6 E.F. mixte
Résultat exprérimental
P P
100 2250 2250 2250 2250 100
B
B
Poutre PH3
200
A
A
[ ]L : mm
Distributed bond
Section B-B
(negative bending)
Section A-A
(Positive bending)
Curvature [1/m]
ForceP[kN]
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the three finite element formulations
0p
2000mm
50mm50mm
20mm
yσ
sE
1
sE
1
σ
ε
yD
scE
1
scE
1
scD
scd
5
300MPa 2 10 MPa
200N/mm 1000MPa
y s
y sc
E
D E
σ = = ×
= =
A
A
section AA
Cantilever composite beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the three finite element formulations
2000mm
0p
δ
0 100 200
0
2
4
6
8
10
12
14
Deflection [mm]
1 element
2 elements
Converged solution
δ
0 100 200
0
2
4
6
8
10
12
14
Deflection [mm]
1 element
2 elements
Converged solution
δ
0 100 200
0
2
4
6
8
10
12
14
Deflection [mm]
Distributedload[kN/m]
1 element
2 elements
4 elements
64 elements
Converged solution
0p
δ
Displacement-based element Force-based element Mixed element
Load-deflection diagrams
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the three finite element formulations
0 500 1000 1500 2000
-20
-15
-10
-5
0
5
x [mm]
Bendingmoment[kN.m]
1 Displacement-based element
1 Force-based element
1 mixed element
Converged solution
0p 7 kN/m=
0 500 1000 1500 2000
-50
0
50
100
150
200
250
X [mm]
AxialforceNc[kN/m]
1 Displacement-based element
1 Force-based element
1 mixed element
Converged solution
0p 7 kN/m=
Poor representation of internal forces
Displacement-based & mixed models
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Comparison of the three finite element formulations
0 500 1000 1500 2000
-0.3
-0.25
-0.2
-0.15
-0.1
-0.05
0
0.05
x [mm]
Curvature[1/m]
2 Displacement-based element
2 Force-based element
2 mixed element
Converged solution
0p 7 kN/m=
0 500 1000 1500 2000
0
0.05
0.1
0.15
0.2
0.25
x [mm]
Slip[mm]
2 Displacement-based element
2 Force-based element
2 mixed element
Converged solution
Force-based models
Inter-element slip discontinuity
Inter-element curvature discontinuity
Displacement-based & mixed models
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Conclusions
Three finite element formulations have been developed for two
bond models
A new state determination algorithm for force-based element
included element distributed loads was presented
The numerical-experimental comparison shown validates the
models reliability and the capacity to determine the experimental
behaviour of composite beams
Force-based element and mixed element are both computationally
more efficient than the displacement-based element
For the same number of elements, force-based element yields
better results than mixed element
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Outline
6 Time-Dependent Behaviour In the Plastic Range
Introduction
Viscoelastic/plastic Model for Concrete
Applications
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Introduction
Viscoelastic models
Suitable to linear analysis only
Unable to account for the
cracking due to shrinkage
Viscoplastic models
Complicate to implement
10
1
10
2
10
3
10
4
-10
-8
-6
-4
-2
0
2
4
6
Time [days]
Stress[MPa]
Tensile strength: 2.9 MPa
200mm
100mm
( ) 0.03mmtδ ∀ = −
100mm
( )tσ
Concrete specimen C30, CEB-FIP model 1990
with shrinkage
without shrinkage
Stress relaxation according to viscoelastic model
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Introduction
Viscoelastic models
Suitable to linear analysis only
Unable to account for the
cracking due to shrinkage
Viscoplastic models
Complicate to implement
→ propose a viscoelastic/plastic model
10
1
10
2
10
3
10
4
-10
-8
-6
-4
-2
0
2
4
6
Time [days]
Stress[MPa]
Tensile strength: 2.9 MPa
200mm
100mm
( ) 0.03mmtδ ∀ = −
100mm
( )tσ
Concrete specimen C30, CEB-FIP model 1990
with shrinkage
without shrinkage
Stress relaxation according to viscoelastic model
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Viscoelastic/plastic Model for Concrete
Combination of linear visco-elasticity and
continuum plasticity (Van Zijl et al., 2001)
Decomposition of total strain
ve ve
( ) ( ) ( )t E t tσ ε σ= +
ve p sh
( ) ( ) ( ) ( )t t t tε ε ε ε= + +
viscoelastic
strain
plastic
strain
shrinkage
strain
Viscoelastic model Plastic model
Yield condition
( ) ( ), , ( ) 0yf R R pσ σ σ= − − ≤
p f
ε λ
σ
∂
=
∂
Flow rule
( )ve p sh
( ) ( ) ( ) ( ) ( )t E t t t tσ ε ε ε σ= − − +
0E
1( )E t 2 ( )E t
H
( )mE t
1( )tη 2 ( )tη ( )m tη
( )tσ ( )tσ
yσ
( )ve
tε ( )p
tε ( )sh
tε
Rheological viscoelastic/plastic model
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Integration algorithm for Viscoelastic/plastic model I
1 Data at the time tn: {σn, εn, εp
n, pn, γ
(n)
i }
2 Give at the time tn+1: {εn+1, εsh
n+1}
3 Compute the parameters of the viscoelastic model: Eev
n+1, σn+1
4 Viscoelastic Predictor: compute viscoelastic trial stress and test
for plastic loading
σ trial
n+1 = Eve
n+1 εn+1 − εp
n − εsh
n+1 + σn+1
f trial
n+1 = f σtrial
n+1 , R(pn)
IF f trial
n+1 ≤ 0
THEN viscoelastic step :
εp
n+1 = εp
n
pn+1 = pn
σn+1 = σtrial
n+1
END → EXIT
ELSE plastic step: proceed to step 5
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Integration algorithm for Viscoelastic/plastic model II
5 Corrector: by using the Kuhn-Tucker’s conditions, compute
∆λ and then update the other variables
pn+1 = pn + ∆λ
εn+1 = εn + ∆λsign(σtrial
n+1 )
σn+1 = σtrial
n+1 + Eve
n+1∆λsign(σtrial
n+1 )
Compute the tangent modulus
Etg
n+1 =
∂σ
∂ε n+1
= Eve
n+1



1 −
Eve
n+1
Eve
n+1 +
dR
dp




END → EXIT
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Simulation of relaxation test
10
1
10
2
10
3
10
4
-10
-8
-6
-4
-2
0
2
4
6
Time [days]
Stress[MPa]
Linear viscoelastic model
Viscoelastic/plastic model
Tensile strength: 2.9 MPa
10
1
10
2
10
3
10
4
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08
Time [days]
Strain[%]
Total strain
Viscoelastic strain
Plastic strain
Shrinkage strain
Time evolution of stress
Time evolution of strain
200mm
100mm
( ) 0.03mmtδ ∀ = −
100mm
( )tσ
Concrete specimen C30, CEB-FIP model 1990
The proposed model is able to
represent the cracking
phenomena due to shrinkage
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Simply-supported composite beam
0 100 200 300 400 500
0
10
20
30
40
50
60
Force P [kN]
Flècheàmi-travée[mm]
A
=
= →
t 30 days
P 0 400kN
LoadP [kN]
Midspandeflection[mm]
10
1
10
2
10
3
10
4
0
10
20
30
40
50
60
Temps [jours]
Flècheàmi-travée[mm]
avec retrait
sans retrait
A
=
= →
P 400kN
t 30 days 50 years
Time [days]
Midspandeflection[mm]
without shrinkage effect
with shrinkage effect
8φ
100
800
IPE 400
5 10φ
5 10φ
section A A
length unit: mm
650 650 650 650650 650 650 650
P
200 2500 2500 200
A
A
Poutre PI4
Simply-supported composite beam (Aribert et al., 1983)
Evolution of mid-span deflection
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Summary
1 A finite element model with exact stiffness matrix based on the
analytical solution was developed (for linear elastic and
viscoelastic behaviours)
2 A elasto-plastic damage model was proposed for concrete
3 Three finite element formulations was developed for composite
beams with partial interaction
4 A new state determination algorithm was developed for the
force-based element including element distributed load
5 A viscoelastic/plastic model was proposed for concrete in order to
simulate the interaction between the time effects and the cracking
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Conclusions
1 The discrete bond model represents the true connection and it is
simple to use but it requires a large number of elements
2 Compare to discrete bond model, distributed bond model is less
computationally expensive because it reduces significantly
number of elements
3 Among three finite element formulations, force-based formulation
performs better
4 Significant influence of creep and especially of shrinkage on the
global response of composite beams in serviceability
5 Time effects play an important role in the inelastic response of
composite beam
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Future works
1 Realize a parametric study of time effects in nonlinear behaviour
of composite beam
2 Modelling of the behaviour of composite beams using
Timoshenko beam theory (in progress)
3 Take into account the nonlinearity geometry using corotational
formulation
4 Take into account the uplift
5 Extend the F.E. tools to composite frame
Q-H. Nguyen PhD Thesis Defense
Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions
Thanks for your attention !
Q-H. Nguyen PhD Thesis Defense

Contenu connexe

Tendances

SBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELSSBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELSMarwan Sadek
 
Calcul des poteaux mixtes acier-béton selon l'Eurocode 4
Calcul des poteaux mixtes acier-béton selon l'Eurocode 4Calcul des poteaux mixtes acier-béton selon l'Eurocode 4
Calcul des poteaux mixtes acier-béton selon l'Eurocode 4Quang Huy Nguyen
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUMarwan Sadek
 
Chapitre 05 la descant des charges
Chapitre 05 la descant des chargesChapitre 05 la descant des charges
Chapitre 05 la descant des chargespp
 
40872913 formulaire-de-rdm
40872913 formulaire-de-rdm40872913 formulaire-de-rdm
40872913 formulaire-de-rdmAthanas Konin
 
05 02 calcul_poussees
05 02 calcul_poussees05 02 calcul_poussees
05 02 calcul_pousseesadel213
 
Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2Quang Huy Nguyen
 
Calcul de poteau selon la Rigidité Nominale
Calcul de poteau selon la Rigidité NominaleCalcul de poteau selon la Rigidité Nominale
Calcul de poteau selon la Rigidité NominaleSofiane Mekki
 
Chap compression simple 1
Chap compression simple 1Chap compression simple 1
Chap compression simple 1Zahir Hadji
 
Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2Quang Huy Nguyen
 
Dalles 04. méthodes des lignes de rupture
Dalles 04. méthodes des lignes de ruptureDalles 04. méthodes des lignes de rupture
Dalles 04. méthodes des lignes de ruptureSami Sahli
 

Tendances (20)

SBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELSSBA1 - EC2 - Chap 6 - Flexion simple ELS
SBA1 - EC2 - Chap 6 - Flexion simple ELS
 
20100622 05 ba_plumier_degee
20100622 05 ba_plumier_degee20100622 05 ba_plumier_degee
20100622 05 ba_plumier_degee
 
Béton précontraint
Béton précontraintBéton précontraint
Béton précontraint
 
Méthode bielles-tirants
Méthode bielles-tirantsMéthode bielles-tirants
Méthode bielles-tirants
 
Calcul des poteaux mixtes acier-béton selon l'Eurocode 4
Calcul des poteaux mixtes acier-béton selon l'Eurocode 4Calcul des poteaux mixtes acier-béton selon l'Eurocode 4
Calcul des poteaux mixtes acier-béton selon l'Eurocode 4
 
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELUSBA1 - EC2 - Chap 5 - Flexion simple - ELU
SBA1 - EC2 - Chap 5 - Flexion simple - ELU
 
09 lignes d'influence
09 lignes d'influence09 lignes d'influence
09 lignes d'influence
 
Cours de beton_precontraint_
Cours de beton_precontraint_Cours de beton_precontraint_
Cours de beton_precontraint_
 
Chapitre 05 la descant des charges
Chapitre 05 la descant des chargesChapitre 05 la descant des charges
Chapitre 05 la descant des charges
 
15 poteau-2
15 poteau-215 poteau-2
15 poteau-2
 
Mur de soutènement
Mur de soutènementMur de soutènement
Mur de soutènement
 
40872913 formulaire-de-rdm
40872913 formulaire-de-rdm40872913 formulaire-de-rdm
40872913 formulaire-de-rdm
 
05 02 calcul_poussees
05 02 calcul_poussees05 02 calcul_poussees
05 02 calcul_poussees
 
Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2Calcul des voiles en BA selon l’EC2
Calcul des voiles en BA selon l’EC2
 
Calcul de poteau selon la Rigidité Nominale
Calcul de poteau selon la Rigidité NominaleCalcul de poteau selon la Rigidité Nominale
Calcul de poteau selon la Rigidité Nominale
 
Chap compression simple 1
Chap compression simple 1Chap compression simple 1
Chap compression simple 1
 
12- poteaux
12- poteaux12- poteaux
12- poteaux
 
Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2Diagrammes d'interraction M-N Selon l'Eurocode 2
Diagrammes d'interraction M-N Selon l'Eurocode 2
 
Dalles 04. méthodes des lignes de rupture
Dalles 04. méthodes des lignes de ruptureDalles 04. méthodes des lignes de rupture
Dalles 04. méthodes des lignes de rupture
 
12 plancher-Eurocode 2
12 plancher-Eurocode 212 plancher-Eurocode 2
12 plancher-Eurocode 2
 

En vedette

Samuel beckett bridge
Samuel beckett bridge Samuel beckett bridge
Samuel beckett bridge Dhruv Seth
 
Seminar at University of Western Sydney
Seminar at University of Western SydneySeminar at University of Western Sydney
Seminar at University of Western SydneyQuang Huy Nguyen
 
Analyse élastique linéaire avec redistribution selon eurocode 2
Analyse élastique linéaire avec redistribution selon eurocode 2Analyse élastique linéaire avec redistribution selon eurocode 2
Analyse élastique linéaire avec redistribution selon eurocode 2Quang Huy Nguyen
 
Gateshead dhruv
Gateshead dhruvGateshead dhruv
Gateshead dhruvDhruv Seth
 
Priyam sundial bridge
Priyam sundial bridgePriyam sundial bridge
Priyam sundial bridgeDhruv Seth
 
Suchi golden gate bridge
Suchi golden gate bridgeSuchi golden gate bridge
Suchi golden gate bridgeDhruv Seth
 
Berekening en detaillering van staalvezelbeton
Berekening en detaillering van staalvezelbetonBerekening en detaillering van staalvezelbeton
Berekening en detaillering van staalvezelbetonBenoit Parmentier
 
Samuel Beckett
Samuel BeckettSamuel Beckett
Samuel BeckettGroup13
 
Cour 04-le-new-urbanisme
Cour 04-le-new-urbanismeCour 04-le-new-urbanisme
Cour 04-le-new-urbanismeSami Sahli
 
Rapport finale_ corrections R.Bodet
Rapport finale_ corrections R.BodetRapport finale_ corrections R.Bodet
Rapport finale_ corrections R.BodetPaul Daou
 
Présentation1
Présentation1Présentation1
Présentation1Paul Daou
 
Etude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben Saleh
Etude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben SalehEtude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben Saleh
Etude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben Salehhydrolicien
 
Eurocode 2 Part 3 - Design of concrete Silos & Tanks
Eurocode 2  Part 3 - Design of concrete Silos & TanksEurocode 2  Part 3 - Design of concrete Silos & Tanks
Eurocode 2 Part 3 - Design of concrete Silos & TanksBenoit Parmentier
 
Bridge engineering
Bridge engineeringBridge engineering
Bridge engineeringHalcrow
 

En vedette (20)

Samuel beckett bridge
Samuel beckett bridge Samuel beckett bridge
Samuel beckett bridge
 
Seminar at University of Western Sydney
Seminar at University of Western SydneySeminar at University of Western Sydney
Seminar at University of Western Sydney
 
Analyse élastique linéaire avec redistribution selon eurocode 2
Analyse élastique linéaire avec redistribution selon eurocode 2Analyse élastique linéaire avec redistribution selon eurocode 2
Analyse élastique linéaire avec redistribution selon eurocode 2
 
Gateshead dhruv
Gateshead dhruvGateshead dhruv
Gateshead dhruv
 
Priyam sundial bridge
Priyam sundial bridgePriyam sundial bridge
Priyam sundial bridge
 
Suchi golden gate bridge
Suchi golden gate bridgeSuchi golden gate bridge
Suchi golden gate bridge
 
Berekening en detaillering van staalvezelbeton
Berekening en detaillering van staalvezelbetonBerekening en detaillering van staalvezelbeton
Berekening en detaillering van staalvezelbeton
 
Samuel Beckett
Samuel BeckettSamuel Beckett
Samuel Beckett
 
Toyo ito
Toyo itoToyo ito
Toyo ito
 
ppt
pptppt
ppt
 
Formation Robo2010 patie1
Formation Robo2010 patie1Formation Robo2010 patie1
Formation Robo2010 patie1
 
Cour 04-le-new-urbanisme
Cour 04-le-new-urbanismeCour 04-le-new-urbanisme
Cour 04-le-new-urbanisme
 
Otto wagner
Otto wagnerOtto wagner
Otto wagner
 
Rapport finale_ corrections R.Bodet
Rapport finale_ corrections R.BodetRapport finale_ corrections R.Bodet
Rapport finale_ corrections R.Bodet
 
AL HAMRA HCA
AL HAMRA HCAAL HAMRA HCA
AL HAMRA HCA
 
Présentation1
Présentation1Présentation1
Présentation1
 
Metro presentation
Metro presentationMetro presentation
Metro presentation
 
Etude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben Saleh
Etude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben SalehEtude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben Saleh
Etude de voirie et d'assainissement du lotissement Beni Amir à Fkih Ben Saleh
 
Eurocode 2 Part 3 - Design of concrete Silos & Tanks
Eurocode 2  Part 3 - Design of concrete Silos & TanksEurocode 2  Part 3 - Design of concrete Silos & Tanks
Eurocode 2 Part 3 - Design of concrete Silos & Tanks
 
Bridge engineering
Bridge engineeringBridge engineering
Bridge engineering
 

Similaire à Modelling of the non-linear behaviour of composite beams

Civil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdf
Civil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdfCivil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdf
Civil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdfENGINEERSMINDS
 
Probabilistic Design of Hollow Circular Composite Structure by using Finite E...
Probabilistic Design of Hollow Circular Composite Structure by using Finite E...Probabilistic Design of Hollow Circular Composite Structure by using Finite E...
Probabilistic Design of Hollow Circular Composite Structure by using Finite E...IJERA Editor
 
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...IOSR Journals
 
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdfBending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdfanujajape
 
Analysis of Serial Pinned Joints in Composite Materials
Analysis of Serial Pinned Joints in Composite MaterialsAnalysis of Serial Pinned Joints in Composite Materials
Analysis of Serial Pinned Joints in Composite Materialsijceronline
 
The Finite element Method, A practical approach
The Finite element Method, A practical approachThe Finite element Method, A practical approach
The Finite element Method, A practical approachEngrUsmanKhan1
 
MarkBeeler_Thesis
MarkBeeler_ThesisMarkBeeler_Thesis
MarkBeeler_ThesisMark Beeler
 
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxAnalysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxadnan885140
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femOsama Mohammed Elmardi Suleiman
 
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAnalysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAdnan Lazem
 
Probabilistic Design Hollow of Airfoil Wing by Using Finite Element Method
Probabilistic Design Hollow of Airfoil Wing by Using Finite Element MethodProbabilistic Design Hollow of Airfoil Wing by Using Finite Element Method
Probabilistic Design Hollow of Airfoil Wing by Using Finite Element MethodIJERA Editor
 
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...IRJET Journal
 
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAnalysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxadnan885140
 
Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...
Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...
Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...IJERA Editor
 
Validation of time domain spectral element-based wave finite element method f...
Validation of time domain spectral element-based wave finite element method f...Validation of time domain spectral element-based wave finite element method f...
Validation of time domain spectral element-based wave finite element method f...SubhajitPaul88
 
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...IRJET Journal
 

Similaire à Modelling of the non-linear behaviour of composite beams (20)

Civil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdf
Civil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdfCivil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdf
Civil-Third-semester-Revised-Syllabus-effective-fr_230424_185153.pdf
 
Probabilistic Design of Hollow Circular Composite Structure by using Finite E...
Probabilistic Design of Hollow Circular Composite Structure by using Finite E...Probabilistic Design of Hollow Circular Composite Structure by using Finite E...
Probabilistic Design of Hollow Circular Composite Structure by using Finite E...
 
Ijetr042313
Ijetr042313Ijetr042313
Ijetr042313
 
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
“Investigation of Structural Analysis of Composite Beam Having I- Cross Secti...
 
B04510717
B04510717B04510717
B04510717
 
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdfBending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
Bending of Functionally Graded Nanobeams using Hyperbolic Nonlocal Theory.pdf
 
Analysis of Serial Pinned Joints in Composite Materials
Analysis of Serial Pinned Joints in Composite MaterialsAnalysis of Serial Pinned Joints in Composite Materials
Analysis of Serial Pinned Joints in Composite Materials
 
The Finite element Method, A practical approach
The Finite element Method, A practical approachThe Finite element Method, A practical approach
The Finite element Method, A practical approach
 
MarkBeeler_Thesis
MarkBeeler_ThesisMarkBeeler_Thesis
MarkBeeler_Thesis
 
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docxAnalysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
Analysis and Design of RECTANGULAR SEWERAGE TANK_2023.docx
 
Free vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using femFree vibration analysis of laminated composite beams using fem
Free vibration analysis of laminated composite beams using fem
 
J041063067
J041063067J041063067
J041063067
 
thesis_jordi
thesis_jordithesis_jordi
thesis_jordi
 
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAnalysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
 
Probabilistic Design Hollow of Airfoil Wing by Using Finite Element Method
Probabilistic Design Hollow of Airfoil Wing by Using Finite Element MethodProbabilistic Design Hollow of Airfoil Wing by Using Finite Element Method
Probabilistic Design Hollow of Airfoil Wing by Using Finite Element Method
 
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
Effect of Prestressing Force, Cable Profile and Eccentricity on Post Tensione...
 
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docxAnalysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
Analysis and Design of CIRCULAR SEWERAGE TANK_2023.docx
 
Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...
Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...
Finite Element Analysis of Damping Performance of VEM Materials Using CLD Tec...
 
Validation of time domain spectral element-based wave finite element method f...
Validation of time domain spectral element-based wave finite element method f...Validation of time domain spectral element-based wave finite element method f...
Validation of time domain spectral element-based wave finite element method f...
 
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
Modal Analysis of Single Rectangular Cantilever Plate by Mathematically, FEA ...
 

Dernier

The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduitsrknatarajan
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...roncy bisnoi
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 

Dernier (20)

The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
UNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular ConduitsUNIT-II FMM-Flow Through Circular Conduits
UNIT-II FMM-Flow Through Circular Conduits
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
Call Girls Pimpri Chinchwad Call Me 7737669865 Budget Friendly No Advance Boo...
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 

Modelling of the non-linear behaviour of composite beams

  • 1. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Modelling of the non-linear behaviour of composite beams taking into account the time effects Quang-Huy NGUYEN INSA de Rennes - Structural Engineering Research Group University of Wollongong - Faculty of Engineering 13 July 2009 Q-H. Nguyen PhD Thesis Defense
  • 2. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams Q-H. Nguyen PhD Thesis Defense
  • 3. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams 3 Time-Dependent Behaviour Q-H. Nguyen PhD Thesis Defense
  • 4. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams 3 Time-Dependent Behaviour 4 Nonlinear Behaviour of Materials Q-H. Nguyen PhD Thesis Defense
  • 5. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams 3 Time-Dependent Behaviour 4 Nonlinear Behaviour of Materials 5 Finite Element Formulations Q-H. Nguyen PhD Thesis Defense
  • 6. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams 3 Time-Dependent Behaviour 4 Nonlinear Behaviour of Materials 5 Finite Element Formulations 6 Time-Dependent Behaviour In the Plastic Range Q-H. Nguyen PhD Thesis Defense
  • 7. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams 3 Time-Dependent Behaviour 4 Nonlinear Behaviour of Materials 5 Finite Element Formulations 6 Time-Dependent Behaviour In the Plastic Range 7 Conclusions and Futur works Q-H. Nguyen PhD Thesis Defense
  • 8. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction 2 Elastic analysis of composite beams 3 Time-Dependent Behaviour 4 Nonlinear Behaviour of Materials 5 Finite Element Formulations 6 Time-Dependent Behaviour In the Plastic Range 7 Conclusions and Futur works Q-H. Nguyen PhD Thesis Defense
  • 9. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 1 Introduction General Background: Analysis of composite beams Research questions Objectives Q-H. Nguyen PhD Thesis Defense
  • 10. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions General Introduction to steel-concrete composite beam Steel-concrete composite structure are widely used in the construction industry Economic Reduced live load deflections Reduced weight Fast erection process Increased span lengths are possible Stiffer floors Composite beam system (Ricker 1989) Q-H. Nguyen PhD Thesis Defense
  • 11. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions General Introduction to steel-concrete composite beam Steel-concrete composite structure are widely used in the construction industry Economic Reduced live load deflections Reduced weight Fast erection process Increased span lengths are possible Stiffer floors Composite beam system (Ricker 1989) Q-H. Nguyen PhD Thesis Defense
  • 12. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions General Introduction to steel-concrete composite beam Composite beams consist of steel beam and concrete slab joint together as a unit by shear studs steel beam shear stud concrete slab profile sheeting reinforcement Q-H. Nguyen PhD Thesis Defense
  • 13. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Bond models A A B B section A-A section B-B Q-H. Nguyen PhD Thesis Defense
  • 14. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Bond models A A B B section A-A section B-B Discrete bond model Aribert (1982, France) Schanzenback (1988, Germany) Q-H. Nguyen PhD Thesis Defense
  • 15. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Bond models A A B B section A-A section B-B Discrete bond model Aribert (1982, France) Schanzenback (1988, Germany) Distributed bond model Newmark (1951, US) Adekola (1968, Nigeria) Q-H. Nguyen PhD Thesis Defense
  • 16. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Analysis Type Elastic Analysis Inelastic Analysis Newmark, 1951 Adekola, 1968 N N tM x scd X Y 2 2 12 d ( ) ( ) ( ) d t N x N x C M x x μ− = ⇒ Analytical solution Q-H. Nguyen PhD Thesis Defense
  • 17. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Displacement-based Force-based Mixed 1v 2v 2u 1u θ1 θ2 x ( )v x ( )u x X Y θ θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ 1 1 1 2 2 2 ( ) ( ) ( ) u v u x x uv x v a Assumed displacement field Q-H. Nguyen PhD Thesis Defense
  • 18. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Displacement-based Force-based Mixed Arizumi et al., 1981 Schanzenbach, 1988 Daniels, 1989 Boerave, 1990 Q-H. Nguyen PhD Thesis Defense
  • 19. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Displacement-based Force-based Mixed ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦ 1 2 2 ( ) ( ) ( ) M N x x M M x N b X Y 1M 1M 2N ( )N x ( )M x x Assumed force field Q-H. Nguyen PhD Thesis Defense
  • 20. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Displacement-based Force-based Mixed Arizumi et al., 1981 Schanzenbach, 1988 Daniels, 1989 Boerave, 1990 Salari et al., 1998 Vieira, 2000 Alemdar, 2001 Q-H. Nguyen PhD Thesis Defense
  • 21. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Displacement-based Force-based Mixed θ θ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ = =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥ ⎢ ⎥⎣ ⎦ 1 1 1 1 2 2 22 2 ( ) ( ) ( ) & ( ) ( ) ( ) u v M u x N x x x Muv x M x Nv a b X Y 1M 1M 2N ( )N x ( )M x x 1v 2v 2u 1u θ1 θ2 x ( )v x ( )u x Both fields are assumed Q-H. Nguyen PhD Thesis Defense
  • 22. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Displacement-based Force-based Mixed Arizumi et al., 1981 Schanzenbach, 1988 Daniels, 1989 Boerave, 1990 Salari et al., 1998 Vieira, 2000 Alemdar, 2001 Salari et al., 1998 Ayoub, 1999 Alemdar, 2001 Q-H. Nguyen PhD Thesis Defense
  • 23. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Concentrated Plasticity Distributed Plasticity -endi -endj Inelasticity is lumped at member ends elastic member Q-H. Nguyen PhD Thesis Defense
  • 24. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Concentrated Plasticity Distributed Plasticity The element behavior is monitored along its length -endi -endj Fiber element model Fiber section Q-H. Nguyen PhD Thesis Defense
  • 25. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Concentrated Plasticity Distributed Plasticity Fiber section model εc σc σs εs Concrete fiber Steel fiber σ σ σ σ = = = = ∑∫ ∑∫ 1 1 d d n i i iA n y i i i iA N A A M z A A z Fiber discretization of cross-section y z Arizumi et al., 1981 Fiber element model Cross-section behavior Q-H. Nguyen PhD Thesis Defense
  • 26. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Inelastic Analysis Concentrated Plasticity Distributed Plasticity Fiber element model Cross-section behavior Fiber section model Macro model El-Tawil and Deierlein, 2001 Bounding Surface Axial Force Moment Loading Surface Compression Region Tension Region Stress-resultant Plasticity Models Q-H. Nguyen PhD Thesis Defense
  • 27. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Analysis Type Elastic Analysis Time effects Inelastic Analysis Time Effects Gilbert, 1989 Boerave, 1991 Amadio and Fragiacomo, 1993 Dezi and Tarantino, 1993 ... Q-H. Nguyen PhD Thesis Defense
  • 28. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Background: Analysis of composite beams Analysis Type Elastic Analysis Time effects Inelastic Analysis Time Effects Gilbert, 1989 Boerave, 1991 Amadio and Fragiacomo, 1993 Dezi and Tarantino, 1993 ... Q-H. Nguyen PhD Thesis Defense
  • 29. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Research questions 1 Discrete bond model or distributed bond model? 2 Displacement-based, Force-based or Mixed formulation? 3 What is the influence of creep and shrinkage on the behaviour of composite beams? 4 How to take into account the time effects in inelastic analysis? Q-H. Nguyen PhD Thesis Defense
  • 30. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Objectives The main objectives are: 1 Discrete versus distributed bond modelling 2 To study the time effects in composite beams (viscoelastic model) 3 To develop three non-linear F.E. formulations and to study their performances for both bond models 4 To combine time effects and cracking of concrete Q-H. Nguyen PhD Thesis Defense
  • 31. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 2 Elastic analysis of composite beams Basic assumptions Governing Equations of Composite Steel-Concrete Beams Exact Stiffness Matrix - Elastic behaviour Comparison of the two bond models Q-H. Nguyen PhD Thesis Defense
  • 32. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Basic assumptions 1 Euler-Bernoulli’s assumption for both the slab and the profile 2 Slip can occur at the slab/profile interface but no uplift 3 Deformations and displacements remain small 4 Local buckling and torsional stress are not accounted for 5 Fiber discretization to describe section behaviour 6 Spring model to describe the force transfer mechanism through bond Q-H. Nguyen PhD Thesis Defense
  • 33. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Basic assumptions 1 Euler-Bernoulli’s assumption for both the slab and the profile 2 Slip can occur at the slab/profile interface but no uplift 3 Deformations and displacements remain small 4 Local buckling and torsional stress are not accounted for 5 Fiber discretization to describe section behaviour 6 Spring model to describe the force transfer mechanism through bond Q-H. Nguyen PhD Thesis Defense
  • 34. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Basic assumptions 1 Euler-Bernoulli’s assumption for both the slab and the profile 2 Slip can occur at the slab/profile interface but no uplift 3 Deformations and displacements remain small 4 Local buckling and torsional stress are not accounted for 5 Fiber discretization to describe section behaviour 6 Spring model to describe the force transfer mechanism through bond Q-H. Nguyen PhD Thesis Defense
  • 35. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Basic assumptions 1 Euler-Bernoulli’s assumption for both the slab and the profile 2 Slip can occur at the slab/profile interface but no uplift 3 Deformations and displacements remain small 4 Local buckling and torsional stress are not accounted for 5 Fiber discretization to describe section behaviour 6 Spring model to describe the force transfer mechanism through bond Q-H. Nguyen PhD Thesis Defense
  • 36. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Basic assumptions 1 Euler-Bernoulli’s assumption for both the slab and the profile 2 Slip can occur at the slab/profile interface but no uplift 3 Deformations and displacements remain small 4 Local buckling and torsional stress are not accounted for 5 Fiber discretization to describe section behaviour 6 Spring model to describe the force transfer mechanism through bond Q-H. Nguyen PhD Thesis Defense
  • 37. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Basic assumptions 1 Euler-Bernoulli’s assumption for both the slab and the profile 2 Slip can occur at the slab/profile interface but no uplift 3 Deformations and displacements remain small 4 Local buckling and torsional stress are not accounted for 5 Fiber discretization to describe section behaviour 6 Spring model to describe the force transfer mechanism through bond Q-H. Nguyen PhD Thesis Defense
  • 38. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing Equations of Composite Steel-Concrete Beams 1 Equilibrium Distributed bond Discrete bond 2 Compatibility 3 Constitutive relations 2 2 d ( ) ( ) 0 d d ( ) ( ) 0 d d ( ) d ( ) 0 dd c sc s sc sc z N x D x x N x D x x M x D x H p xx + = − = + + = =sc sc eD∂ − ∂ −D P 0 Matrix form zp cH cM dc cM M+ dc cN N+ dc cT T+ cN cT scV scD dx ds sM M+ ds sN N+ ds sT T+ sM sN sT scD sH x z y Q-H. Nguyen PhD Thesis Defense
  • 39. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing Equations of Composite Steel-Concrete Beams 1 Equilibrium Distributed bond Discrete bond 2 Compatibility 3 Constitutive relations unconnected element cN + cM + sN + sM + sN − sM − cN − cM − cN cM sN sM stQ stQ 0xΔ = connector element =e∂ −D P 0 Unconnected beam segment Single connector 1 1 s c st N N Q M H ⎡ ⎤ ⎡ ⎤ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦ Q-H. Nguyen PhD Thesis Defense
  • 40. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing Equations of Composite Steel-Concrete Beams 1 Equilibrium Distributed bond Discrete bond 2 Compatibility 3 Constitutive relations H scd su cu θ θ v x z y 2 2 d ( ) ( ) d d ( ) ( ) d d d ( ) ( ) ( ( ) ) ( ) d ( ) d c c s sc s c s u x x x u x x x v x x v x d x u x u x H x x ε ε κ = = = + − = − Matrix form T sc scd = ∂ = ∂e d d Q-H. Nguyen PhD Thesis Defense
  • 41. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing Equations of Composite Steel-Concrete Beams 1 Equilibrium Distributed bond Discrete bond 2 Compatibility 3 Constitutive relations [ ]nonlinear( ) ( )x f x=D e ( ) ( )x x=D k e Section constitutive law Section stiffness matrix [ ]nonlinear( ) ( )sc scD x f d x= ( ) ( )sc sc scD x k d x= Bond constitutive law linear elastic behaviour Bond stiffness Fiber discretization of cross-section y z linear elastic behaviour Q-H. Nguyen PhD Thesis Defense
  • 42. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Exact Stiffness Matrix - Elastic behaviour Distributed bond Equilibrium in term of the displacements 5 3 2 15 3 3 4 2 2 33 4 2 2 4 2 d d d d d d d d d d d d dd s s s s s c s u u x x v u u x x x u v u u H xx μ ζ ζ ζ ζ ⎧ − =⎪ ⎪ ⎪ = +⎨ ⎪ ⎪ = + +⎪ ⎩ Analytical solution compatibility relations constitutive relations Exact displacement fields ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ) ) ( (s s c c s c v v u x Z x u x x Z x x v x x Z x x x Z xθ θθ = + = + = + = + X C X C X C X C Exact force fields ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) s s c c s N N c N N M M T T N x x Z x N x x Z x M x x Z x T x x Z x = + = + = + = + X C X C X C X C ( ) ( ) 2 sinh cos( h 1 0 0) 0s x x xx xμ μ⎡ ⎤= ⎣ ⎦ X Q-H. Nguyen PhD Thesis Defense
  • 43. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Exact Stiffness Matrix - Elastic behaviour Distributed bond 0= +eK q Q Q 1 1,Q q 2 2,Q q 3 3,Q q 4 4,Q q 5 5,Q q 6 6,Q q 7 7,Q q 8 8,Q q L 1 8( 0) ... ( ) z c p Q N x Q M x L= − = = = ↔ = +Q YC Q Static boundary conditions ( ) 1 8 1 ( 0) ... ( ) z c p q u x q x Lθ − = = = = → = −C X q q Kinematic boundary conditions Exact siffness matrix Q-H. Nguyen PhD Thesis Defense
  • 44. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Exact Stiffness Matrix - Elastic behaviour Discrete bond Composite beam element with discrete bond ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j θ ( )j cu ( )i v ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j v ( )j θ ( )j su ( )j θ ( )j v ( )j θ += + ( )i v ( )i cu ( )i su Connector element Unconnected beam element Connector element Q-H. Nguyen PhD Thesis Defense
  • 45. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Exact Stiffness Matrix - Elastic behaviour Discrete bond Composite beam element with discrete bond ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j θ ( )j cu ( )i v ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j v ( )j θ ( )j su ( )j θ ( )j v ( )j θ += + ( )i v ( )i cu ( )i su Connector element Unconnected beam element Connector element nc eK Exact sitffness matrix Analytical solution Q-H. Nguyen PhD Thesis Defense
  • 46. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Exact Stiffness Matrix - Elastic behaviour Discrete bond Composite beam element with discrete bond ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j θ ( )j cu ( )i v ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j v ( )j θ ( )j su ( )j θ ( )j v ( )j θ += + ( )i v ( )i cu ( )i su Connector element Unconnected beam element Connector element nc eK Exact sitffness matrix Analytical solution st iK Exact sitffness matrix Analytical solution st jK Exact sitffness matrix Analytical solution Q-H. Nguyen PhD Thesis Defense
  • 47. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Exact Stiffness Matrix - Elastic behaviour Discrete bond Composite beam element with discrete bond ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j θ ( )j cu ( )i v ( )i cu ( )i su ( )i θ ( )j cu ( )j su ( )j v ( )j θ ( )j su ( )j θ ( )j v ( )j θ += + ( )i v ( )i cu ( )i su Connector element Unconnected beam element Connector element nc eK Exact sitffness matrix Analytical solution st iK Exact sitffness matrix Analytical solution st jK Exact sitffness matrix Analytical solution Exact sitffness matrix eK assembly Q-H. Nguyen PhD Thesis Defense
  • 48. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models 20kN/m 6m 12m 40kN/m 12mmφ 800mm 100mm IPE 200 200mm 80mm Nelson 75-16 34GPa 210GPa 300000kN/m 1m c s st E E k s = = = = :stiffness of a single row of shears studs :connector spacing :equivalent distributed bond stiffness st sc k s k 300MPast sc k k s = = Discrete bond model: using 18 elements Distributed bond model: using 2 elements Q-H. Nguyen PhD Thesis Defense
  • 49. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models 0 2 4 6 8 10 12 14 16 18 -20 0 20 40 60 80 100 120 140 160 180 200 Distance from left support [m] Deflection[mm] Discrete bond model Distributed bond model 176 mm 180 mm 20kN/m40kN/m Deflection distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 50. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models 0 2 4 6 8 10 12 14 16 18 -1.5 -1 -0.5 0 0.5 1 1.5 2 Distance from left support [m] Slip[mm] Discrete bond model Distributed bond model 20kN/m40kN/m 0.7− 1.1− Slip distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 51. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models 0 2 4 6 8 10 12 14 16 18 -0.03 -0.02 -0.01 0 0.01 0.02 Distance from left support [m] Curvature[1/m] Discrete bond model Distributed bond model 20kN/m40kN/m Curvature distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 52. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models 0 2 4 6 8 10 12 14 16 18 -1000 -800 -600 -400 -200 0 200 400 600 800 1000 Distance from left support [m] Axialforceintheconcreteslab[kN] Discrete bond model Distributed bond model 20kN/m40kN/m Axial force distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 53. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models Conclusions Discrete bond model: Discontinuities of axial force and curvature Distributed bond model: all fields are continuous Two distributed bond elements gives nearly identical results as eighteen discrete bond elements The discrete bond model represents the true connection and it is simple to use but it requires a large number of elements Q-H. Nguyen PhD Thesis Defense
  • 54. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 3 Time-Dependent Behaviour Time Effects in Concrete Time-discretized analytical solution for composite beams Applications Conclusions Q-H. Nguyen PhD Thesis Defense
  • 55. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time Effects in Concrete 1 Strain in concrete grow in time 2 Shrinkage 3 Creep 4 Aging material 5 Play an important role in serviceability Curves of shrinkage, creep and recovery after unloading 0t (start of drying) loading 2t unloading1t εsh = DRYING SHRINKAGE ELASTIC RECOVERY CREEP RECOVERY σε ε ε= − sh εsh σ εv = CREEP εe= INITIAL ELASTIC STRAIN t t t εsh(t) σε ( )t ε( )t Recovery Load - free Companion Specimen Loaded (Creep) Specimen Specimen Unloaded σ Q-H. Nguyen PhD Thesis Defense
  • 56. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Linear viscoelastic model for concrete Linear creep assumption: εc(t) = σcJ(t, t1) Q-H. Nguyen PhD Thesis Defense
  • 57. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Linear viscoelastic model for concrete Linear creep assumption: εc(t) = σcJ(t, t1) Principle of superposition in time (Boltzmann, 1874) cε 1t 2t 2t 1σ 2σ 1 2σ σ+ 2( )tε 1( )tε cσ cε cε 1t cσ cσ 1t 2t 2t1t 2( )tε 1( )tε t t t t t t Q-H. Nguyen PhD Thesis Defense
  • 58. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Linear viscoelastic model for concrete Linear creep assumption: εc(t) = σcJ(t, t1) Principle of superposition in time (Boltzmann, 1874) cε 1t 2t 2t 1σ 2σ 1 2σ σ+ 2( )tε 1( )tε cσ cε cε 1t cσ cσ 1t 2t 2t1t 2( )tε 1( )tε t t t t t t Integral-type relation εc(t) = σc(t1)J(t, t1) + t t1 J(t, τ) dσc(τ) dτ dτ + εsh(t) Q-H. Nguyen PhD Thesis Defense
  • 59. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time discrete approach General method (step-by-step) 1 , 1 ( ) ( )( ) ( ) ( ) n c n sh n n i c i i c n c nE t t tt t εε σσ − = ≅ − + Ψ⎡ ⎤⎣ ⎦ ∑ 2 1 1 , 1 1 1 1 ( , ) ( , ) if i 1 ( , ) ( , ) 2 ( ) ( , ) ( , ) ( , ) ( , ) if i 1 ( , ) ( d , an ) n n n n n n c n n i n n n n n i k i n n n n J t t J t t J t t J t t E t J t t J t t J t t J t t J t t J t t − − + − − ⎧ − ⎪ = +⎪ ⎪ = Ψ = ⎨ + ⎪ −⎪ > ⎪ +⎩ [ ][ ] 1 1 1 1 1 d ( ) 1 ( , ) d ( , ) ( , ) ( ) ( ) d 2 nt n n n i n i i i it J t J t t J t t t t σ τ τ τ σ σ τ − + + = ≅ + −∑∫ Trapezoidal rule Time-discrete constitutive relation where Q-H. Nguyen PhD Thesis Defense
  • 60. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time discrete approach Algebraic method (one step) [ ] 1 1 1 d ( ) ( , ) d ( ) ( ) d ( , ) with nt n n n t nJ t t tJt t tτ σ τ τ τ σ σ τ τ ≅ − ≤ ≤∫ Effective modulus (EM) method (McMilan, 1916) 1 1 1 1 ( , ) (( , )) , ( ) n n n c J t t J t t E t t ϕ τ + = = Time-discrete constitutive relation 1( ) ( ))( ) ( ( )c nc n c n sh n ct tE t t tσ ε ε σ≅ − + Ψ⎡ ⎤⎣ ⎦ [ ]1( , ) 1 ( , ) ( , ) 2 n n nn J t t JJ t tt τ = + Mean stress (MS) method (Hansen, 1964) Age adjusted effective modulus (AAEM) method (Bažant, 1972) 1 1 1 1 ( , ) ( , ) ( , ) ( ) n c n n J t t t t E t t χ ϕ τ + = creep coefficient aging coefficient Q-H. Nguyen PhD Thesis Defense
  • 61. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time discrete approach Rate-type (internal variables) method (Bažant, 1971) 0 1 1 1 ( , ) 1 exp ( ) m i ii t J t E D τ τ τ τ= ⎡ ⎤⎛ ⎞− ≅ + −⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦ ∑ The creep function is approximated by the Dirichlet series 0 1 0 ( ) 1 ( ) ( ) with ( ) 1 exp ( ) tm i i i ii t t t t t d E D σ τ ε ε ε τ τ τ= ⎡ ⎤⎛ ⎞− = + = −⎢ ⎥⎜ ⎟ ⎝ ⎠⎣ ⎦ ∑ ∫ The integral-type relation becomes Time-discrete constitutive relation ( )shE εσ ε ε′Δ ′− Δ − ΔΔ= 0E ( ) ( ) ( )i i i iE t D t D tτ= − ( ) ( )i i it D tη τ= ( )m tη ( )mE t 1( )tη 1( )E t ( )tσ( )tσ Aging Kelvin chain Q-H. Nguyen PhD Thesis Defense
  • 62. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time-discretized analytical solution for composite beams 1 For one-step method Faella et al. 2002 Ranzi and Bradford 2005 2 For rate-type (internal variables) method Jurkiewiez et al. 2005 3 For general method The solution is presented in the following Q-H. Nguyen PhD Thesis Defense
  • 63. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time-discretized analytical solution for composite beams 1 For one-step method Faella et al. 2002 Ranzi and Bradford 2005 2 For rate-type (internal variables) method Jurkiewiez et al. 2005 3 For general method The solution is presented in the following Q-H. Nguyen PhD Thesis Defense
  • 64. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time-discretized analytical solution for composite beams Time-discrete force-deformation relations N(n) s = (EA)s ε(n) s N(n) c = (EA)(n) c ε(n) c − (EA)(n) co ε (n) sh + (EB)(n) c κ(n) + n−1 i=1 Ψn,i N(i) co M(n) = (EB)(n) c ε(n) c − (EB)(n) co ε (n) sh + (EI)(n) κ(n) + n−1 i=1 Ψn,i M(i) co where N(i) co = α (i) 1 x2 + α (i) 2 x + α (i) 3 + i j=1 β (i,j) 1 sinh(µjx) + β (i,j) 2 cosh(µjx) M(i) co = α (i) 4 x2 + α (i) 5 x + α (i) 6 + i j=1 β (i,j) 3 sinh(µjx) + β (i,j) 4 cosh(µjx) Q-H. Nguyen PhD Thesis Defense
  • 65. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time-discretized analytical solution for composite beams Equilibrium in term of displacements d5 u (n) s dx5 − µ2 n d3 u (n) s dx3 = ζ (n) 1 + ζ (n) 2 n−1 i=1 Ψn,i d2 M (i) co dx2 + ζ (n) 3 n−1 i=1 Ψn,i d2 N (i) co dx2 d3 v(n) dx3 = ζ (n) 4 d4 u (n) s dx4 + ζ (n) 5 d2 u (n) s dx2 + ζ (n) 6 n−1 i=1 Ψn,i dN (i) co dx Analytical solution u(n) s = X(n) s C(n) + Z(n) s (x) + n−1 i=1 a(n,i) s sinh(µix) + b(n,i) s cosh(µix) v(n) = X(n) v C(n) + Z(n) v (x) + n−1 i=1 a(n,i) v sinh(µix) + b(n,i) v cosh(µix) Q-H. Nguyen PhD Thesis Defense
  • 66. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Time-discretized analytical solution for composite beams Time-discretized exact stiffness matrix ( )( )( 0 ) ( )n nn n = +e q Q QK ( ) ( ) 1 1,n n Q q Exact siffness matrix at the instant ( ) ( ) 2 2,n n Q q ( ) ( ) 3 3,n n Q q ( ) ( ) 4 4,n n Q q ( ) ( ) 8 8,n n Q q ( ) ( ) 5 5,n n Q q ( ) ( ) 6 6,n n Q q ( ) ( ) 7 7,n n Q q L ( ) ( )( ) ( ) 1 8( 0) ... ( )n nn n cq u x q x Lθ= = = = Kinematic boundary conditions ( ) ( )( ) ( ) 1 8( 0) ... ( )n nn n cQ N x Q M x L= − = = = Static boundary conditions Composite beam element nt Q-H. Nguyen PhD Thesis Defense
  • 67. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Applications 2300mm 200mm 934 mm 64.56kN/m 25m 25m cG sG 2 20 300mm× 2 1550 15mm× 2 30 450mm× 2 3 8 4 2 3 8 4 100mm 460000mm 0m 15.3310 mm 934 mm 42800mm 0m 159.4910 mm c c c c s s c s H A S I H A S I = = = = = = = = 666mm Creep and shrinkage functions are defined in CEB-FIP Model Code 1990 0 0 28 030days, 30MPa, 80%, 196mm, 0.25sh ct t f RH h s= = = = = = Two-span composite beam analyzed by Dezi and Tarantino, 1993 Q-H. Nguyen PhD Thesis Defense
  • 68. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison with existing model 10 1 10 2 10 3 10 4 10 5 -2017 -2016 -2015 -2014 -2013 -2012 -2011 -2010 -2009 -2008 -2007 -2006 Time [days] RedundantreactionR[kN] Distributed bond - general method Dezi and Tanrantino 64.56kN/m 25m 25m = 0.4 kN/mm²sck = 0.1kN/mm²sck 2007.16 2012.30 2013.51 2015.60 2007.72 2013.08 2016.30 2013.87 R Time evolution of the redundant reaction at intermediate support Q-H. Nguyen PhD Thesis Defense
  • 69. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the two bond models 0 10 20 30 40 50 0 5 10 15 20 25 30 Distance from left support [m] Deflection[mm] Discrete bond model (80 elements) Distributed bond model (2 elements) 64.56kN/m 25550days 30days Deflection distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 70. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of time-discrete approaches 10 1 10 2 10 3 10 4 10 5 17 18 19 20 21 22 23 24 Time [days] Midspandeflection[mm] Step-by-step method "Rate-type" method AAEM method EM method MS method 64.56kN/m 25m 25m Creep effect only Time evolution of midspan deflection Q-H. Nguyen PhD Thesis Defense
  • 71. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Effect of Creep and Shrinkage on Deflection 0 10 20 30 40 50 0 5 10 15 20 25 30 35 40 Distance from left support [m] Deflection[mm] 30 days 25550 days: creep only t=25550 days: creep + shrinkage 64.56kN/m 27% 39% Deflection distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 72. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Effect of Creep and Shrinkage on Bending Moment 0 10 20 30 40 50 -10000 -8000 -6000 -4000 -2000 0 2000 4000 Distance from left support [m] Bendingmoment[kN.m] 30 days 25550 days: creep only t=25550 days: creep + shrinkage 70% Bending moment distribution along the beam Q-H. Nguyen PhD Thesis Defense
  • 73. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Conclusions An original time-discretized analytical solution has been derived Compare to discrete bond model, the distributed bond model leads to a quite complexe solution but it reduces significantly the number of elements General method gives precise results but it requires the storage of the whole stress history "Rate-type" method gives nearly identical results as general method. This method avoids almost data storage but the determination of model parameters is quite complexe Among algebraic methods, AAEM method seems to perform very well A significant impact of shrinkage Q-H. Nguyen PhD Thesis Defense
  • 74. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 4 Nonlinear Behaviour of Materials Constitutive Models of Steel Constitutive Models of Shear Stud Constitutive Models of Concrete Q-H. Nguyen PhD Thesis Defense
  • 75. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Constitutive models of steel 1 Models based on explicit stress-strain relationship 2 Models based on plasticity framework One-dimensional problem Easy to implement for monotonic loading Cyclic models not easy to formulate Menegotto-Pinto model ( )1 0 r 1 ξ ε ε− ( )2 0 r 2 ξ ε ε− 0E 0E0E hE hE ( )0 ,r rε σ ( )0 0 1 ,ε σ ( )0 0 0 ,ε σ ( )0 0 2 ,ε σ ( )2 ,r rε σ ( )1 ,r rε σ σ ε Q-H. Nguyen PhD Thesis Defense
  • 76. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Constitutive models of steel 1 Models based on explicit stress-strain relationship 2 Models based on plasticity framework ( )e p Eσ ε ε= − Elastic stress-strain relationship Yield condition and closure of the elastic range Flow rule, isotropic and kineatic hardening laws Kunh-Tucker complementarity conditions Consistency condition ( ) ( )0 , , , 0 , , , 0f f XR RXλ σ λ σ≥ ≤ = ( ) ( ), , 0 if , , 0f fRX X Rλ σ σ= = p sign( )Xε λ σ= − p λ= sign( )Xα λ σ= − Kinematic hardening stress-like variable Kinematic hardening strain-like variable ( ) ( )(, 0), ( )yR R pf X X ασ σ σ= − − + ≤ Isotropic hardening strain-like variable Isotropic hardening stress-like variable Q-H. Nguyen PhD Thesis Defense
  • 77. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Constitutive models of steel 1 Models based on explicit stress-strain relationship 2 Models based on plasticity framework More involved Cyclic behaviour is included in the model Serveral physical phenomena can be coupled: damage, time effects ... yε σ ε yσ uσ hε uε yε−hε−uε− yσ− uσ− O 1O2O 3O4O Monotonic loading Cyclic loading Linear isotropic hardening model Q-H. Nguyen PhD Thesis Defense
  • 78. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Constitutive models of shear stud 1 Discrete bond: The following models are selected to describe the behaviour of one shear stud P δ δ δ δ P P P uPuP uP 1 u0.95P P= 2 fu1.05P P= fuP uδ 1δ 2δ ( ) 2 u 11 exp c P P c δ= −⎡ ⎤⎣ ⎦ 0E0E 0E 0E Elastic-perfectly plastic model Ollgaard et al., 1971 Salari, 1999 2 Distributed bond: The equivalent distributed bond strength and stiffness are calculated by dividing the strength and stiffness of a single row of shear studs by their distance along the beam. Q-H. Nguyen PhD Thesis Defense
  • 79. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Constitutive models of concrete Explicit stress-strain relationship recommended by CEB-FIP Model Code 1990 Good approach of stress-strain monotonic curve in compression No unloading information No ascending branch of stress-strain monotonic curve in tension 1cE c E 1c ε ,limc ε cm f− 0.5 cm f− 0.9 ctm f ctm f 15% cε Compression Tension cσ Goals: To develop a model for concrete based on the elasto-plastic damage theory 1 Reproduce exactly stress-strain monotonic curve in compression of CEB-FIP Model Code 1990 2 Take into account the degradation of the elastic moduli 3 Take into account the tension softening response Q-H. Nguyen PhD Thesis Defense
  • 80. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Constitutive models of concrete Explicit stress-strain relationship recommended by CEB-FIP Model Code 1990 Good approach of stress-strain monotonic curve in compression No unloading information No ascending branch of stress-strain monotonic curve in tension 1cE c E 1c ε ,limc ε cm f− 0.5 cm f− 0.9 ctm f ctm f 15% cε Compression Tension cσ Goals: To develop a model for concrete based on the elasto-plastic damage theory 1 Reproduce exactly stress-strain monotonic curve in compression of CEB-FIP Model Code 1990 2 Take into account the degradation of the elastic moduli 3 Take into account the tension softening response Q-H. Nguyen PhD Thesis Defense
  • 81. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing equation of the elasto-plastic damage model Assumption of a Helmholtz-free energy Change of the compliance as internal variable (Govindjee at al., 1995)d D ( ) ( ) 1 2d 0 pdp p1 ( , , ) ( ) 2 DD Dp pεε ε ε − Ψ − = + − + Ψ Elastic damage part plastic part Thermodynamically associated variables ( )p 2 d 1ˆ; ; 2p R Y D σ ε ε σ ∂Ψ ∂Ψ ∂Ψ = = = = − ∂ − ∂ ∂ ε σ σ p ε ε 0E d ε e ε 0EE ( ) 1d d D E − = e ε ( ) 2d d d1 2 E εΨ = ( ) 2e 0 e1 2 E εΨ = Q-H. Nguyen PhD Thesis Defense
  • 82. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing equation of the elasto-plastic damage model Assumption of a Helmholtz-free energy Change of the compliance as internal variable (Govindjee at al., 1995)d D ( ) ( ) 1 2d 0 pdp p1 ( , , ) ( ) 2 DD Dp pεε ε ε − Ψ − = + − + Ψ Elastic damage part plastic part Thermodynamically associated variables ( )p 2 d 1ˆ; ; 2p R Y D σ ε ε σ ∂Ψ ∂Ψ ∂Ψ = = = = − ∂ − ∂ ∂ ( ) ( )ˆ, , ( ) 0yf R Y pRσ σ σ= − − ≤ Yield/damage condition ε σ σ p ε ε 0E d ε e ε 0EE ( ) 1d d D E − = e ε ( ) 2d d d1 2 E εΨ = ( ) 2e 0 e1 2 E εΨ = Q-H. Nguyen PhD Thesis Defense
  • 83. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Governing equation of the elasto-plastic damage model Assumption of a Helmholtz-free energy Change of the compliance as internal variable (Govindjee at al., 1995)d D ( ) ( ) 1 2d 0 pdp p1 ( , , ) ( ) 2 DD Dp pεε ε ε − Ψ − = + − + Ψ Elastic damage part plastic part Thermodynamically associated variables ( )p 2 d 1ˆ; ; 2p R Y D σ ε ε σ ∂Ψ ∂Ψ ∂Ψ = = = = − ∂ − ∂ ∂ Flow rule, damage and hardning/softening laws ( ) ( )ˆ, , ( ) 0yf R Y pRσ σ σ= − − ≤ Yield/damage condition ( ) ( )p d 1 1 1 sign( ) ; sign( ) ; ˆ f f f D p RY ε λ λ σ λ λ σ λ λ σ β β β β σ ∂ ∂ ∂ = − = − − = = − − = = − ∂ ∂∂ β : scalar paramater, proposed by Meschke et al, 1997 ε σ σ p ε ε 0E d ε e ε 0EE ( ) 1d d D E − = e ε ( ) 2d d d1 2 E εΨ = ( ) 2e 0 e1 2 E εΨ = Q-H. Nguyen PhD Thesis Defense
  • 84. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Determination of the hardening/softening functions Introducing a scalar parameter ζ ( ) 0 1 p E ζ σ ε − = + ε σ σ 0E 0EE e ε p ε d ε e ε d E ( )p d 1 pζε ε+ = + Assumption Q-H. Nguyen PhD Thesis Defense
  • 85. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Determination of the hardening/softening functions Introducing a scalar parameter ζ Monitonic loading condition ( ) ( )ˆ, , ( ) 0yf R Y R pσ σ σ= − + = ( ) 0 1 p E ζ σ ε − = + ε σ σ 0E 0EE e ε p ε d ε e ε d E ( )p d 1 pζε ε+ = + Assumption Q-H. Nguyen PhD Thesis Defense
  • 86. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Determination of the hardening/softening functions Introducing a scalar parameter ζ Monitonic loading condition ( ) ( )ˆ, , ( ) 0yf R Y R pσ σ σ= − + = ( )σ σ ε= ( ) 0 1 p E ζ σ ε − = + Explicit stress-strain relationship ε σ σ 0E 0EE e ε p ε d ε e ε d E ( )p d 1 pζε ε+ = + Assumption Q-H. Nguyen PhD Thesis Defense
  • 87. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Determination of the hardening/softening functions Introducing a scalar parameter ζ Monitonic loading condition ( ) ( )ˆ, , ( ) 0yf R Y R pσ σ σ= − + = ( )σ σ ε= ( ) 0 1 p E ζ σ ε − = + ( )R R p= Hardening/softening functions may be explicitly obtained Explicit stress-strain relationship ε σ σ 0E 0EE e ε p ε d ε e ε d E ( )p d 1 pζε ε+ = + Assumption Q-H. Nguyen PhD Thesis Defense
  • 88. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Determination of the hardening/softening functions In compression In tension ( ) 1 2 2 2 1 2 2 3 4 1 3 2 2 32 2 1 2 0 0 0 ˆ( ) 1 ˆ cos arccos 3 c i i i i i i i i i R p p p p p p p p p p p p ζ ζ ζ ζ ζ β β η η μ + − = = = ⎡ ⎤ = − + + − − +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟+ − + +⎨ ⎬⎜ ⎟ ⎜ ⎟⎢ ⎥⎜ ⎟ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭ ∑ ∑ ∑ By using the stress-strain relationship of the CEB-FIP Model Code 1990, we obtain Hyperbolic softening law (Meschke et al., 1997) 2( ) 1 ct t u f R p p p = ⎛ ⎞ +⎜ ⎟ ⎝ ⎠ 0E ctf σ εctε p tR relation σ ε− ( )tR p 0 d 01 E E D+ tension ( )1 t u ct c G p f l ζ = + fracture energy characteristic length :tG :cl Q-H. Nguyen PhD Thesis Defense
  • 89. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Integration algorithm for the elasto-plastic damage model I 1 Data at the time tn: {σn, εn, εp n, pn, Dd n} 2 Give at the time tn+1: ∆ε ⇒ εn+1 = εn + ∆ε 3 Predictor: compute elastic trial stress and test for inelastic loading σtrial n+1 = 1 Dn (εn+1 − εp n) Rtrial = R(pn) f trial n+1 = σtrial n+1 − Rtrial IF f trial n+1 ≤ 0 THEN εp n+1 = εp n pn+1 = pn Dd n+1 = Dd n σn+1 = σtrial n+1 END → EXIT ELSE proceed to step 4 Q-H. Nguyen PhD Thesis Defense
  • 90. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Integration algorithm for the elasto-plastic damage model II 4 Corrector: by using the Kuhn-Tucker’s conditions, compute ∆λ and then update the other variables ∆λ = ∆p = pn+1 − pn εp n+1 = εp n + (1 − β) ∆λsign(σtrial n+1 ) σn+1 = 1 Dn (εn+1 − εp n) − ∆λ Dn sign σtrial n+1 Dd n+1 = Dd n + ∆Dd = Dd n + β∆λ sign(σtrial n+1 ) σn+1 Compute the tangent modulus Etg n+1 = ∂σ ∂ε n+1 = 1 Dn+1 − 1 Dn+1 − (Dn+1) 2 ∂R ∂p n+1 END → EXIT Q-H. Nguyen PhD Thesis Defense
  • 91. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Numerical comparisons -7-6-5-4-3-2-10 -30 -25 -20 -15 -10 -5 0 ζ β = = = − = 0 Material parameters 27.9[MPa] 30000[MPa] 0.647 0.4 cmf E [mm/m]ε [MPa]σ Proposed model Karsan and Jirsa, 1969 Simulation of cyclic compression test 0 0.1 0.2 0.3 0.4 0.5 0.6 0 1 2 3 4 [MPa]σ [mm/m]ε ζ = = = = = − 0 Material parameters 3.5[MPa] 31000[MPa] 65[N/m] 68[mm] 0.2 ct t c f E G l Proposed model Gopalaratnam and Shah, 1987 Simulation of cyclic tension test Good agreement of the calculated curve with the experiments is observed Q-H. Nguyen PhD Thesis Defense
  • 92. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 5 Finite Element Formulations Displacement-Based Formulation Force-Based Formulation Two-field Mixed Formulation State Determination Algorithm Applications Q-H. Nguyen PhD Thesis Defense
  • 93. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Displacement-Based Formulation Assuming continuous displacement fields Compatibility is satisfied in strict sense Linearization of the constitutive equations Equilibrium is satisfied in weak form 1q 2q 3q 4q 5q 6q 7q 8q 9q 10q Element 10 DOF ( ) ( )x x=d a q ( ) ( ) ; ( ) ( )scx x d x x= = sce B q B q 1 1 1 1 ;i i i i i i i sc sc sc scD D k d− − − − = + Δ = + ΔD D k e ( )T d d 0 dsc sc e L D xδ δ∂ − ∂ − = ∀∫ D P 8 DOF: Xu and Aribert, 1995 10 DOF: Daniels and Crisinel, 1989 16 DOF: Dall'Asta and Zona, 2002 Q-H. Nguyen PhD Thesis Defense
  • 94. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Displacement-Based Formulation Assuming continuous displacement fields Compatibility is satisfied in strict sense Linearization of the constitutive equations Equilibrium is satisfied in weak form Governing equation of the finite element 1q 2q 3q 4q 5q 6q 7q 8q 9q 10q Element 10 DOF ( ) ( )x x=d a q ( ) ( ) ; ( ) ( )scx x d x x= = sce B q B q 1 1 1 1 ;i i i i i i i sc sc sc scD D k d− − − − = + Δ = + ΔD D k e ( )T d d 0 dsc sc e L D xδ δ∂ − ∂ − = ∀∫ D P 0 1i R − Δ = + −q Q Q QK T 1 T 1 d di i sc sc sc L L x k x− − = +∫ ∫B k B BK BElement stiffness matrix Element resisting forces T 1 T 11 d di i s sc L L i R cx D x−− − = +∫ ∫B D BQ 8 DOF: Xu and Aribert, 1995 10 DOF: Daniels and Crisinel, 1989 16 DOF: Dall'Asta and Zona, 2002 Q-H. Nguyen PhD Thesis Defense
  • 95. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Force-Based Formulation Assuming continuous force fields Equilibrium is satisfied in strict sense 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) sc sc sc sc sc D x x x x x x x = + = + + b Q c Q D Db Q c Q 1Q 2Q 3Q 4Q 5Q 1scQ 2scQ 3scQ /2L ( )scD x ( )scD x /2L Parabolic approximation of scD zp Discrete bond: exact force fields Distributed bond: parabolic bond force distribution (cubic approximation: Salari 1999; Alemdar 2001) 2 2 0 d 0 d d 0 d d d 0 dd c sc s sc sc N D x N D x M D H p xx + = − = + + = Distributed bond Element is internally determinate Equilibrium Exact force fields Element is internally indeterminate A bond force distribution is assumed Discrete bond ( )0scD = Is a particular solution of equilibrium equations0( )xDEquilibrium equations → Q-H. Nguyen PhD Thesis Defense
  • 96. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Force-Based Formulation Assuming continuous force fields Compatibility is enforced in a integral form Linearization of the constitutive equations Equilibrium is satisfied in strict sense 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) sc sc sc sc sc D x x x x x x x = + = + + b Q c Q D Db Q c Q 1 1 1 1 ;i i i i i i i sc sc sc scd d f D− − − − = + Δ = + Δe e f D ( ) ( )T T d d 0 ,sc L L x D d x Dδ δ δ δ∂ − + ∂ − = ∀∫ ∫D d e d Dsc sc sc 1Q 2Q 3Q 4Q 5Q 1scQ 2scQ 3scQ /2L ( )scD x ( )scD x /2L Parabolic approximation of scD zp Discrete bond: exact force fields Distributed bond: parabolic bond force distribution (cubic approximation: Salari 1999; Alemdar 2001) Q-H. Nguyen PhD Thesis Defense
  • 97. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Force-Based Formulation Assuming continuous force fields Compatibility is enforced in a integral form Linearization of the constitutive equations Equilibrium is satisfied in strict sense Governing equation of the force-based element 0 ( ) ( ) ( ) ( ) ( ) ( ) ( ) sc sc sc sc sc D x x x x x x x = + = + + b Q c Q D Db Q c Q 1 1 1 1 ;i i i i i i i sc sc sc scd d f D− − − − = + Δ = + Δe e f D ( ) ( )T T d d 0 ,sc L L x D d x Dδ δ δ δ∂ − + ∂ − = ∀∫ ∫D d e d Dsc sc sc 1Q 2Q 3Q 4Q 5Q 1scQ 2scQ 3scQ /2L ( )scD x ( )scD x /2L Parabolic approximation of scD zp Discrete bond: exact force fields Distributed bond: parabolic bond force distribution 1 0 i r − Δ = − − ΔQ qF q q Element flexibility matrix (cubic approximation: Salari 1999; Alemdar 2001) Q-H. Nguyen PhD Thesis Defense
  • 98. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Two-field Mixed Formulation Assuming continuous force fields 0( ) ( ) ( )x x x= + DD b Q ( ) ( )x x=d a q Assuming continuous displacement fields Ayoub and Filippou 2000 2Q zp 1Q 3Q 4Q 5Q 6Q 6 force DOF 1q 2q 3q4q 5q 6q 7q 8q9q 10q 10 displacement DOF Q-H. Nguyen PhD Thesis Defense
  • 99. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Two-field Mixed Formulation Assuming continuous force fields Slip compatibility is satisfied in strict sense 0( ) ( ) ( )x x x= + DD b Q ( ) ( )x x=d a q Assuming continuous displacement fields ( ) ( )scd x x= scB q Linearization of the constitutive equations 1 1 11 ; i i i i sc sc sc s i i i cD D k d−− − − = + Δ= + Δe e f D Ayoub and Filippou 2000 2Q zp 1Q 3Q 4Q 5Q 6Q 6 force DOF 1q 2q 3q4q 5q 6q 7q 8q9q 10q 10 displacement DOF Q-H. Nguyen PhD Thesis Defense
  • 100. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Two-field Mixed Formulation Assuming continuous force fields Slip compatibility is satisfied in strict sense 0( ) ( ) ( )x x x= + DD b Q ( ) ( )T T d d d ,sc sc e L L D x xδ δ δ δ∂ − ∂ − + ∂ − ∀∫ ∫D P D d e d D ( ) ( )x x=d a q Assuming continuous displacement fields ( ) ( )scd x x= scB q Linearization of the constitutive equations 1 1 11 ; i i i i sc sc sc s i i i cD D k d−− − − = + Δ= + Δe e f D Equilibrium and section strain compatiblity are enforced in a integral form (Hellinger Reissner variational principle) Ayoub and Filippou 2000 2Q zp 1Q 3Q 4Q 5Q 6Q 6 force DOF 1q 2q 3q4q 5q 6q 7q 8q9q 10q 10 displacement DOF Q-H. Nguyen PhD Thesis Defense
  • 101. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Two-field Mixed Formulation Assuming continuous force fields Slip compatibility is satisfied in strict sense 0( ) ( ) ( )x x x= + DD b Q ( ) ( )T T d d d ,sc sc e L L D x xδ δ δ δ∂ − ∂ − + ∂ − ∀∫ ∫D P D d e d D ( ) ( )x x=d a q Assuming continuous displacement fields ( ) ( )scd x x= scB q Linearization of the constitutive equations 1 1 11 ; i i i i sc sc sc s i i i cD D k d−− − − = + Δ= + Δe e f D Equilibrium and section strain compatiblity are enforced in a integral form (Hellinger Reissner variational principle) Governing equation of the two-field mixed element 1 1 0 T 1 i i sc e sc i r − − − ⎡ ⎤ ⎡ ⎤Δ + − −⎡ ⎤ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ Δ ⎦ K G q Q Q GQ Q G F qQ 0 1 e i R − Δ = + −q Q Q QK condense out ΔQ Ayoub and Filippou 2000 2Q zp 1Q 3Q 4Q 5Q 6Q 6 force DOF 1q 2q 3q4q 5q 6q 7q 8q9q 10q 10 displacement DOF Q-H. Nguyen PhD Thesis Defense
  • 102. State determination algorithm: Displacement vs. Force models Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Displacement-based element Equilibrium? Element resisting forces T T d di i sc sc L L i R x D x= +∫ ∫BQ B D Constitutive laws ( ) ; ( )i i R scR sc scD D d= =D D e Compute deformations ( ) ; ( )i i scx d xe yes Exit no 1i i= + General purpose finite element program Given displacements at the structural nodes Determinate resisting forces and stiffness matrix 1i g − q 1i gR − P 1i gU − ΔP A B D i gΔq gq gP 1i g − K 1
  • 103. State determination algorithm: Displacement vs. Force models Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Displacement-based element Equilibrium? Element resisting forces T T d di i sc sc L L i R x D x= +∫ ∫BQ B D Constitutive laws ( ) ; ( )i i R scR sc scD D d= =D D e Compute deformations ( ) ; ( )i i scx d xe yes Exit no 1i i= + Element resisting forces i RQ Constitutive laws ( ) ; ( )i i R scR sc scD D d= =D D e Compute deformations ( ) ; ( )i i scx d xe Compute element forces ;i i scQ Q Force-based element Compute internal forces ( ) ; ( )i i scx D xD
  • 104. State determination algorithm: Displacement vs. Force models Element resisting forces i RQ Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Force-based element Introduce an iteration scheme at the element level Consider element distributed loading For regular beams: Spacone, 1994; Spacone et al., 1996 For composite beams: Salari 1999; Alemdar 2001 Iteration sheme at the element level No element internal loading Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Force-based element Itearative element state determination Nodal displacements i q
  • 105. State determination algorithm: Displacement vs. Force models Element resisting forces i RQ Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Force-based element Introduce an iteration scheme at the element level Consider element distributed loading For regular beams: Spacone, 1994; Spacone et al., 1996 For composite beams: Salari 1999; Alemdar 2001 Iteration sheme at the element level No element internal loading Propose a new state determination for composite beam with element distributed loading Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Force-based element Itearative element state determination Nodal displacements i q
  • 106. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P Element displacements 1i i i− = + Δq q q n gP 1n g + P 101in gg −=+ Δ=ΔPP 1 0i n g g − = =q q 1i g − q i gq 1n g + q 1i gR − P 1i gU − ΔP A B D i gΔq Convergence gq gP 1i g − K 1 Structure level
  • 107. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Element displacements 1i i i− = + Δq q q A B C D 1i− q i q q 1j = Δq 2j = Δq 3j = Δq 2j = ΔQ 3j = ΔQ 1i− Q i Q 1j = ΔQ Q 1 1 1j = K 1 1i− K 2j = K j=3 convergence 1i− q i q q 1j = Δq 2j = Δq 3j = Δq scQ 1 12 2 sc sc j j sc −= = ⎡ ⎤− Δ⎣ ⎦Q QF q 1 sc i− QK 1 sc j = QK 2 sc j = QK 1 1 13 3 sc sc j j sc −= = ⎡ ⎤− Δ⎣ ⎦Q QF q 1j sc = ΔQ 2j sc = ΔQ 3j sc = ΔQ 1i sc − Q i scQ j=3 convergence A B C D Elementlevel 1 11 1 sc sc sc j j j j j j j j sc sc − −− − Δ = Δ ⎡ ⎤Δ = Δ − Δ⎣ ⎦Q Q Q Q K q Q K q F q
  • 108. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Element displacements 1i i i− = + Δq q q 1 0 j j j sc sc sc sc j j i jj sc D = = + + + Δ = = b Q c Q D bQ cQ D Particular solution due to the element distributed loads
  • 109. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations Element displacements 1i i i− = + Δq q q ( )xD 1 ( )xe 1j = ΔD 1i− D i D 2j = ΔD 3j = ΔD 1i− e 1j = Δe i e 2j = Δe 3j = Δe 1j R = D 2j R = D 1j = r 2j = r 1j = f 2j = f 1 1 1i− f A B C D 1 1j j j j j j− − Δ = Δ → = + Δe f D e e e ( )j j j j R= −r f D D Gauss-Labatto integration points
  • 110. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations 1j j − ⎡ ⎤= ⎣ ⎦K F Element stiffness Convergence? ,j j j j scR scRD D tol− − ≤D D Element displacements 1i i i− = + Δq q q
  • 111. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations 1j j − ⎡ ⎤= ⎣ ⎦K F Element stiffness Element residual 1j+ Δq displacements Convergence? ,j j j j scR scRD D tol− − ≤D D Element displacements 1i i i− = + Δq q q no next iteration j ( ) ( ) T T T T 1 1 d dsc sc sc j j sc sc L j j j j sc s j c L r x r x − + = − + ⎡ ⎤− ⎣ ⎦ Δ + ∫ ∫QQ Q Q b r b F F c r c q A B C D 1i− q i q q 1j = Δq 2j = Δq 3j = Δq 2j = ΔQ 3j = ΔQ 1i− Q i Q 1j = ΔQ Q 1 1 1j = K 1 1i− K 2j = K j=3 convergence Elementlevel
  • 112. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations 1j j − ⎡ ⎤= ⎣ ⎦K F Element stiffness Element residual 1j+ Δq displacements Convergence? ,j j j j scR scRD D tol− − ≤D D Element displacements 1i i i− = + Δq q q Element resisting forces ji R Q=Q yes no next iteration j
  • 113. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations 1j j − ⎡ ⎤= ⎣ ⎦K F Element stiffness Element residual 1j+ Δq displacements Convergence? ,j j j j scR scRD D tol− − ≤D D Element displacements 1i i i− = + Δq q q Element resisting forces ji R Q=Q Structure resisting forces assemble( )i R i R=P Q 1i gU tol+ Δ ≤P Convergence? 1i i gU ext R + Δ = −P P P Structure unbalanced forces yes no next iteration j
  • 114. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations 1j j − ⎡ ⎤= ⎣ ⎦K F Element stiffness Element residual 1j+ Δq displacements Convergence? ,j j j j scR scRD D tol− − ≤D D Element displacements 1i i i− = + Δq q q Element resisting forces ji R Q=Q Structure resisting forces assemble( )i R i R=P Q 1i gU tol+ Δ ≤P Convergence? 1i i gU ext R + Δ = −P P P Structure unbalanced forces Exit yes yes no next iteration j
  • 115. State determination algorithm for force-based element Structure equilibrium -1 Solve i i i g gUΔ = ΔK q P 1j i= Δ = Δq q Imposed displacements Element forces ;j j scQ Q Internal forces ;j j scDD Deformations ;j j scde Constitutive laws ; ; ;j j j j scR scRD fD f ;j j scrr Residual deformations 1j j − ⎡ ⎤= ⎣ ⎦K F Element stiffness Element residual 1j+ Δq displacements Convergence? ,j j j j scR scRD D tol− − ≤D D Element displacements 1i i i− = + Δq q q Element resisting forces ji R Q=Q Structure resisting forces assemble( )i R i R=P Q 1i gU tol+ Δ ≤P Convergence? 1i i gU ext R + Δ = −P P P Structure unbalanced forces Exit yes yes no no next iteration j next NR iteration i
  • 116. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison with experimental data 8φ 100 800 IPE 400 5 10φ 5 10φ section A A length unit: mm 650 650 650 650650 650 650 650 P 200 2500 2500 200 A A Poutre PI4 Load-deflection diagrams Simply-supported composite beam (Aribert et al., 1983) 0 50 100 150 0 100 200 300 400 500 Midspan displacement [mm] ForceP[kN] 18 Displacement-based elements 4 Force-based elements 4 Mixed element Experiment (Ariber al al., 1983) 0 50 100 150 0 100 200 300 400 500 Midspan displacement [mm] 18 Displacement-based elements 12 Force-based elements 12 Mixed element Experiment (Ariber al al., 1983) 33.3 mm30.7 mm Distributed bond Discrete bond Q-H. Nguyen PhD Thesis Defense
  • 117. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison with experimental data Slip distribution 0 0.5 1 1.5 Glissement[mm] 12 E.F. mixte Résultat exprérimental 650 mm 650 mm 650 mm 650 mm650 mm 650 mm 650 mm 650 mm P=257 kN P=334 kNP=366 kN P -1.5 -1 -0.5 0 Glissement[mm] 6 E.F. mixte Résultat exprérimental P=297 kN P=257 kN P=297 kN P=334 kN P=366 kN Discrete bond 9 connector element Distributed bond Q-H. Nguyen PhD Thesis Defense
  • 118. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison with experimental data P P 10 350× 10 350× 7 300× 100 2250 2250 2250 2250 100 B B C C Poutre PH3 10φ 100 800 HEA200 7.67 cm² section CC 8.04 cm² 10φ 100 800 HEA200 1.6cm² section BB 1.6cm² Two-span composite beam (Ansourian 1981) 0 10 20 30 40 50 60 0 50 100 150 200 250 300 Midspan displacement [mm] ForceP[kN] 24 Displacement-based elements 6 Force-based elements 6 Mixed element Experiment Load-deflection diagrams Distributed bond Q-H. Nguyen PhD Thesis Defense
  • 119. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison with experimental data -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0 50 100 150 200 250 300 Courbures [1/m] ForceP[kN] 24 E.F. déplacement 6 E.F. équilibre 6 E.F. mixte Résultat exprérimental P P 100 2250 2250 2250 2250 100 B B Poutre PH3 200 A A [ ]L : mm Distributed bond Section B-B (negative bending) Section A-A (Positive bending) Curvature [1/m] ForceP[kN] Q-H. Nguyen PhD Thesis Defense
  • 120. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the three finite element formulations 0p 2000mm 50mm50mm 20mm yσ sE 1 sE 1 σ ε yD scE 1 scE 1 scD scd 5 300MPa 2 10 MPa 200N/mm 1000MPa y s y sc E D E σ = = × = = A A section AA Cantilever composite beam Q-H. Nguyen PhD Thesis Defense
  • 121. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the three finite element formulations 2000mm 0p δ 0 100 200 0 2 4 6 8 10 12 14 Deflection [mm] 1 element 2 elements Converged solution δ 0 100 200 0 2 4 6 8 10 12 14 Deflection [mm] 1 element 2 elements Converged solution δ 0 100 200 0 2 4 6 8 10 12 14 Deflection [mm] Distributedload[kN/m] 1 element 2 elements 4 elements 64 elements Converged solution 0p δ Displacement-based element Force-based element Mixed element Load-deflection diagrams Q-H. Nguyen PhD Thesis Defense
  • 122. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the three finite element formulations 0 500 1000 1500 2000 -20 -15 -10 -5 0 5 x [mm] Bendingmoment[kN.m] 1 Displacement-based element 1 Force-based element 1 mixed element Converged solution 0p 7 kN/m= 0 500 1000 1500 2000 -50 0 50 100 150 200 250 X [mm] AxialforceNc[kN/m] 1 Displacement-based element 1 Force-based element 1 mixed element Converged solution 0p 7 kN/m= Poor representation of internal forces Displacement-based & mixed models Q-H. Nguyen PhD Thesis Defense
  • 123. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Comparison of the three finite element formulations 0 500 1000 1500 2000 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 x [mm] Curvature[1/m] 2 Displacement-based element 2 Force-based element 2 mixed element Converged solution 0p 7 kN/m= 0 500 1000 1500 2000 0 0.05 0.1 0.15 0.2 0.25 x [mm] Slip[mm] 2 Displacement-based element 2 Force-based element 2 mixed element Converged solution Force-based models Inter-element slip discontinuity Inter-element curvature discontinuity Displacement-based & mixed models Q-H. Nguyen PhD Thesis Defense
  • 124. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Conclusions Three finite element formulations have been developed for two bond models A new state determination algorithm for force-based element included element distributed loads was presented The numerical-experimental comparison shown validates the models reliability and the capacity to determine the experimental behaviour of composite beams Force-based element and mixed element are both computationally more efficient than the displacement-based element For the same number of elements, force-based element yields better results than mixed element Q-H. Nguyen PhD Thesis Defense
  • 125. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Outline 6 Time-Dependent Behaviour In the Plastic Range Introduction Viscoelastic/plastic Model for Concrete Applications Q-H. Nguyen PhD Thesis Defense
  • 126. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Introduction Viscoelastic models Suitable to linear analysis only Unable to account for the cracking due to shrinkage Viscoplastic models Complicate to implement 10 1 10 2 10 3 10 4 -10 -8 -6 -4 -2 0 2 4 6 Time [days] Stress[MPa] Tensile strength: 2.9 MPa 200mm 100mm ( ) 0.03mmtδ ∀ = − 100mm ( )tσ Concrete specimen C30, CEB-FIP model 1990 with shrinkage without shrinkage Stress relaxation according to viscoelastic model Q-H. Nguyen PhD Thesis Defense
  • 127. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Introduction Viscoelastic models Suitable to linear analysis only Unable to account for the cracking due to shrinkage Viscoplastic models Complicate to implement → propose a viscoelastic/plastic model 10 1 10 2 10 3 10 4 -10 -8 -6 -4 -2 0 2 4 6 Time [days] Stress[MPa] Tensile strength: 2.9 MPa 200mm 100mm ( ) 0.03mmtδ ∀ = − 100mm ( )tσ Concrete specimen C30, CEB-FIP model 1990 with shrinkage without shrinkage Stress relaxation according to viscoelastic model Q-H. Nguyen PhD Thesis Defense
  • 128. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Viscoelastic/plastic Model for Concrete Combination of linear visco-elasticity and continuum plasticity (Van Zijl et al., 2001) Decomposition of total strain ve ve ( ) ( ) ( )t E t tσ ε σ= + ve p sh ( ) ( ) ( ) ( )t t t tε ε ε ε= + + viscoelastic strain plastic strain shrinkage strain Viscoelastic model Plastic model Yield condition ( ) ( ), , ( ) 0yf R R pσ σ σ= − − ≤ p f ε λ σ ∂ = ∂ Flow rule ( )ve p sh ( ) ( ) ( ) ( ) ( )t E t t t tσ ε ε ε σ= − − + 0E 1( )E t 2 ( )E t H ( )mE t 1( )tη 2 ( )tη ( )m tη ( )tσ ( )tσ yσ ( )ve tε ( )p tε ( )sh tε Rheological viscoelastic/plastic model Q-H. Nguyen PhD Thesis Defense
  • 129. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Integration algorithm for Viscoelastic/plastic model I 1 Data at the time tn: {σn, εn, εp n, pn, γ (n) i } 2 Give at the time tn+1: {εn+1, εsh n+1} 3 Compute the parameters of the viscoelastic model: Eev n+1, σn+1 4 Viscoelastic Predictor: compute viscoelastic trial stress and test for plastic loading σ trial n+1 = Eve n+1 εn+1 − εp n − εsh n+1 + σn+1 f trial n+1 = f σtrial n+1 , R(pn) IF f trial n+1 ≤ 0 THEN viscoelastic step : εp n+1 = εp n pn+1 = pn σn+1 = σtrial n+1 END → EXIT ELSE plastic step: proceed to step 5 Q-H. Nguyen PhD Thesis Defense
  • 130. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Integration algorithm for Viscoelastic/plastic model II 5 Corrector: by using the Kuhn-Tucker’s conditions, compute ∆λ and then update the other variables pn+1 = pn + ∆λ εn+1 = εn + ∆λsign(σtrial n+1 ) σn+1 = σtrial n+1 + Eve n+1∆λsign(σtrial n+1 ) Compute the tangent modulus Etg n+1 = ∂σ ∂ε n+1 = Eve n+1    1 − Eve n+1 Eve n+1 + dR dp     END → EXIT Q-H. Nguyen PhD Thesis Defense
  • 131. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Simulation of relaxation test 10 1 10 2 10 3 10 4 -10 -8 -6 -4 -2 0 2 4 6 Time [days] Stress[MPa] Linear viscoelastic model Viscoelastic/plastic model Tensile strength: 2.9 MPa 10 1 10 2 10 3 10 4 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 Time [days] Strain[%] Total strain Viscoelastic strain Plastic strain Shrinkage strain Time evolution of stress Time evolution of strain 200mm 100mm ( ) 0.03mmtδ ∀ = − 100mm ( )tσ Concrete specimen C30, CEB-FIP model 1990 The proposed model is able to represent the cracking phenomena due to shrinkage Q-H. Nguyen PhD Thesis Defense
  • 132. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Simply-supported composite beam 0 100 200 300 400 500 0 10 20 30 40 50 60 Force P [kN] Flècheàmi-travée[mm] A = = → t 30 days P 0 400kN LoadP [kN] Midspandeflection[mm] 10 1 10 2 10 3 10 4 0 10 20 30 40 50 60 Temps [jours] Flècheàmi-travée[mm] avec retrait sans retrait A = = → P 400kN t 30 days 50 years Time [days] Midspandeflection[mm] without shrinkage effect with shrinkage effect 8φ 100 800 IPE 400 5 10φ 5 10φ section A A length unit: mm 650 650 650 650650 650 650 650 P 200 2500 2500 200 A A Poutre PI4 Simply-supported composite beam (Aribert et al., 1983) Evolution of mid-span deflection Q-H. Nguyen PhD Thesis Defense
  • 133. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Summary 1 A finite element model with exact stiffness matrix based on the analytical solution was developed (for linear elastic and viscoelastic behaviours) 2 A elasto-plastic damage model was proposed for concrete 3 Three finite element formulations was developed for composite beams with partial interaction 4 A new state determination algorithm was developed for the force-based element including element distributed load 5 A viscoelastic/plastic model was proposed for concrete in order to simulate the interaction between the time effects and the cracking Q-H. Nguyen PhD Thesis Defense
  • 134. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Conclusions 1 The discrete bond model represents the true connection and it is simple to use but it requires a large number of elements 2 Compare to discrete bond model, distributed bond model is less computationally expensive because it reduces significantly number of elements 3 Among three finite element formulations, force-based formulation performs better 4 Significant influence of creep and especially of shrinkage on the global response of composite beams in serviceability 5 Time effects play an important role in the inelastic response of composite beam Q-H. Nguyen PhD Thesis Defense
  • 135. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Future works 1 Realize a parametric study of time effects in nonlinear behaviour of composite beam 2 Modelling of the behaviour of composite beams using Timoshenko beam theory (in progress) 3 Take into account the nonlinearity geometry using corotational formulation 4 Take into account the uplift 5 Extend the F.E. tools to composite frame Q-H. Nguyen PhD Thesis Defense
  • 136. Introduction Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Conclusions Thanks for your attention ! Q-H. Nguyen PhD Thesis Defense