© Soft Computing – www.softcomputing.com
Passer du Data Mining à la Data Science :
Quel accompagnement pour transformer vos équipes ?
11/02/2016
© 2
Du Data Mining à la Data Science
Séminaire le 24 septembre 2015
Comment passer du Data Mining traditionnel à la Data Science ?
Quels bénéfices ? Quels impacts ? Quels R.O.I. ?
Modalités :
Ce séminaire aura lieu dans les
locaux de Soft Computing.
Ou via notre site:
www.softcomputing.com
Soft Computing vous invite à un séminaire qui abordera les questions suivantes :
• Quels impacts sur le quotidien du Data Miner : quelles sont les techniques/outils à maitriser ?
• Quelles sont les possibilités et les nouvelles perspectives d'analyse offertes par le Big Data ?
• Quels sont les pièges à éviter ?
Agenda :
08h45 – 09h00 : Accueil des participants
09h00 – 11h00 : Séminaire
 La donnée et son exploitation : quels enjeux pour les entreprises ?
 Data Miner vs Data Scientist : quelles compétences, quelles
différences ?
 Les nouvelles possibilités d'analyse et les méthodologies associées
pour quels cas d'utilisation ?
 Les retours d'expériences, les compétences requises, délais et ROI.
A propos
Soft Computing est une entreprise de Services du Numérique spécialiste en Digital, Big Data, et CRM, réunissant près de 400 consultants, délivrant des
prestations de Conseil, de Technologie et de Marketing Services.
Soft Computing est coté sur NYSE Euronext Paris - Code ISIN : FR0000075517 - Symbole : SFT.
Cet événement est réservé aux clients et prospects Soft Computing. Pour tout autre profil, l'inscription sera soumise à validation.
Soft Computing |55 quai de Grenelle|75015 Paris|01 73 00 55 00 | www.softcomputing.com
© 3
Présentation des intervenants
Eric Fischmeister
Président
efr@softcomputing.com
01 73 00 57 59
Hélène Hamon
Directrice de la BU Data Science
hhm@softcomputing.com
01 73 00 55 88
Sylvain Bellier
Directeur du pôle Marketing Services
sbe@softcomputing.com
01 73 00 56 06
Eric Fischmeister
Président
efr@softcomputing.com
01 73 00 57 59
© 4
SommaireSommaire
1. Introduction
2. Panorama du marché : avancement, arbitrage, impact sur les
organisations
3. Data Mining vs Data Science : quelles compétences, quelles
différences ?
4. Comment transformer vos équipes de Data miner en Data
Scientist ?
5. Retours d’expérience
6. Conclusion
© 5
Carte d’identité
© 6
Compétences : un mix unique de compétences pointues
Digital
Marketing
Data
Science
Project
Management
Information
Technologies
Digital - Big Data - CRM
© 7
Mission : transformer la data en performance
Business
IT
Imaginer, bâtir et opérer
des programmes de conquête et de fidélisation
cross-canaux, rentables et innovants
Concevoir, développer et déployer
des solutions Digitales, Big Data et CRM
performantes, pragmatiques et adaptées
AMOA
© 8
Delivery : continuum de services et souplesse
Think Build Run
Délégation
d’expertise
Mode
Projet
Centre de
services
© 9
Programme relationnel
multi-devices et
remarketing.
Ecoute et analyse des
sentiments des clients
sur les réseaux sociaux.
Centre de services de
gestion des campagnes
marketing multicanal.
Data Management
Platform et marketing
multicanal temps réel.
Centre de services
datamining, campagnes
ciblées et reportings.
Gestion des opérations
marketing ciblées.
Data Management
Platform, CRM et
web analytics.
Conception de
l’architecture
décisionnelle hybride
big data –
datawarehouse.
Centre de services
gestion de campagnes
marketing et
connaissance clients.
Convergence des
pratiques et des outils
marketing on et offline.
Mise en place d’une
Data Management
Platform (DMP) et de
use cases marketing.
Déploiement d’une
plate-forme CRM multi-
marques multi-pays.
Personnalisation temps
réel des contenus et
valorisation d’audience.
Définition d’une
stratégie de Business
Intelligence.
Pilotage de la qualité
de l’expérience client.
Extraits de références 2014-2015
© 10
Experts reconnus
blog.softcomputing.com/
fr.slideshare.net/softcomputing
twitter.com/#!/SoftComputing
linkedin.com/company/soft-computing
facebook.com/softcomputing
softcomputing.com/fr/news/
InformerEcrire Enseigner
© 11
SommaireSommaire
1. Introduction
2. Panorama du marché : avancement, arbitrage, impact sur les
organisations
3. Data Mining vs Data Science : quelles compétences, quelles
différences ?
4. Comment transformer vos équipes de Data miner en Data
Scientist ?
5. Retours d’expérience
6. Conclusion
© 12
ça reste à la mode ?
© 13
Traduction marché, 2 ans d’expérimentation et de maturation
© 14
Notre vision sur les grands segments de marché
Expérimentation Industrialisation
Transport
Retail GSA
Retail GSS
Banque &
Assurance
Utilities
(yc Telco)
© 15
Données :
DigitalesCRM
Maturité dans l’acceptation commune dans la démarche
R.O.I.
Connaissance
Productivité opérationnelle
Analyses ad’hoc
Vision produit Vision clients
Technologies
1
2
3
4
ModélisationRéconciliation
Externes
© 16
Traduction du marché vu de chez nous
1
Jan – Fev 2015 Jan – Fev 2016
10
Ex. demande de régies
© 17
Traduction du marché vu de chez nous
1
Jan – Fev 2015 Jan – Fev 2016
6
Ex. demande de régies
4
Architecture, urbanisme,
exploitation, développement
(conception, réalisation), mise à
disposition des données.
Formation & exploitation
business
© 18
Indulgence dans les demandes quand même
© 19
Des demandes qui restent ‘compliqués’ dans les skills
— Mise en place d'entrepôts de données
en termes d'architecture et d'urbanisation
des données
— Mise en place de services d'exploration
et d'exploitation des données (le candidat
pourra illustrer
son propos en citant des réalisations
concrètes: problématique, charge, REX)
— Bonne connaissance des
problématiques de migrations de données
— Bonne connaissance du domaine du Big
Data et notamment de l'écosystème
Hadoop et des
principaux modules associés (HDFS, Hive,
Pig, Spark … )
© 20
Des demandes qui restent ‘compliqués’ dans les skills
© 21
Des demandes qui restent ‘compliqués’ dans les skills
Expertise : Le profil souhaité est un
profil statisticien :
1. autonome sur l'outil SAS, Hadoop
avec de bonnes capacités
analytiques
2. une sensibilisation aux notions de
Marketing client & web
3. une capacité à identifier et utiliser
les meilleurs outils selon les
objectifs
4. une capacité à faire monter en
compétence des ressources internes
consultant senior
© 22
Au final souvent des dispositifs plus que des compétences
MarketingDatascience Data Manager
Stocker
Explorer
Transformer
Modéliser
Appliquer
© 23
Comment éviter la vallée des désillusions dans l’usage ?
Big Data
© 24
4 piliers de vigilances
Données
Pas de structure pré-déterminée
Pas de préjugés sur les traitements
Donnée structurées ET non structurées
Sources internes ET autres
Stockage document (type Hadoop)
© 25
4 piliers de vigilances
Outils
© 26
4 piliers de vigilances
Gouvernance & Process
Compétences
© 27
4 piliers de vigilances
Données
Outils
Process
Compétences
© 28
SommaireSommaire
1. Introduction
2. Panorama du marché : avancement, arbitrage, impact sur les
organisations
3. Data Mining vs Data Science : quelles compétences, quelles
différences ?
4. Comment transformer vos équipes de Data miner en Data
Scientist ?
5. Retours d’expérience
6. Conclusion
© 29
Les compétences attendues pour un Data Miner
Maitrise des outils Maitrise des méthodes
Sens Business Gestion de projet
© 30
Un environnement en mutation
Data Mining POC Data Science Transition
Data Science
Aujourd’hui
© 31
Un environnement en mutation : les données analysées
Univers de données
© 32
Un environnement en mutation : les nouvelles analyses
Modèles de
contribution des
leviers (acquisition &
fidélisation)
Analyse de trafic
Moteur(s) de
substitution /
recommandations
Analyses multi
fonctions : logistique,
client, DMP, Yield…
Scores à la volée Persona
© 33
Un environnement en mutation : les nouvelles
méthodologies utilisées
Random Forest
Boosting Gradient
Machine
Textmining
Réseau de neurones
Réseau bayésien
Sequential Pattern
Analysis
© 34
Un environnement en mutation : les outils
Accès aux
données
Manipulation
de données
Analytic Restitution
© 35
Un environnement en mutation : l’organisation des
projets
Marketing
Data ScienceProgrammation
 Définit le besoin
 Exploite
 Explore
 Transforme
 Modélise
 Nettoie
 Optimise
 Industrialise
AGILITE
© 36
Un environnement en mutation : la recherche de ROI
et la réduction des délais
Exemple pour la mise en place d’une segmentation :
Définition de la
démarche et
des indicateurs
Enrichissement
des données
Construction de
la matrice
d’études
Analyse/
Modélisation
Présentation
des résultats
2 jours 3 jours 6 jours 8 jours 3 jours = 22 jours
© 37
Un environnement en mutation : le timing
© 38
Les compétences attendues pour un Data Scientist
Maitrise des outils Maitrise des méthodes
Sens Business Gestion de projet
© 39
SommaireSommaire
1. Introduction
2. Panorama du marché : avancement, arbitrage, impact sur les
organisations
3. Data Mining vs Data Science : quelles compétences, quelles
différences ?
4. Comment transformer vos équipes de Data miner en Data
Scientist ?
5. Retours d’expérience
6. Conclusion
© 40
Comment transformer les équipes ?
Data Mining POC Data Science Transition
Data Science
© 41
Comment transformer les équipes : les questions à se
poser
Quels outils ?
Comment gérer la
transition avec
l’existant ?
Quelle répartition
des rôles avec l’IT ?
Quel Mindset des
équipes ?
Comment monter en
compétences sur les
nouvelles approches
méthodologiques ?
Comment gagner en
efficacité ?
© 42
La transition
Data Mining POC Data Science Transition
Data Science
© 43
Les outils
Data Mining POC Data Science Transition
Data Science
© 44
Les méthodes
© 45
La répartition des rôles avec l’IT
Marketing
Data ScienceProgrammation
 Définit le besoin
 Exploite
 Explore
 Transforme
 Modélise
 Nettoie
 Optimise
 Industrialise
AGILITE
© 47
Gagner en efficacité
Tempsdetraitementréduit
Tempsdetraitementréduit
NouvellesMéthodes
Dataviz
Un seul outil
© 48
Le Mindset des équipes
© 49
SommaireSommaire
1. Introduction
2. Panorama du marché : avancement, arbitrage, impact sur les
organisations
3. Data Mining vs Data Science : quelles compétences, quelles
différences ?
4. Comment transformer vos équipes de Data miner en Data
Scientist ?
5. Retours d’expérience
6. Conclusion
© 50
Les facteurs clés de succès
 Limiter le nombre d’outils
 S’obliger à se réinventer
 Capitaliser sur toutes les compétences
 Challenger l’intérêt business des cas d’usage
 Identifier les indicateurs de mesure de leur performance
 Quantifier le ROI
 Fixer des deadlines
© 51
SommaireSommaire
1. Introduction
2. Panorama du marché : avancement, arbitrage, impact sur les
organisations
3. Data Mining vs Data Science : quelles compétences, quelles
différences ?
4. Comment transformer vos équipes de Data miner en Data
Scientist ?
5. Retours d’expérience
6. Conclusion
© 52
Revenir au basique
Pourquoi j’en ai besoin et
pour répondre à quels
usages business ? Mes
moyens existants ne me
permettraient-ils pas de
‘craquer’ déjà quelques
sujets ? Légal ?
Quelles sont les nouvelles
opportunités technologiques
du marché ? Quelle solution ?
Quelle intégration dans mon
patrimoine applicatif ?
Quelle gouvernance ?,
quelles compétences ?, quels
processus ?, quels KPI’s ?
© 53
Accompagner le changement et la formation
Marketing Datascience Data Manager
© 54
Soft computing : un continuum de services complets
Valorisation
des
données
Fondations
Roadmap
Architecture
Convergence BI/Big Data
Définition de solutions
Mise en œuvre et intégration
Analyses sémantiques, prédictives
Visualisation de données
Labs, Data scientists
Conseil / Use case
Infrastructure à la
demande
Mise à disposition de
solutions Big Data
Pocs Hadoop
Cloud privé, hébergement
Transformation
du SI
Accompa-
gnement au
changement
© 55

Data Science

  • 1.
    © Soft Computing– www.softcomputing.com Passer du Data Mining à la Data Science : Quel accompagnement pour transformer vos équipes ? 11/02/2016
  • 2.
    © 2 Du DataMining à la Data Science Séminaire le 24 septembre 2015 Comment passer du Data Mining traditionnel à la Data Science ? Quels bénéfices ? Quels impacts ? Quels R.O.I. ? Modalités : Ce séminaire aura lieu dans les locaux de Soft Computing. Ou via notre site: www.softcomputing.com Soft Computing vous invite à un séminaire qui abordera les questions suivantes : • Quels impacts sur le quotidien du Data Miner : quelles sont les techniques/outils à maitriser ? • Quelles sont les possibilités et les nouvelles perspectives d'analyse offertes par le Big Data ? • Quels sont les pièges à éviter ? Agenda : 08h45 – 09h00 : Accueil des participants 09h00 – 11h00 : Séminaire  La donnée et son exploitation : quels enjeux pour les entreprises ?  Data Miner vs Data Scientist : quelles compétences, quelles différences ?  Les nouvelles possibilités d'analyse et les méthodologies associées pour quels cas d'utilisation ?  Les retours d'expériences, les compétences requises, délais et ROI. A propos Soft Computing est une entreprise de Services du Numérique spécialiste en Digital, Big Data, et CRM, réunissant près de 400 consultants, délivrant des prestations de Conseil, de Technologie et de Marketing Services. Soft Computing est coté sur NYSE Euronext Paris - Code ISIN : FR0000075517 - Symbole : SFT. Cet événement est réservé aux clients et prospects Soft Computing. Pour tout autre profil, l'inscription sera soumise à validation. Soft Computing |55 quai de Grenelle|75015 Paris|01 73 00 55 00 | www.softcomputing.com
  • 3.
    © 3 Présentation desintervenants Eric Fischmeister Président efr@softcomputing.com 01 73 00 57 59 Hélène Hamon Directrice de la BU Data Science hhm@softcomputing.com 01 73 00 55 88 Sylvain Bellier Directeur du pôle Marketing Services sbe@softcomputing.com 01 73 00 56 06 Eric Fischmeister Président efr@softcomputing.com 01 73 00 57 59
  • 4.
    © 4 SommaireSommaire 1. Introduction 2.Panorama du marché : avancement, arbitrage, impact sur les organisations 3. Data Mining vs Data Science : quelles compétences, quelles différences ? 4. Comment transformer vos équipes de Data miner en Data Scientist ? 5. Retours d’expérience 6. Conclusion
  • 5.
  • 6.
    © 6 Compétences :un mix unique de compétences pointues Digital Marketing Data Science Project Management Information Technologies Digital - Big Data - CRM
  • 7.
    © 7 Mission :transformer la data en performance Business IT Imaginer, bâtir et opérer des programmes de conquête et de fidélisation cross-canaux, rentables et innovants Concevoir, développer et déployer des solutions Digitales, Big Data et CRM performantes, pragmatiques et adaptées AMOA
  • 8.
    © 8 Delivery :continuum de services et souplesse Think Build Run Délégation d’expertise Mode Projet Centre de services
  • 9.
    © 9 Programme relationnel multi-deviceset remarketing. Ecoute et analyse des sentiments des clients sur les réseaux sociaux. Centre de services de gestion des campagnes marketing multicanal. Data Management Platform et marketing multicanal temps réel. Centre de services datamining, campagnes ciblées et reportings. Gestion des opérations marketing ciblées. Data Management Platform, CRM et web analytics. Conception de l’architecture décisionnelle hybride big data – datawarehouse. Centre de services gestion de campagnes marketing et connaissance clients. Convergence des pratiques et des outils marketing on et offline. Mise en place d’une Data Management Platform (DMP) et de use cases marketing. Déploiement d’une plate-forme CRM multi- marques multi-pays. Personnalisation temps réel des contenus et valorisation d’audience. Définition d’une stratégie de Business Intelligence. Pilotage de la qualité de l’expérience client. Extraits de références 2014-2015
  • 10.
  • 11.
    © 11 SommaireSommaire 1. Introduction 2.Panorama du marché : avancement, arbitrage, impact sur les organisations 3. Data Mining vs Data Science : quelles compétences, quelles différences ? 4. Comment transformer vos équipes de Data miner en Data Scientist ? 5. Retours d’expérience 6. Conclusion
  • 12.
    © 12 ça resteà la mode ?
  • 13.
    © 13 Traduction marché,2 ans d’expérimentation et de maturation
  • 14.
    © 14 Notre visionsur les grands segments de marché Expérimentation Industrialisation Transport Retail GSA Retail GSS Banque & Assurance Utilities (yc Telco)
  • 15.
    © 15 Données : DigitalesCRM Maturitédans l’acceptation commune dans la démarche R.O.I. Connaissance Productivité opérationnelle Analyses ad’hoc Vision produit Vision clients Technologies 1 2 3 4 ModélisationRéconciliation Externes
  • 16.
    © 16 Traduction dumarché vu de chez nous 1 Jan – Fev 2015 Jan – Fev 2016 10 Ex. demande de régies
  • 17.
    © 17 Traduction dumarché vu de chez nous 1 Jan – Fev 2015 Jan – Fev 2016 6 Ex. demande de régies 4 Architecture, urbanisme, exploitation, développement (conception, réalisation), mise à disposition des données. Formation & exploitation business
  • 18.
    © 18 Indulgence dansles demandes quand même
  • 19.
    © 19 Des demandesqui restent ‘compliqués’ dans les skills — Mise en place d'entrepôts de données en termes d'architecture et d'urbanisation des données — Mise en place de services d'exploration et d'exploitation des données (le candidat pourra illustrer son propos en citant des réalisations concrètes: problématique, charge, REX) — Bonne connaissance des problématiques de migrations de données — Bonne connaissance du domaine du Big Data et notamment de l'écosystème Hadoop et des principaux modules associés (HDFS, Hive, Pig, Spark … )
  • 20.
    © 20 Des demandesqui restent ‘compliqués’ dans les skills
  • 21.
    © 21 Des demandesqui restent ‘compliqués’ dans les skills Expertise : Le profil souhaité est un profil statisticien : 1. autonome sur l'outil SAS, Hadoop avec de bonnes capacités analytiques 2. une sensibilisation aux notions de Marketing client & web 3. une capacité à identifier et utiliser les meilleurs outils selon les objectifs 4. une capacité à faire monter en compétence des ressources internes consultant senior
  • 22.
    © 22 Au finalsouvent des dispositifs plus que des compétences MarketingDatascience Data Manager Stocker Explorer Transformer Modéliser Appliquer
  • 23.
    © 23 Comment éviterla vallée des désillusions dans l’usage ? Big Data
  • 24.
    © 24 4 piliersde vigilances Données Pas de structure pré-déterminée Pas de préjugés sur les traitements Donnée structurées ET non structurées Sources internes ET autres Stockage document (type Hadoop)
  • 25.
    © 25 4 piliersde vigilances Outils
  • 26.
    © 26 4 piliersde vigilances Gouvernance & Process Compétences
  • 27.
    © 27 4 piliersde vigilances Données Outils Process Compétences
  • 28.
    © 28 SommaireSommaire 1. Introduction 2.Panorama du marché : avancement, arbitrage, impact sur les organisations 3. Data Mining vs Data Science : quelles compétences, quelles différences ? 4. Comment transformer vos équipes de Data miner en Data Scientist ? 5. Retours d’expérience 6. Conclusion
  • 29.
    © 29 Les compétencesattendues pour un Data Miner Maitrise des outils Maitrise des méthodes Sens Business Gestion de projet
  • 30.
    © 30 Un environnementen mutation Data Mining POC Data Science Transition Data Science Aujourd’hui
  • 31.
    © 31 Un environnementen mutation : les données analysées Univers de données
  • 32.
    © 32 Un environnementen mutation : les nouvelles analyses Modèles de contribution des leviers (acquisition & fidélisation) Analyse de trafic Moteur(s) de substitution / recommandations Analyses multi fonctions : logistique, client, DMP, Yield… Scores à la volée Persona
  • 33.
    © 33 Un environnementen mutation : les nouvelles méthodologies utilisées Random Forest Boosting Gradient Machine Textmining Réseau de neurones Réseau bayésien Sequential Pattern Analysis
  • 34.
    © 34 Un environnementen mutation : les outils Accès aux données Manipulation de données Analytic Restitution
  • 35.
    © 35 Un environnementen mutation : l’organisation des projets Marketing Data ScienceProgrammation  Définit le besoin  Exploite  Explore  Transforme  Modélise  Nettoie  Optimise  Industrialise AGILITE
  • 36.
    © 36 Un environnementen mutation : la recherche de ROI et la réduction des délais Exemple pour la mise en place d’une segmentation : Définition de la démarche et des indicateurs Enrichissement des données Construction de la matrice d’études Analyse/ Modélisation Présentation des résultats 2 jours 3 jours 6 jours 8 jours 3 jours = 22 jours
  • 37.
    © 37 Un environnementen mutation : le timing
  • 38.
    © 38 Les compétencesattendues pour un Data Scientist Maitrise des outils Maitrise des méthodes Sens Business Gestion de projet
  • 39.
    © 39 SommaireSommaire 1. Introduction 2.Panorama du marché : avancement, arbitrage, impact sur les organisations 3. Data Mining vs Data Science : quelles compétences, quelles différences ? 4. Comment transformer vos équipes de Data miner en Data Scientist ? 5. Retours d’expérience 6. Conclusion
  • 40.
    © 40 Comment transformerles équipes ? Data Mining POC Data Science Transition Data Science
  • 41.
    © 41 Comment transformerles équipes : les questions à se poser Quels outils ? Comment gérer la transition avec l’existant ? Quelle répartition des rôles avec l’IT ? Quel Mindset des équipes ? Comment monter en compétences sur les nouvelles approches méthodologiques ? Comment gagner en efficacité ?
  • 42.
    © 42 La transition DataMining POC Data Science Transition Data Science
  • 43.
    © 43 Les outils DataMining POC Data Science Transition Data Science
  • 44.
  • 45.
    © 45 La répartitiondes rôles avec l’IT Marketing Data ScienceProgrammation  Définit le besoin  Exploite  Explore  Transforme  Modélise  Nettoie  Optimise  Industrialise AGILITE
  • 46.
    © 47 Gagner enefficacité Tempsdetraitementréduit Tempsdetraitementréduit NouvellesMéthodes Dataviz Un seul outil
  • 47.
    © 48 Le Mindsetdes équipes
  • 48.
    © 49 SommaireSommaire 1. Introduction 2.Panorama du marché : avancement, arbitrage, impact sur les organisations 3. Data Mining vs Data Science : quelles compétences, quelles différences ? 4. Comment transformer vos équipes de Data miner en Data Scientist ? 5. Retours d’expérience 6. Conclusion
  • 49.
    © 50 Les facteursclés de succès  Limiter le nombre d’outils  S’obliger à se réinventer  Capitaliser sur toutes les compétences  Challenger l’intérêt business des cas d’usage  Identifier les indicateurs de mesure de leur performance  Quantifier le ROI  Fixer des deadlines
  • 50.
    © 51 SommaireSommaire 1. Introduction 2.Panorama du marché : avancement, arbitrage, impact sur les organisations 3. Data Mining vs Data Science : quelles compétences, quelles différences ? 4. Comment transformer vos équipes de Data miner en Data Scientist ? 5. Retours d’expérience 6. Conclusion
  • 51.
    © 52 Revenir aubasique Pourquoi j’en ai besoin et pour répondre à quels usages business ? Mes moyens existants ne me permettraient-ils pas de ‘craquer’ déjà quelques sujets ? Légal ? Quelles sont les nouvelles opportunités technologiques du marché ? Quelle solution ? Quelle intégration dans mon patrimoine applicatif ? Quelle gouvernance ?, quelles compétences ?, quels processus ?, quels KPI’s ?
  • 52.
    © 53 Accompagner lechangement et la formation Marketing Datascience Data Manager
  • 53.
    © 54 Soft computing: un continuum de services complets Valorisation des données Fondations Roadmap Architecture Convergence BI/Big Data Définition de solutions Mise en œuvre et intégration Analyses sémantiques, prédictives Visualisation de données Labs, Data scientists Conseil / Use case Infrastructure à la demande Mise à disposition de solutions Big Data Pocs Hadoop Cloud privé, hébergement Transformation du SI Accompa- gnement au changement
  • 54.