TD SA 11
Repr´esentation d’´etat d’un pendule
TD `a rendre pour le
17 D´ecembre 2004
1 Chariot et pendule
Un pendule est accroch´e `a un chariot. On veut asservir la position du
chariot et r´eguler l’angle du pendule. Ce syst`eme est mis en mouvement
par un moteur pouvant d´eplacer le chariot. Pour simplifier, la commande
sera la force F horizontale appliqu´ee au chariot. Les ´equations m´ecaniques
donnant l’´evolution de la position x du chariot et de l’angle θ du pendule
sont non lin´eaires. Si l’angle du pendule est petit, ces ´equations se lin´earisent
et donnent :
mc ¨x = −mpgθ + F (1)
mclp
¨θ = −(mc + mp)gθ + F (2)
o`u :
– mp = 100g est la masse du pendule
– mc = 200g est la masse du chariot
– g = 10ms−2
est l’acc´el´eration dˆue `a l’attraction terrestre
– lp = 50cm est la demi-longueur du pendule
1.1 Repr´esentation d’´etat
Donner une repr´esentation d’´etat de ce syst`eme qui a une entr´ee : la force
F appliqu´ee au chariot et deux sorties : la position x et l’angle θ. On choisira
d’utiliser les variables physiques. Les deux premi`eres variables d’´etat devront
ˆetre x et θ. Donner l’ordre de ce syst`eme.
1
q
F
x
Fig. 1 – Chariot muni d’un pendule
1.2 Observabilit´e
On appelle matrice d’observabilit´e d’un syst`eme la matrice form´ee par les
vecteurs ou matrices C, C.A, C.A2
, . . . , C.An−1
. Le rang de cette matrice
permet de savoir quelles sont les variables d’´etat que l’on pourra calculer `a
partir de la mesure de la sortie. Quel est le rang de la matrice d’observabilit´e
pour notre syst`eme? Et si la sortie est l’angle θ seulement, est-ce que le rang
de la matrice d’observabilit´e change?
1.3 Syst`eme r´eduit
Pour la suite, on ne s’int´eresse `a l’angle θ du syst`eme. On n’utilisera
alors que les variables d’´etat n´ecessaires. Calculer la fonction de transfert
du syst`eme entre la sortie θ et l’entr´ee F `a partir de l’´equation diff´erentielle
(2) du syst`eme. En d´eduire une repr´esentation d’´etat. Quel est l’ordre de ce
syst`eme?
1.4 Retour d’´etat
Proposer un correcteur `a retour d’´etat qui stabilise le syst`eme en choisis-
sant comme fonction de transfert en BF
T(p) =
10
(p + 3)(p + 10)
2

5 td11 chariot

  • 1.
    TD SA 11 Repr´esentationd’´etat d’un pendule TD `a rendre pour le 17 D´ecembre 2004 1 Chariot et pendule Un pendule est accroch´e `a un chariot. On veut asservir la position du chariot et r´eguler l’angle du pendule. Ce syst`eme est mis en mouvement par un moteur pouvant d´eplacer le chariot. Pour simplifier, la commande sera la force F horizontale appliqu´ee au chariot. Les ´equations m´ecaniques donnant l’´evolution de la position x du chariot et de l’angle θ du pendule sont non lin´eaires. Si l’angle du pendule est petit, ces ´equations se lin´earisent et donnent : mc ¨x = −mpgθ + F (1) mclp ¨θ = −(mc + mp)gθ + F (2) o`u : – mp = 100g est la masse du pendule – mc = 200g est la masse du chariot – g = 10ms−2 est l’acc´el´eration dˆue `a l’attraction terrestre – lp = 50cm est la demi-longueur du pendule 1.1 Repr´esentation d’´etat Donner une repr´esentation d’´etat de ce syst`eme qui a une entr´ee : la force F appliqu´ee au chariot et deux sorties : la position x et l’angle θ. On choisira d’utiliser les variables physiques. Les deux premi`eres variables d’´etat devront ˆetre x et θ. Donner l’ordre de ce syst`eme. 1
  • 2.
    q F x Fig. 1 –Chariot muni d’un pendule 1.2 Observabilit´e On appelle matrice d’observabilit´e d’un syst`eme la matrice form´ee par les vecteurs ou matrices C, C.A, C.A2 , . . . , C.An−1 . Le rang de cette matrice permet de savoir quelles sont les variables d’´etat que l’on pourra calculer `a partir de la mesure de la sortie. Quel est le rang de la matrice d’observabilit´e pour notre syst`eme? Et si la sortie est l’angle θ seulement, est-ce que le rang de la matrice d’observabilit´e change? 1.3 Syst`eme r´eduit Pour la suite, on ne s’int´eresse `a l’angle θ du syst`eme. On n’utilisera alors que les variables d’´etat n´ecessaires. Calculer la fonction de transfert du syst`eme entre la sortie θ et l’entr´ee F `a partir de l’´equation diff´erentielle (2) du syst`eme. En d´eduire une repr´esentation d’´etat. Quel est l’ordre de ce syst`eme? 1.4 Retour d’´etat Proposer un correcteur `a retour d’´etat qui stabilise le syst`eme en choisis- sant comme fonction de transfert en BF T(p) = 10 (p + 3)(p + 10) 2