SlideShare une entreprise Scribd logo
Hadoop et son
écosystème
par Khanh Tuong MAUDOUX
@jetoile
109/10/2015
Hadoop et son écosystème
Au programme…
• Hadoop : qu’est ce que c’est?
– MapReduce
– HDFS
– Yarn
• Ecosystème
– Data Integration
– Batch Processing
– Analytic SQL
– Streaming Processing
– Machine Learning
– Search Engine
– Autre
209/10/2015
Hadoop et son écosystème
Qui je suis…
• Khanh Tuong Maudoux
• Développeur Java, JavaEE, BigData indépendant
• blog : blog.jetoile.fr
• @jetoile
• khanh.maudoux@jetoile.fr
309/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
409/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
• BigData => V4
– Volume
– Vélocité
– Variété
– Véracité
• BigData
=> Hadoop?
09/10/2015 5
Ne parlera pas des API de programmations
comme Cascalog/Hive/Pig/Java/…
Hadoop et son écosystème
Qu’est ce que c’est…
09/10/2015 6
HDP 2.3
Hadoop et son écosystème
Qu’est ce que c’est…
MapReduce
709/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
MapReduce
809/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
MapReduce
9
• Et… Shuffle
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
MapReduce
10
• Et… Shuffle
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS
1109/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS
12
• Hadoop Distributed FileSystem
• FileSystem
– Les données sont écrites dans des blocs gérés par le
FileSystem
• HDFS
– Les données sont écrites dans des blocs gérés par le
HDFS
=> Un fichier dans HDFS est constitué de blocs
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS
13
• Permet :
– La réplication (les blocs sont répliqués) et donc la
résilience
– La scalabilité (les blocs ne sont pas tous sur la même
machine)
– …
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS
14
• Composé de :
– Namespace : structure de répertoire et nom des fichiers
– Metadata : propriétaire, permissions et attributs tels que le timestamp
– Journaling : permet d’assurer l’intégrité et la gestion des erreurs
– Storage : bloc disque, et stockage physique
– Tools : clients et utilitaires pour interagir avec le système de fichiers
09/10/2015
Operating System (OS)
Virtual File System
File System
(ext4, ext3, xfs, …)
Namespace(s)
Metadata
Journaling
Tools
Disk
Storage
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS - Architecture
15
• NameNode et DataNode
09/10/2015
NameNode Namespace
Metadata
Block Map
Journaling
Disk
DataNode
Storage
Disk
DataNode
Storage
Disk
Storage
Disk
Bloc report
Contient la localisation réelle
des données (bloc/datanode)
DataNode
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS - NameNode
16
• Fonctionnement :
– fsimage : point de controle (checkpoint) persistant contenant les métadonnées
du système de fichiers
– edits : journal des opérations
• fsimage chargé en mémoire
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS - Lecture
1709/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS - Ecriture
1809/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
HDFS - HA
1909/10/2015
DN DN DN DN
Active NN
Standby
NN
Quorum Journal
Manager /
Shared Storage
Block reports
envoyés aux 2 NN
Toutes les
modifications d’edits
sont partagées
Hadoop et son écosystème
Qu’est ce que c’est…
YARN
2009/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
YARN
21
• Avant :
– JobTracker
– TaskTracker
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
YARN
22
• Yet Another Ressource Negociator
• Composé de :
– ResourceManager
– NodeManager
– ApplicationMaster
09/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
YARN et HDFS
2309/10/2015
Hadoop et son écosystème
Qu’est ce que c’est…
YARN - Multisite
24
• Utilisation du Rack Awareness
• Utilisation du StandByNameNode
• YARN peut décider d’utiliser la DataNode distant
• Dans le cas de l’utilisation d’un StandByNameNode, tous les
DataNodes doivent communiquer avec lui
• Risque si données incohérentes entre des DataNodes localisés sur
des sites différents
• Partage d’informations entre les deux NameNodes
• Gestion de Zookeeper
• Gestion HBase
09/10/2015
Hadoop et son écosystème
Ecosystème
2509/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Data Integration
2609/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Data Integration
27
• Sqoop
• Flume
• Logstash
• Kafka (messaging)
09/10/2015
Hadoop et son écosystème
Ecosystème
Data Integration - Sqoop
28
• Outils permettant de transférer des données en
masse entre Hadoop et un entrepôt de données
structuré tel qu’une base de données
09/10/2015
Hadoop et son écosystème
Ecosystème
Data Integration - Flume
29
• Flume est un service distribué, fiable et
hautement disponible servant à la collecte, la
l’agrégation et le déplacement d’une grosse
quantité de données de logs
• Composé de
– Source
– Sink
– Channel
09/10/2015
Hadoop et son écosystème
Ecosystème
Data Integration - Logstash
3009/10/2015
• Logstash est un simple agent orienté message
qu’il est possible de configurer pour combiner
différentes fonctions
• Composé de
– Input
– Filter
– Output
Hadoop et son écosystème
Ecosystème
Data Integration - Kafka
31
• Système orienté message de type
publish/subscribe implémenté comme système
de traces transactionnel distribué, adapté pour
la consommation de messages en-ligne et hors
ligne
• Service de commit de traces distribué,
partitionné et répliqué
• Les producteurs publient des messages dans
des topics, les consommateurs s'abonnent à ces
sujets et consomment les messages
09/10/2015
Hadoop et son écosystème
Ecosystème
Batch Processing
3209/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Batch Processing
33
• Hive
• Pig
• Cascading
• Spark
09/10/2015
Hadoop et son écosystème
Ecosystème
Batch Processing - Hive
34
• Permet l’exécution de requêtes SQL sur un
cluster Hadoop en vue d’analyser et d’agréger
les données.
• Langage de visualisation uniquement
• Offre les connecteurs ODBC/JDBC
09/10/2015
Hadoop et son écosystème
Ecosystème
Batch Processing - Pig
35
• Permet le requêtage des données Hadoop à
partir d’un langage de script
• Basé sur un langage de haut niveau permettant
de créer des programmes de type MapReduce
09/10/2015
Hadoop et son écosystème
Ecosystème
Batch Processing - Cascading
36
• API de traitement de données et planificateur de
requête pour la définition, le partage et le
traitement de données
09/10/2015
Hadoop et son écosystème
Ecosystème
Batch Processing - Spark
37
– Moteur d’analyse multifonction adapté au traitement
rapide de gros volumes de données
– Concurrent de MapReduce
– Basé sur les RDD (Resilient Distributed DataSet)
– Peut s’appuyer sur YARN
09/10/2015
Hadoop et son écosystème
Ecosystème
Analytic SQL
3809/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Analytic SQL
39
• Drill
• Impala
• Spark SQL
• Hawq
• Presto
09/10/2015
Hadoop et son écosystème
Ecosystème
Analytic SQL - Drill
40
• Système distribué permettant d’effectuer des requêtes sur de
larges données permettant l’analyse interactive des données
en SQL
• Permet de requêter des sources de données hétérogènes :
• MongoDB
• JSON
• HDFS
• Hive
• Classpath
• HBase
• Offre le connecteur ODBC
09/10/2015
Hadoop et son écosystème
Ecosystème
Analytic SQL - Impala
41
• Système distribué permettant d’effectuer des
requêtes sur de larges données permettant
l’analyse interactive des données en SQL
• Permet de requêter des sources de données
hétérogènes :
• HDFS
• HBase
• Compatible avec Hive
09/10/2015
Hadoop et son écosystème
Ecosystème
Analytic SQL – Spark SQL
42
• Module de Spark offrant une API de plus haut
niveau avec une syntaxe SQL
• Equivalent à Hive mais s’exécutant sur Spark
• Offre le connecteur JDBC
09/10/2015
Hadoop et son écosystème
Ecosystème
Analytic SQL – Hawq
43
• Système distribué permettant d’effectuer des
requêtes sur de larges données permettant
l’analyse interactive des données en SQL
• Full compliant SQL
• Offre le connecteur ODBC/JDBC
09/10/2015
Hadoop et son écosystème
Ecosystème
Analytic SQL – Presto
44
• Système distribué permettant d’effectuer des requêtes sur de
larges données permettant l’analyse interactive des données
en SQL
• Permet de requêter des sources de données hétérogènes :
– Hive
– HDFS
– Cassandra
• Compatible avec Hive
• ANSI-SQL syntax support (presumably ANSI-92)
• Offre le connecteur JDBC
09/10/2015
Hadoop et son écosystème
Ecosystème
Stream Processing
4509/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Stream Processing
46
• Storm
• Spark Streaming
• Spring XD
• Samza
09/10/2015
Hadoop et son écosystème
Ecosystème
Stream Processing - Storm
47
• Système de calcul distribué temps réel
• S’appuie sur les notions de :
• Nimbus Node (~JobTracker)
• Zookeeper
• Supervisor Node (~NodeManager)
• Notions de Spouts/Bolts
• Peut s’appuyer sur YARN
09/10/2015
Hadoop et son écosystème
Ecosystème
Stream Processing – Spark Streaming
48
• Module de Spark permettant de traiter des flux
de données qui arrivent en continu, et donc de
traiter ces données au fur et à mesure de leur
arrivée
• Fonctionnement sur le principe de microbatch
09/10/2015
Hadoop et son écosystème
Ecosystème
Stream Processing – Spring XD
49
• Basé sur Spring Integration, Spring Batch et
Spring Data
• Offre un DSL qui permet de construire une route
qui est exécuté par des job managé par Spring
Batch en exploitant le provisionning par YARN /
MESOS / Local
09/10/2015
Hadoop et son écosystème
Ecosystème
Stream Processing – Samza
5009/10/2015
• Framework permettant de traiter de manière
distribué des flux
• Utilise Kafka, YARN
• Offre la possibilité de faire du windowing
Hadoop et son écosystème
Ecosystème
Machine Learning
5109/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Machine Learning
52
• Mahout
• Spark ML
09/10/2015
Hadoop et son écosystème
Ecosystème
Machine Learning - Mahout
53
• Vise à créer des implémentations d’algorithmes
d’apprentissage automatiques et de
dataminings.
• Même si les principaux algorithmes
d’apprentissage se basent sur MapReduce, il n’y
a pas d’obligation à utiliser Hadoop
09/10/2015
Hadoop et son écosystème
Ecosystème
Machine Learning – Spark ML
54
• Librairie Spark de machine learning fournissant
les algorithmes de classique (classification,
regression, clustering, collaborative filtering,
dimensionality reduction, …)
09/10/2015
Hadoop et son écosystème
Ecosystème
Machine Learning
5509/10/2015
Batch
Processing
Analytic
SQL
Search
Engine
Machine
Learning
Stream
Processing
Workload Management (Yarn)
Storage for any type of data
Unified, Elastic, Resilient, Secure
Data Integration
Filesystem (HDFS)
Hadoop et son écosystème
Ecosystème
Search Engine
56
• SolR
• Elastic
09/10/2015
Hadoop et son écosystème
Ecosystème
Search Engine – SolR
5709/10/2015
• SolR offre une indexation distribué, répliqué
basé sur Apache Lucene
• Permet la recherche full text, le highlighting, le
facetting, la recherche géospatiale
• Permet l’indexation de documents riches
Hadoop et son écosystème
Ecosystème
Search Engine – Elastic
5809/10/2015
• Elastic offre une indexation distribué, répliqué
basé sur Apache Lucene
• Permet la recherche full text, le highlighting, le
facetting, la recherche géospatiale
• Permet l’indexation de documents riches
Hadoop et son écosystème
Ecosystème
Autre
5909/10/2015
Hadoop et son écosystème
Ecosystème
Autre
60
• HBase
• Phoenix
• Cassandra
• Kudu
• Hive
• Confluent.io
• Oozie
• Ambari
• Zookeeper
• Tez
• Mesos
• Flink
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre - HBase
61
• Système de gestion de base de données non-
relationnelles distribué de type orientée
colonnes
• Basés sur une architecture maitre/esclave
(HBase Master et Region Server)
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre - Phoenix
6209/10/2015
• Permet de requêter HBase via une interface
SQL en offrant un driver jdbc.
• Phoenix accepte une requête SQL et la traduit
en une série de scan Hbase. Il orchestre ensuite
son exécution pour produire un résultat au
format ResultSet JDBC.
• Les métadonnées de la table sont stockées et
versionnées dans une table HBase.
Hadoop et son écosystème
Ecosystème
Autre - Cassandra
6309/10/2015
• Système de gestion de base de données non-
relationnelles distribué de type orientée
colonnes
• Conçu pour être hautement disponible, scalable
linéairement, et sans Single Point Of Failure
Hadoop et son écosystème
Ecosystème
Autre - Kudu
6409/10/2015
• Système de gestion de base de données non-
relationnelles distribué de type orientée
colonnes
• Conçu pour offrir de bonnes performances aussi
bien pour les scanne que pour les accès
aléatoire
• Se positionne entre HDFS et HBase
Hadoop et son écosystème
Ecosystème
Autre - Hive
65
• Hive
– HiveMetastore
– HiveServer2
– HCatalog
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre – Confluent.io
6609/10/2015
• Intégration de :
– Kafka
– Avro
– SchemaRegistry
– Gateway Rest pour lire/écrire dans Kafka
Hadoop et son écosystème
Ecosystème
Autre - Oozie
67
• Solution de workflow (au sens ordonnanceur
d’exploitation) utilisée pour gérer et coordonner les
tâches de traitement de données à destination de
Hadoop.
• Integré avec l’écosystème Hadoop :
– MapReduce (Java et Streaming)
– Pig
– Hive
– Sqoop
– Autres (Java ou scripts de type Shell)
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre - Ambari
68
• Destiné à la supervision et à l’administration de
clusters Hadoop
• Outil web qui propose un tableau de bord
(visualisation de l’état d’un cluster – état des
services, configuration, supervision, exécution des
jobs, métriques)
• Gestion de configuration permettant de déployer
des services d’Hadoop ou de son écosystème sur
des clusters de machines
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre - Zookeeper
69
• Service de coordination des services (et en
l’occurrence des services d’un cluster Hadoop)
• Fournit aux composants Hadoop les
fonctionnalités de distribution
• Indispensable à :
– HBase
– Storm
– Kafka
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre - Tez
70
• Remplace MapReduce en utilisant YARN afin de
fournir des requêtes dites “temps réel”
• Utilisable par (work in progress) :
– Hive
– Pig
– Cascading
09/10/2015
Hadoop et son écosystème
Ecosystème
Autre - Flink
7109/10/2015
• Alternative à Spark
• Moteur de streaming de flux distribué
• Peut se déployer sur YARN
Hadoop et son écosystème
Ecosystème
Autre - Mesos
7209/10/2015
• Alternative à YARN
• Cluster Manager permettant d’abstraire le CPU,
la mémoire, le stockage ainsi que les resources
de calcul
Hadoop et son écosystème
Ecosystème
Autre – MaprFS / MaprDB
7309/10/2015
• MapR propose MapR-FS en alternative à HDFS
• MapR propose MapR-DB en alternative à HBase
• Offre les mêmes API (HDFS/HBase)
Hadoop et son écosystème
Questions ?
7409/10/2015
Hadoop et son écosystème
Merci !
7509/10/2015

Contenu connexe

Tendances

Cours Big Data Chap2
Cours Big Data Chap2Cours Big Data Chap2
Cours Big Data Chap2
Amal Abid
 
Cours Big Data Chap1
Cours Big Data Chap1Cours Big Data Chap1
Cours Big Data Chap1
Amal Abid
 
BigData_TP2: Design Patterns dans Hadoop
BigData_TP2: Design Patterns dans HadoopBigData_TP2: Design Patterns dans Hadoop
BigData_TP2: Design Patterns dans Hadoop
Lilia Sfaxi
 
BigData_TP3 : Spark
BigData_TP3 : SparkBigData_TP3 : Spark
BigData_TP3 : Spark
Lilia Sfaxi
 
BigData_Chp4: NOSQL
BigData_Chp4: NOSQLBigData_Chp4: NOSQL
BigData_Chp4: NOSQL
Lilia Sfaxi
 
Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...
Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...
Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...
Hatim CHAHDI
 
Hadoop and friends : introduction
Hadoop and friends : introductionHadoop and friends : introduction
Hadoop and friends : introduction
fredcons
 
BigData_Chp1: Introduction à la Big Data
BigData_Chp1: Introduction à la Big DataBigData_Chp1: Introduction à la Big Data
BigData_Chp1: Introduction à la Big Data
Lilia Sfaxi
 
Hive ppt (1)
Hive ppt (1)Hive ppt (1)
Hive ppt (1)
marwa baich
 
Cours Big Data Chap6
Cours Big Data Chap6Cours Big Data Chap6
Cours Big Data Chap6
Amal Abid
 
Installation hadoopv2.7.4-amal abid
Installation hadoopv2.7.4-amal abidInstallation hadoopv2.7.4-amal abid
Installation hadoopv2.7.4-amal abid
Amal Abid
 
Hadoop Hbase - Introduction
Hadoop Hbase - IntroductionHadoop Hbase - Introduction
Hadoop Hbase - Introduction
Blandine Larbret
 
Cours Big Data Chap5
Cours Big Data Chap5Cours Big Data Chap5
Cours Big Data Chap5
Amal Abid
 
BigData_TP1: Initiation à Hadoop et Map-Reduce
BigData_TP1: Initiation à Hadoop et Map-ReduceBigData_TP1: Initiation à Hadoop et Map-Reduce
BigData_TP1: Initiation à Hadoop et Map-Reduce
Lilia Sfaxi
 
BigData_Chp3: Data Processing
BigData_Chp3: Data ProcessingBigData_Chp3: Data Processing
BigData_Chp3: Data Processing
Lilia Sfaxi
 
Les BD NoSQL
Les BD NoSQLLes BD NoSQL
Les BD NoSQL
Minyar Sassi Hidri
 
Chapitre1 introduction
Chapitre1 introductionChapitre1 introduction
Chapitre1 introduction
Mouna Torjmen
 
Traitement distribue en BIg Data - KAFKA Broker and Kafka Streams
Traitement distribue en BIg Data - KAFKA Broker and Kafka StreamsTraitement distribue en BIg Data - KAFKA Broker and Kafka Streams
Traitement distribue en BIg Data - KAFKA Broker and Kafka Streams
ENSET, Université Hassan II Casablanca
 
Big data architectures
Big data architecturesBig data architectures
Big data architectures
Mariem Khalfaoui
 

Tendances (20)

Cours Big Data Chap2
Cours Big Data Chap2Cours Big Data Chap2
Cours Big Data Chap2
 
Cours Big Data Chap1
Cours Big Data Chap1Cours Big Data Chap1
Cours Big Data Chap1
 
BigData_TP2: Design Patterns dans Hadoop
BigData_TP2: Design Patterns dans HadoopBigData_TP2: Design Patterns dans Hadoop
BigData_TP2: Design Patterns dans Hadoop
 
BigData_TP3 : Spark
BigData_TP3 : SparkBigData_TP3 : Spark
BigData_TP3 : Spark
 
BigData_Chp4: NOSQL
BigData_Chp4: NOSQLBigData_Chp4: NOSQL
BigData_Chp4: NOSQL
 
Hadoop
HadoopHadoop
Hadoop
 
Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...
Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...
Cours HBase et Base de Données Orientées Colonnes (HBase, Column Oriented Dat...
 
Hadoop and friends : introduction
Hadoop and friends : introductionHadoop and friends : introduction
Hadoop and friends : introduction
 
BigData_Chp1: Introduction à la Big Data
BigData_Chp1: Introduction à la Big DataBigData_Chp1: Introduction à la Big Data
BigData_Chp1: Introduction à la Big Data
 
Hive ppt (1)
Hive ppt (1)Hive ppt (1)
Hive ppt (1)
 
Cours Big Data Chap6
Cours Big Data Chap6Cours Big Data Chap6
Cours Big Data Chap6
 
Installation hadoopv2.7.4-amal abid
Installation hadoopv2.7.4-amal abidInstallation hadoopv2.7.4-amal abid
Installation hadoopv2.7.4-amal abid
 
Hadoop Hbase - Introduction
Hadoop Hbase - IntroductionHadoop Hbase - Introduction
Hadoop Hbase - Introduction
 
Cours Big Data Chap5
Cours Big Data Chap5Cours Big Data Chap5
Cours Big Data Chap5
 
BigData_TP1: Initiation à Hadoop et Map-Reduce
BigData_TP1: Initiation à Hadoop et Map-ReduceBigData_TP1: Initiation à Hadoop et Map-Reduce
BigData_TP1: Initiation à Hadoop et Map-Reduce
 
BigData_Chp3: Data Processing
BigData_Chp3: Data ProcessingBigData_Chp3: Data Processing
BigData_Chp3: Data Processing
 
Les BD NoSQL
Les BD NoSQLLes BD NoSQL
Les BD NoSQL
 
Chapitre1 introduction
Chapitre1 introductionChapitre1 introduction
Chapitre1 introduction
 
Traitement distribue en BIg Data - KAFKA Broker and Kafka Streams
Traitement distribue en BIg Data - KAFKA Broker and Kafka StreamsTraitement distribue en BIg Data - KAFKA Broker and Kafka Streams
Traitement distribue en BIg Data - KAFKA Broker and Kafka Streams
 
Big data architectures
Big data architecturesBig data architectures
Big data architectures
 

En vedette

Introduction to Cassandra (June 2010)
Introduction to Cassandra (June 2010)Introduction to Cassandra (June 2010)
Introduction to Cassandra (June 2010)
gdusbabek
 
Les modèles NoSQL
Les modèles NoSQLLes modèles NoSQL
Les modèles NoSQL
ebiznext
 
Introduction aux bases de données NoSQL
Introduction aux bases de données NoSQLIntroduction aux bases de données NoSQL
Introduction aux bases de données NoSQL
Antoine Augusti
 
NoSQL et Big Data
NoSQL et Big DataNoSQL et Big Data
NoSQL et Big Data
acogoluegnes
 
Big Data: Hadoop Map / Reduce sur Windows et Windows Azure
Big Data: Hadoop Map / Reduce sur Windows et Windows AzureBig Data: Hadoop Map / Reduce sur Windows et Windows Azure
Big Data: Hadoop Map / Reduce sur Windows et Windows Azure
Microsoft
 
NoSQL: Introducción a las Bases de Datos no estructuradas
NoSQL: Introducción a las Bases de Datos no estructuradasNoSQL: Introducción a las Bases de Datos no estructuradas
NoSQL: Introducción a las Bases de Datos no estructuradas
Diego López-de-Ipiña González-de-Artaza
 
Presentation Hadoop Québec
Presentation Hadoop QuébecPresentation Hadoop Québec
Presentation Hadoop Québec
Mathieu Dumoulin
 
Techday Arrow Group: Hadoop & le Big Data
Techday Arrow Group: Hadoop & le Big DataTechday Arrow Group: Hadoop & le Big Data
Techday Arrow Group: Hadoop & le Big Data
Arrow Group
 
NoSQL databases
NoSQL databasesNoSQL databases
NoSQL databases
Marin Dimitrov
 
Apache Knox setup and hive and hdfs Access using KNOX
Apache Knox setup and hive and hdfs Access using KNOXApache Knox setup and hive and hdfs Access using KNOX
Apache Knox setup and hive and hdfs Access using KNOX
Abhishek Mallick
 
Apache Knox Gateway "Single Sign On" expands the reach of the Enterprise Users
Apache Knox Gateway "Single Sign On" expands the reach of the Enterprise UsersApache Knox Gateway "Single Sign On" expands the reach of the Enterprise Users
Apache Knox Gateway "Single Sign On" expands the reach of the Enterprise Users
DataWorks Summit
 
Big Data and Security - Where are we now? (2015)
Big Data and Security - Where are we now? (2015)Big Data and Security - Where are we now? (2015)
Big Data and Security - Where are we now? (2015)
Peter Wood
 
Hdp security overview
Hdp security overview Hdp security overview
Hdp security overview
Hortonworks
 
Built-In Security for the Cloud
Built-In Security for the CloudBuilt-In Security for the Cloud
Built-In Security for the Cloud
DataWorks Summit
 
Hadoop & Security - Past, Present, Future
Hadoop & Security - Past, Present, FutureHadoop & Security - Past, Present, Future
Hadoop & Security - Past, Present, Future
Uwe Printz
 
Troubleshooting Kerberos in Hadoop: Taming the Beast
Troubleshooting Kerberos in Hadoop: Taming the BeastTroubleshooting Kerberos in Hadoop: Taming the Beast
Troubleshooting Kerberos in Hadoop: Taming the Beast
DataWorks Summit
 
Information security in big data -privacy and data mining
Information security in big data -privacy and data miningInformation security in big data -privacy and data mining
Information security in big data -privacy and data mining
harithavijay94
 
Improvements in Hadoop Security
Improvements in Hadoop SecurityImprovements in Hadoop Security
Improvements in Hadoop Security
DataWorks Summit
 
An Approach for Multi-Tenancy Through Apache Knox
An Approach for Multi-Tenancy Through Apache KnoxAn Approach for Multi-Tenancy Through Apache Knox
An Approach for Multi-Tenancy Through Apache Knox
DataWorks Summit/Hadoop Summit
 
Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...
Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...
Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...
Kevin Minder
 

En vedette (20)

Introduction to Cassandra (June 2010)
Introduction to Cassandra (June 2010)Introduction to Cassandra (June 2010)
Introduction to Cassandra (June 2010)
 
Les modèles NoSQL
Les modèles NoSQLLes modèles NoSQL
Les modèles NoSQL
 
Introduction aux bases de données NoSQL
Introduction aux bases de données NoSQLIntroduction aux bases de données NoSQL
Introduction aux bases de données NoSQL
 
NoSQL et Big Data
NoSQL et Big DataNoSQL et Big Data
NoSQL et Big Data
 
Big Data: Hadoop Map / Reduce sur Windows et Windows Azure
Big Data: Hadoop Map / Reduce sur Windows et Windows AzureBig Data: Hadoop Map / Reduce sur Windows et Windows Azure
Big Data: Hadoop Map / Reduce sur Windows et Windows Azure
 
NoSQL: Introducción a las Bases de Datos no estructuradas
NoSQL: Introducción a las Bases de Datos no estructuradasNoSQL: Introducción a las Bases de Datos no estructuradas
NoSQL: Introducción a las Bases de Datos no estructuradas
 
Presentation Hadoop Québec
Presentation Hadoop QuébecPresentation Hadoop Québec
Presentation Hadoop Québec
 
Techday Arrow Group: Hadoop & le Big Data
Techday Arrow Group: Hadoop & le Big DataTechday Arrow Group: Hadoop & le Big Data
Techday Arrow Group: Hadoop & le Big Data
 
NoSQL databases
NoSQL databasesNoSQL databases
NoSQL databases
 
Apache Knox setup and hive and hdfs Access using KNOX
Apache Knox setup and hive and hdfs Access using KNOXApache Knox setup and hive and hdfs Access using KNOX
Apache Knox setup and hive and hdfs Access using KNOX
 
Apache Knox Gateway "Single Sign On" expands the reach of the Enterprise Users
Apache Knox Gateway "Single Sign On" expands the reach of the Enterprise UsersApache Knox Gateway "Single Sign On" expands the reach of the Enterprise Users
Apache Knox Gateway "Single Sign On" expands the reach of the Enterprise Users
 
Big Data and Security - Where are we now? (2015)
Big Data and Security - Where are we now? (2015)Big Data and Security - Where are we now? (2015)
Big Data and Security - Where are we now? (2015)
 
Hdp security overview
Hdp security overview Hdp security overview
Hdp security overview
 
Built-In Security for the Cloud
Built-In Security for the CloudBuilt-In Security for the Cloud
Built-In Security for the Cloud
 
Hadoop & Security - Past, Present, Future
Hadoop & Security - Past, Present, FutureHadoop & Security - Past, Present, Future
Hadoop & Security - Past, Present, Future
 
Troubleshooting Kerberos in Hadoop: Taming the Beast
Troubleshooting Kerberos in Hadoop: Taming the BeastTroubleshooting Kerberos in Hadoop: Taming the Beast
Troubleshooting Kerberos in Hadoop: Taming the Beast
 
Information security in big data -privacy and data mining
Information security in big data -privacy and data miningInformation security in big data -privacy and data mining
Information security in big data -privacy and data mining
 
Improvements in Hadoop Security
Improvements in Hadoop SecurityImprovements in Hadoop Security
Improvements in Hadoop Security
 
An Approach for Multi-Tenancy Through Apache Knox
An Approach for Multi-Tenancy Through Apache KnoxAn Approach for Multi-Tenancy Through Apache Knox
An Approach for Multi-Tenancy Through Apache Knox
 
Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...
Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...
Securing Hadoop's REST APIs with Apache Knox Gateway Hadoop Summit June 6th, ...
 

Similaire à Hadoop et son écosystème

Hadoop et son écosystème - v2
Hadoop et son écosystème - v2Hadoop et son écosystème - v2
Hadoop et son écosystème - v2
Khanh Maudoux
 
Hadoop
HadoopHadoop
Hadoop
AS Stitou
 
Sahara : Hadoop as Service avec OpenStack
Sahara : Hadoop as Service avec OpenStackSahara : Hadoop as Service avec OpenStack
Sahara : Hadoop as Service avec OpenStack
ALTIC Altic
 
Casablanca Hadoop & Big Data Meetup - Introduction à Hadoop
Casablanca Hadoop & Big Data Meetup - Introduction à HadoopCasablanca Hadoop & Big Data Meetup - Introduction à Hadoop
Casablanca Hadoop & Big Data Meetup - Introduction à Hadoop
Benoît de CHATEAUVIEUX
 
Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...
Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...
Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...
Modern Data Stack France
 
JSS2014 – Hive ou la convergence entre datawarehouse et Big Data
JSS2014 – Hive ou la convergence entre datawarehouse et Big DataJSS2014 – Hive ou la convergence entre datawarehouse et Big Data
JSS2014 – Hive ou la convergence entre datawarehouse et Big Data
GUSS
 
Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !
Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !
Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !
OCTO Technology
 
Big Data : SQL, NoSQL ? Pourquoi faire un choix ?
Big Data : SQL, NoSQL ? Pourquoi faire un choix ?Big Data : SQL, NoSQL ? Pourquoi faire un choix ?
Big Data : SQL, NoSQL ? Pourquoi faire un choix ?
Microsoft Décideurs IT
 
Hadoop
HadoopHadoop
Hadoop
kamar MEDDAH
 
Gtug nantes big table et nosql
Gtug nantes   big table et nosqlGtug nantes   big table et nosql
Gtug nantes big table et nosql
GDG Nantes
 
GTUG Nantes (Dec 2011) - BigTable et NoSQL
GTUG Nantes (Dec 2011) - BigTable et NoSQLGTUG Nantes (Dec 2011) - BigTable et NoSQL
GTUG Nantes (Dec 2011) - BigTable et NoSQL
Michaël Figuière
 
Aqui hadoop draft
Aqui hadoop draftAqui hadoop draft
Aqui hadoop draft
Eric Papet
 
Hadoop MapReduce - OSDC FR 2009
Hadoop MapReduce - OSDC FR 2009Hadoop MapReduce - OSDC FR 2009
Hadoop MapReduce - OSDC FR 2009
Olivier Grisel
 
Hadoop
HadoopHadoop
Hadoop
Ines Slimene
 
SQL Saturday Paris 2015 - Polybase
SQL Saturday Paris 2015 - PolybaseSQL Saturday Paris 2015 - Polybase
SQL Saturday Paris 2015 - Polybase
Romain Casteres
 
Solr + Hadoop - Fouillez facilement dans votre système Big Data
Solr + Hadoop - Fouillez facilement dans votre système Big DataSolr + Hadoop - Fouillez facilement dans votre système Big Data
Solr + Hadoop - Fouillez facilement dans votre système Big Data
francelabs
 
SAS Forum Soft Computing Théâtre
SAS Forum Soft Computing ThéâtreSAS Forum Soft Computing Théâtre
SAS Forum Soft Computing Théâtre
Soft Computing
 
Atelier hadoop-single-sign-on
Atelier hadoop-single-sign-onAtelier hadoop-single-sign-on
Atelier hadoop-single-sign-on
sahar dridi
 
11 visual basic .net - acces aux donnees avec ado .net
11 visual basic .net - acces aux donnees avec ado .net11 visual basic .net - acces aux donnees avec ado .net
11 visual basic .net - acces aux donnees avec ado .net
Hamza SAID
 
Social Network Analysis Utilizing Big Data Technology
Social Network Analysis Utilizing Big Data TechnologySocial Network Analysis Utilizing Big Data Technology
Social Network Analysis Utilizing Big Data Technology
Imad ALILAT
 

Similaire à Hadoop et son écosystème (20)

Hadoop et son écosystème - v2
Hadoop et son écosystème - v2Hadoop et son écosystème - v2
Hadoop et son écosystème - v2
 
Hadoop
HadoopHadoop
Hadoop
 
Sahara : Hadoop as Service avec OpenStack
Sahara : Hadoop as Service avec OpenStackSahara : Hadoop as Service avec OpenStack
Sahara : Hadoop as Service avec OpenStack
 
Casablanca Hadoop & Big Data Meetup - Introduction à Hadoop
Casablanca Hadoop & Big Data Meetup - Introduction à HadoopCasablanca Hadoop & Big Data Meetup - Introduction à Hadoop
Casablanca Hadoop & Big Data Meetup - Introduction à Hadoop
 
Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...
Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...
Hug france - Administration Hadoop et retour d’expérience BI avec Impala, lim...
 
JSS2014 – Hive ou la convergence entre datawarehouse et Big Data
JSS2014 – Hive ou la convergence entre datawarehouse et Big DataJSS2014 – Hive ou la convergence entre datawarehouse et Big Data
JSS2014 – Hive ou la convergence entre datawarehouse et Big Data
 
Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !
Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !
Petit-déjeuner OCTO : Hadoop, plateforme multi-tenant, à tout d'une grande !
 
Big Data : SQL, NoSQL ? Pourquoi faire un choix ?
Big Data : SQL, NoSQL ? Pourquoi faire un choix ?Big Data : SQL, NoSQL ? Pourquoi faire un choix ?
Big Data : SQL, NoSQL ? Pourquoi faire un choix ?
 
Hadoop
HadoopHadoop
Hadoop
 
Gtug nantes big table et nosql
Gtug nantes   big table et nosqlGtug nantes   big table et nosql
Gtug nantes big table et nosql
 
GTUG Nantes (Dec 2011) - BigTable et NoSQL
GTUG Nantes (Dec 2011) - BigTable et NoSQLGTUG Nantes (Dec 2011) - BigTable et NoSQL
GTUG Nantes (Dec 2011) - BigTable et NoSQL
 
Aqui hadoop draft
Aqui hadoop draftAqui hadoop draft
Aqui hadoop draft
 
Hadoop MapReduce - OSDC FR 2009
Hadoop MapReduce - OSDC FR 2009Hadoop MapReduce - OSDC FR 2009
Hadoop MapReduce - OSDC FR 2009
 
Hadoop
HadoopHadoop
Hadoop
 
SQL Saturday Paris 2015 - Polybase
SQL Saturday Paris 2015 - PolybaseSQL Saturday Paris 2015 - Polybase
SQL Saturday Paris 2015 - Polybase
 
Solr + Hadoop - Fouillez facilement dans votre système Big Data
Solr + Hadoop - Fouillez facilement dans votre système Big DataSolr + Hadoop - Fouillez facilement dans votre système Big Data
Solr + Hadoop - Fouillez facilement dans votre système Big Data
 
SAS Forum Soft Computing Théâtre
SAS Forum Soft Computing ThéâtreSAS Forum Soft Computing Théâtre
SAS Forum Soft Computing Théâtre
 
Atelier hadoop-single-sign-on
Atelier hadoop-single-sign-onAtelier hadoop-single-sign-on
Atelier hadoop-single-sign-on
 
11 visual basic .net - acces aux donnees avec ado .net
11 visual basic .net - acces aux donnees avec ado .net11 visual basic .net - acces aux donnees avec ado .net
11 visual basic .net - acces aux donnees avec ado .net
 
Social Network Analysis Utilizing Big Data Technology
Social Network Analysis Utilizing Big Data TechnologySocial Network Analysis Utilizing Big Data Technology
Social Network Analysis Utilizing Big Data Technology
 

Plus de Khanh Maudoux

Hadoop unit
Hadoop unitHadoop unit
Hadoop unit
Khanh Maudoux
 
Hadoop unit
Hadoop unitHadoop unit
Hadoop unit
Khanh Maudoux
 
Hadoop unit
Hadoop unitHadoop unit
Hadoop unit
Khanh Maudoux
 
De 20 000 à 4 millions d'utilisateurs : mode d'emploi
De 20 000 à 4 millions d'utilisateurs : mode d'emploiDe 20 000 à 4 millions d'utilisateurs : mode d'emploi
De 20 000 à 4 millions d'utilisateurs : mode d'emploi
Khanh Maudoux
 
Comment mieux vivre avec ses tests d'acceptance
Comment mieux vivre avec ses tests d'acceptanceComment mieux vivre avec ses tests d'acceptance
Comment mieux vivre avec ses tests d'acceptance
Khanh Maudoux
 
Introduction sur les problématiques d'une architecture distribuée
Introduction sur les problématiques d'une architecture distribuéeIntroduction sur les problématiques d'une architecture distribuée
Introduction sur les problématiques d'une architecture distribuée
Khanh Maudoux
 
Présentation sur Maven 2 et petit retour d'expérience
Présentation sur Maven 2 et petit retour d'expériencePrésentation sur Maven 2 et petit retour d'expérience
Présentation sur Maven 2 et petit retour d'expérience
Khanh Maudoux
 

Plus de Khanh Maudoux (7)

Hadoop unit
Hadoop unitHadoop unit
Hadoop unit
 
Hadoop unit
Hadoop unitHadoop unit
Hadoop unit
 
Hadoop unit
Hadoop unitHadoop unit
Hadoop unit
 
De 20 000 à 4 millions d'utilisateurs : mode d'emploi
De 20 000 à 4 millions d'utilisateurs : mode d'emploiDe 20 000 à 4 millions d'utilisateurs : mode d'emploi
De 20 000 à 4 millions d'utilisateurs : mode d'emploi
 
Comment mieux vivre avec ses tests d'acceptance
Comment mieux vivre avec ses tests d'acceptanceComment mieux vivre avec ses tests d'acceptance
Comment mieux vivre avec ses tests d'acceptance
 
Introduction sur les problématiques d'une architecture distribuée
Introduction sur les problématiques d'une architecture distribuéeIntroduction sur les problématiques d'une architecture distribuée
Introduction sur les problématiques d'une architecture distribuée
 
Présentation sur Maven 2 et petit retour d'expérience
Présentation sur Maven 2 et petit retour d'expériencePrésentation sur Maven 2 et petit retour d'expérience
Présentation sur Maven 2 et petit retour d'expérience
 

Hadoop et son écosystème

  • 1. Hadoop et son écosystème par Khanh Tuong MAUDOUX @jetoile 109/10/2015
  • 2. Hadoop et son écosystème Au programme… • Hadoop : qu’est ce que c’est? – MapReduce – HDFS – Yarn • Ecosystème – Data Integration – Batch Processing – Analytic SQL – Streaming Processing – Machine Learning – Search Engine – Autre 209/10/2015
  • 3. Hadoop et son écosystème Qui je suis… • Khanh Tuong Maudoux • Développeur Java, JavaEE, BigData indépendant • blog : blog.jetoile.fr • @jetoile • khanh.maudoux@jetoile.fr 309/10/2015
  • 4. Hadoop et son écosystème Qu’est ce que c’est… 409/10/2015
  • 5. Hadoop et son écosystème Qu’est ce que c’est… • BigData => V4 – Volume – Vélocité – Variété – Véracité • BigData => Hadoop? 09/10/2015 5 Ne parlera pas des API de programmations comme Cascalog/Hive/Pig/Java/…
  • 6. Hadoop et son écosystème Qu’est ce que c’est… 09/10/2015 6 HDP 2.3
  • 7. Hadoop et son écosystème Qu’est ce que c’est… MapReduce 709/10/2015
  • 8. Hadoop et son écosystème Qu’est ce que c’est… MapReduce 809/10/2015
  • 9. Hadoop et son écosystème Qu’est ce que c’est… MapReduce 9 • Et… Shuffle 09/10/2015
  • 10. Hadoop et son écosystème Qu’est ce que c’est… MapReduce 10 • Et… Shuffle 09/10/2015
  • 11. Hadoop et son écosystème Qu’est ce que c’est… HDFS 1109/10/2015
  • 12. Hadoop et son écosystème Qu’est ce que c’est… HDFS 12 • Hadoop Distributed FileSystem • FileSystem – Les données sont écrites dans des blocs gérés par le FileSystem • HDFS – Les données sont écrites dans des blocs gérés par le HDFS => Un fichier dans HDFS est constitué de blocs 09/10/2015
  • 13. Hadoop et son écosystème Qu’est ce que c’est… HDFS 13 • Permet : – La réplication (les blocs sont répliqués) et donc la résilience – La scalabilité (les blocs ne sont pas tous sur la même machine) – … 09/10/2015
  • 14. Hadoop et son écosystème Qu’est ce que c’est… HDFS 14 • Composé de : – Namespace : structure de répertoire et nom des fichiers – Metadata : propriétaire, permissions et attributs tels que le timestamp – Journaling : permet d’assurer l’intégrité et la gestion des erreurs – Storage : bloc disque, et stockage physique – Tools : clients et utilitaires pour interagir avec le système de fichiers 09/10/2015 Operating System (OS) Virtual File System File System (ext4, ext3, xfs, …) Namespace(s) Metadata Journaling Tools Disk Storage
  • 15. Hadoop et son écosystème Qu’est ce que c’est… HDFS - Architecture 15 • NameNode et DataNode 09/10/2015 NameNode Namespace Metadata Block Map Journaling Disk DataNode Storage Disk DataNode Storage Disk Storage Disk Bloc report Contient la localisation réelle des données (bloc/datanode) DataNode
  • 16. Hadoop et son écosystème Qu’est ce que c’est… HDFS - NameNode 16 • Fonctionnement : – fsimage : point de controle (checkpoint) persistant contenant les métadonnées du système de fichiers – edits : journal des opérations • fsimage chargé en mémoire 09/10/2015
  • 17. Hadoop et son écosystème Qu’est ce que c’est… HDFS - Lecture 1709/10/2015
  • 18. Hadoop et son écosystème Qu’est ce que c’est… HDFS - Ecriture 1809/10/2015
  • 19. Hadoop et son écosystème Qu’est ce que c’est… HDFS - HA 1909/10/2015 DN DN DN DN Active NN Standby NN Quorum Journal Manager / Shared Storage Block reports envoyés aux 2 NN Toutes les modifications d’edits sont partagées
  • 20. Hadoop et son écosystème Qu’est ce que c’est… YARN 2009/10/2015
  • 21. Hadoop et son écosystème Qu’est ce que c’est… YARN 21 • Avant : – JobTracker – TaskTracker 09/10/2015
  • 22. Hadoop et son écosystème Qu’est ce que c’est… YARN 22 • Yet Another Ressource Negociator • Composé de : – ResourceManager – NodeManager – ApplicationMaster 09/10/2015
  • 23. Hadoop et son écosystème Qu’est ce que c’est… YARN et HDFS 2309/10/2015
  • 24. Hadoop et son écosystème Qu’est ce que c’est… YARN - Multisite 24 • Utilisation du Rack Awareness • Utilisation du StandByNameNode • YARN peut décider d’utiliser la DataNode distant • Dans le cas de l’utilisation d’un StandByNameNode, tous les DataNodes doivent communiquer avec lui • Risque si données incohérentes entre des DataNodes localisés sur des sites différents • Partage d’informations entre les deux NameNodes • Gestion de Zookeeper • Gestion HBase 09/10/2015
  • 25. Hadoop et son écosystème Ecosystème 2509/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 26. Hadoop et son écosystème Ecosystème Data Integration 2609/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 27. Hadoop et son écosystème Ecosystème Data Integration 27 • Sqoop • Flume • Logstash • Kafka (messaging) 09/10/2015
  • 28. Hadoop et son écosystème Ecosystème Data Integration - Sqoop 28 • Outils permettant de transférer des données en masse entre Hadoop et un entrepôt de données structuré tel qu’une base de données 09/10/2015
  • 29. Hadoop et son écosystème Ecosystème Data Integration - Flume 29 • Flume est un service distribué, fiable et hautement disponible servant à la collecte, la l’agrégation et le déplacement d’une grosse quantité de données de logs • Composé de – Source – Sink – Channel 09/10/2015
  • 30. Hadoop et son écosystème Ecosystème Data Integration - Logstash 3009/10/2015 • Logstash est un simple agent orienté message qu’il est possible de configurer pour combiner différentes fonctions • Composé de – Input – Filter – Output
  • 31. Hadoop et son écosystème Ecosystème Data Integration - Kafka 31 • Système orienté message de type publish/subscribe implémenté comme système de traces transactionnel distribué, adapté pour la consommation de messages en-ligne et hors ligne • Service de commit de traces distribué, partitionné et répliqué • Les producteurs publient des messages dans des topics, les consommateurs s'abonnent à ces sujets et consomment les messages 09/10/2015
  • 32. Hadoop et son écosystème Ecosystème Batch Processing 3209/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 33. Hadoop et son écosystème Ecosystème Batch Processing 33 • Hive • Pig • Cascading • Spark 09/10/2015
  • 34. Hadoop et son écosystème Ecosystème Batch Processing - Hive 34 • Permet l’exécution de requêtes SQL sur un cluster Hadoop en vue d’analyser et d’agréger les données. • Langage de visualisation uniquement • Offre les connecteurs ODBC/JDBC 09/10/2015
  • 35. Hadoop et son écosystème Ecosystème Batch Processing - Pig 35 • Permet le requêtage des données Hadoop à partir d’un langage de script • Basé sur un langage de haut niveau permettant de créer des programmes de type MapReduce 09/10/2015
  • 36. Hadoop et son écosystème Ecosystème Batch Processing - Cascading 36 • API de traitement de données et planificateur de requête pour la définition, le partage et le traitement de données 09/10/2015
  • 37. Hadoop et son écosystème Ecosystème Batch Processing - Spark 37 – Moteur d’analyse multifonction adapté au traitement rapide de gros volumes de données – Concurrent de MapReduce – Basé sur les RDD (Resilient Distributed DataSet) – Peut s’appuyer sur YARN 09/10/2015
  • 38. Hadoop et son écosystème Ecosystème Analytic SQL 3809/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 39. Hadoop et son écosystème Ecosystème Analytic SQL 39 • Drill • Impala • Spark SQL • Hawq • Presto 09/10/2015
  • 40. Hadoop et son écosystème Ecosystème Analytic SQL - Drill 40 • Système distribué permettant d’effectuer des requêtes sur de larges données permettant l’analyse interactive des données en SQL • Permet de requêter des sources de données hétérogènes : • MongoDB • JSON • HDFS • Hive • Classpath • HBase • Offre le connecteur ODBC 09/10/2015
  • 41. Hadoop et son écosystème Ecosystème Analytic SQL - Impala 41 • Système distribué permettant d’effectuer des requêtes sur de larges données permettant l’analyse interactive des données en SQL • Permet de requêter des sources de données hétérogènes : • HDFS • HBase • Compatible avec Hive 09/10/2015
  • 42. Hadoop et son écosystème Ecosystème Analytic SQL – Spark SQL 42 • Module de Spark offrant une API de plus haut niveau avec une syntaxe SQL • Equivalent à Hive mais s’exécutant sur Spark • Offre le connecteur JDBC 09/10/2015
  • 43. Hadoop et son écosystème Ecosystème Analytic SQL – Hawq 43 • Système distribué permettant d’effectuer des requêtes sur de larges données permettant l’analyse interactive des données en SQL • Full compliant SQL • Offre le connecteur ODBC/JDBC 09/10/2015
  • 44. Hadoop et son écosystème Ecosystème Analytic SQL – Presto 44 • Système distribué permettant d’effectuer des requêtes sur de larges données permettant l’analyse interactive des données en SQL • Permet de requêter des sources de données hétérogènes : – Hive – HDFS – Cassandra • Compatible avec Hive • ANSI-SQL syntax support (presumably ANSI-92) • Offre le connecteur JDBC 09/10/2015
  • 45. Hadoop et son écosystème Ecosystème Stream Processing 4509/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 46. Hadoop et son écosystème Ecosystème Stream Processing 46 • Storm • Spark Streaming • Spring XD • Samza 09/10/2015
  • 47. Hadoop et son écosystème Ecosystème Stream Processing - Storm 47 • Système de calcul distribué temps réel • S’appuie sur les notions de : • Nimbus Node (~JobTracker) • Zookeeper • Supervisor Node (~NodeManager) • Notions de Spouts/Bolts • Peut s’appuyer sur YARN 09/10/2015
  • 48. Hadoop et son écosystème Ecosystème Stream Processing – Spark Streaming 48 • Module de Spark permettant de traiter des flux de données qui arrivent en continu, et donc de traiter ces données au fur et à mesure de leur arrivée • Fonctionnement sur le principe de microbatch 09/10/2015
  • 49. Hadoop et son écosystème Ecosystème Stream Processing – Spring XD 49 • Basé sur Spring Integration, Spring Batch et Spring Data • Offre un DSL qui permet de construire une route qui est exécuté par des job managé par Spring Batch en exploitant le provisionning par YARN / MESOS / Local 09/10/2015
  • 50. Hadoop et son écosystème Ecosystème Stream Processing – Samza 5009/10/2015 • Framework permettant de traiter de manière distribué des flux • Utilise Kafka, YARN • Offre la possibilité de faire du windowing
  • 51. Hadoop et son écosystème Ecosystème Machine Learning 5109/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 52. Hadoop et son écosystème Ecosystème Machine Learning 52 • Mahout • Spark ML 09/10/2015
  • 53. Hadoop et son écosystème Ecosystème Machine Learning - Mahout 53 • Vise à créer des implémentations d’algorithmes d’apprentissage automatiques et de dataminings. • Même si les principaux algorithmes d’apprentissage se basent sur MapReduce, il n’y a pas d’obligation à utiliser Hadoop 09/10/2015
  • 54. Hadoop et son écosystème Ecosystème Machine Learning – Spark ML 54 • Librairie Spark de machine learning fournissant les algorithmes de classique (classification, regression, clustering, collaborative filtering, dimensionality reduction, …) 09/10/2015
  • 55. Hadoop et son écosystème Ecosystème Machine Learning 5509/10/2015 Batch Processing Analytic SQL Search Engine Machine Learning Stream Processing Workload Management (Yarn) Storage for any type of data Unified, Elastic, Resilient, Secure Data Integration Filesystem (HDFS)
  • 56. Hadoop et son écosystème Ecosystème Search Engine 56 • SolR • Elastic 09/10/2015
  • 57. Hadoop et son écosystème Ecosystème Search Engine – SolR 5709/10/2015 • SolR offre une indexation distribué, répliqué basé sur Apache Lucene • Permet la recherche full text, le highlighting, le facetting, la recherche géospatiale • Permet l’indexation de documents riches
  • 58. Hadoop et son écosystème Ecosystème Search Engine – Elastic 5809/10/2015 • Elastic offre une indexation distribué, répliqué basé sur Apache Lucene • Permet la recherche full text, le highlighting, le facetting, la recherche géospatiale • Permet l’indexation de documents riches
  • 59. Hadoop et son écosystème Ecosystème Autre 5909/10/2015
  • 60. Hadoop et son écosystème Ecosystème Autre 60 • HBase • Phoenix • Cassandra • Kudu • Hive • Confluent.io • Oozie • Ambari • Zookeeper • Tez • Mesos • Flink 09/10/2015
  • 61. Hadoop et son écosystème Ecosystème Autre - HBase 61 • Système de gestion de base de données non- relationnelles distribué de type orientée colonnes • Basés sur une architecture maitre/esclave (HBase Master et Region Server) 09/10/2015
  • 62. Hadoop et son écosystème Ecosystème Autre - Phoenix 6209/10/2015 • Permet de requêter HBase via une interface SQL en offrant un driver jdbc. • Phoenix accepte une requête SQL et la traduit en une série de scan Hbase. Il orchestre ensuite son exécution pour produire un résultat au format ResultSet JDBC. • Les métadonnées de la table sont stockées et versionnées dans une table HBase.
  • 63. Hadoop et son écosystème Ecosystème Autre - Cassandra 6309/10/2015 • Système de gestion de base de données non- relationnelles distribué de type orientée colonnes • Conçu pour être hautement disponible, scalable linéairement, et sans Single Point Of Failure
  • 64. Hadoop et son écosystème Ecosystème Autre - Kudu 6409/10/2015 • Système de gestion de base de données non- relationnelles distribué de type orientée colonnes • Conçu pour offrir de bonnes performances aussi bien pour les scanne que pour les accès aléatoire • Se positionne entre HDFS et HBase
  • 65. Hadoop et son écosystème Ecosystème Autre - Hive 65 • Hive – HiveMetastore – HiveServer2 – HCatalog 09/10/2015
  • 66. Hadoop et son écosystème Ecosystème Autre – Confluent.io 6609/10/2015 • Intégration de : – Kafka – Avro – SchemaRegistry – Gateway Rest pour lire/écrire dans Kafka
  • 67. Hadoop et son écosystème Ecosystème Autre - Oozie 67 • Solution de workflow (au sens ordonnanceur d’exploitation) utilisée pour gérer et coordonner les tâches de traitement de données à destination de Hadoop. • Integré avec l’écosystème Hadoop : – MapReduce (Java et Streaming) – Pig – Hive – Sqoop – Autres (Java ou scripts de type Shell) 09/10/2015
  • 68. Hadoop et son écosystème Ecosystème Autre - Ambari 68 • Destiné à la supervision et à l’administration de clusters Hadoop • Outil web qui propose un tableau de bord (visualisation de l’état d’un cluster – état des services, configuration, supervision, exécution des jobs, métriques) • Gestion de configuration permettant de déployer des services d’Hadoop ou de son écosystème sur des clusters de machines 09/10/2015
  • 69. Hadoop et son écosystème Ecosystème Autre - Zookeeper 69 • Service de coordination des services (et en l’occurrence des services d’un cluster Hadoop) • Fournit aux composants Hadoop les fonctionnalités de distribution • Indispensable à : – HBase – Storm – Kafka 09/10/2015
  • 70. Hadoop et son écosystème Ecosystème Autre - Tez 70 • Remplace MapReduce en utilisant YARN afin de fournir des requêtes dites “temps réel” • Utilisable par (work in progress) : – Hive – Pig – Cascading 09/10/2015
  • 71. Hadoop et son écosystème Ecosystème Autre - Flink 7109/10/2015 • Alternative à Spark • Moteur de streaming de flux distribué • Peut se déployer sur YARN
  • 72. Hadoop et son écosystème Ecosystème Autre - Mesos 7209/10/2015 • Alternative à YARN • Cluster Manager permettant d’abstraire le CPU, la mémoire, le stockage ainsi que les resources de calcul
  • 73. Hadoop et son écosystème Ecosystème Autre – MaprFS / MaprDB 7309/10/2015 • MapR propose MapR-FS en alternative à HDFS • MapR propose MapR-DB en alternative à HBase • Offre les mêmes API (HDFS/HBase)
  • 74. Hadoop et son écosystème Questions ? 7409/10/2015
  • 75. Hadoop et son écosystème Merci ! 7509/10/2015

Notes de l'éditeur

  1. BigData != Hadoop Mais souvent Hadoop…! Cependant Hadoop = écosystème vaste Faire rappel sur historique Hadoop : v1 puis v2
  2. Données transmises en RPC entre Mapper et Reducer
  3. Pas de logique dans le dataNode : c’est le NameNode qui connait via réception des bloc report
  4. The fsimage file contains a serialized form of all the directory and file inodes in the filesystem. Each inode is an internal representation of a file or directory’s metadata and contains such information as the file’s replication level, modification and access times, access permissions, block size, and the blocks a file is made up of. For directories, the modification time, permissions, and quota metadata is stored. The fsimage file does not record the datanodes on which the blocks are stored. Instead the namenode keeps this mapping in memory, which it constructs by asking the datanodes for their block lists when they join the cluster and periodically afterward to ensure the namenode’s block mapping is up-to-date.
  5. In a typical HA cluster, two separate machines are configured as NameNodes. At any point in time, exactly one of the NameNodes is in an Active state, and the other is in a Standby state. The Active NameNode is responsible for all client operations in the cluster, while the Standby is simply acting as a slave, maintaining enough state to provide a fast failover if necessary. In order for the Standby node to keep its state synchronized with the Active node, the current implementation requires that the two nodes both have access to a directory on a shared storage device (eg an NFS mount from a NAS). This restriction will likely be relaxed in future versions. When any namespace modification is performed by the Active node, it durably logs a record of the modification to an edit log file stored in the shared directory. The Standby node is constantly watching this directory for edits, and as it sees the edits, it applies them to its own namespace. In the event of a failover, the Standby will ensure that it has read all of the edits from the shared storage before promoting itself to the Active state. This ensures that the namespace state is fully synchronized before a failover occurs. In order to provide a fast failover, it is also necessary that the Standby node have up-to-date information regarding the location of blocks in the cluster. In order to achieve this, the DataNodes are configured with the location of both NameNodes, and send block location information and heartbeats to both. It is vital for the correct operation of an HA cluster that only one of the NameNodes be Active at a time. Otherwise, the namespace state would quickly diverge between the two, risking data loss or other incorrect results. In order to ensure this property and prevent the so-called "split-brain scenario," the administrator must configure at least one fencing method for the shared storage. During a failover, if it cannot be verified that the previous Active node has relinquished its Active state, the fencing process is responsible for cutting off the previous Active's access to the shared edits storage. This prevents it from making any further edits to the namespace, allowing the new Active to safely proceed with failover.
  6. L’écosystème de Logstash est constitué de 4 composants : Shipper qui envoie des événements à Logstash. Broker et Indexer qui reçoivent et indexent les événements. Search et Stockage qui permettent de rechercher et de stocker les événements. Web Interface qui est une interface web appelée Kibana. https://www.elastic.co/guide/en/logstash/current/index.html
  7. Un RDD est une abstraction de collection sur laquelle les opérations sont effectuées de manière distribuée tout en étant tolérante aux pannes matérielles. Le traitement que l’on écrit semble ainsi s’exécuter au sein de notre JVM mais il sera découpé pour s’exécuter sur plusieurs noeuds. En cas de perte d’un noeud, le sous-traitement sera automatiquement relancé sur un autre noeud par le framework, sans que cela impacte le résultat.
  8. Ne supporte pas les insert
  9. Supporte les insert
  10. Ne supporte pas les insert Seulement insert en fournissant une table
  11. Spouts –sources of streams in a computation (e.g. a Twitter API) Bolts – process input streams and produce output streams. They can: run functions; filter, aggregate, or join data; or talk to databases. A Storm cluster is composed of a set of nodes running a Supervisor daemon. The supervisor daemons talk to a single master node running a daemon called Nimbus. The Nimbus daemon is responsible for assigning work and managing resources in the cluster Storm uses ZeroMQ for non-durable communication between bolts, which enables extremely low latency transmission of tuples. Samza does not have an equivalent mechanism, and always writes task output to a stream.
  12. Samza is made up of three layers: A streaming layer. An execution layer. A processing layer. Samza provides out of the box support for all three layers. Streaming: Kafka Execution: YARN Processing: Samza API Storm and Samza are fairly similar. Both systems provide many of the same high-level features: a partitioned stream model, a distributed execution environment, an API for stream processing, fault tolerance, Kafka integration, etc. Storm and Samza use different words for similar concepts: spouts in Storm are similar to stream consumers in Samza, bolts are similar to tasks, and tuples are similar to messages in Samza. Storm also has some additional building blocks which don’t have direct equivalents in Samza. currently only at-least-once delivery, but support for exactly-once semantics is planned
  13. Solr is highly reliable, scalable and fault tolerant, providing distributed indexing, replication and load-balanced querying, automated failover and recovery, centralized configuration and more. Solr powers the search and navigation features of many of the world's largest internet sites. Its major features include powerful full-text search, hit highlighting, faceted search, dynamic clustering, database integration, rich document (e.g., Word, PDF) handling, and geospatial search. Solr is highly scalable, providing distributed search and index replication, and it powers the search and navigation features of many of the world's largest internet sites.
  14. The attachment type is provided as a plugin extension. It uses Apache Tika behind the scene.
  15. Kudu is an open source storage engine for structured data which supports low-latency random access together with effi- cient analytical access patterns. Kudu distributes data using horizontal partitioning and replicates each partition using Raft consensus, providing low mean-time-to-recovery and low tail latencies. Kudu is designed within the context of the Hadoop ecosystem and supports many modes of access via tools such as Cloudera Impala, Apache Spark, and MapReduce Structured storage in the Hadoop ecosystem has typically been achieved in two ways: for static data sets, data is typically stored on HDFS using binary data formats such as Apache Avro[1] or Apache Parquet[3]. However, neither HDFS nor these formats has any provision for updating individual records, or for efficient random access. Mutable data sets are typically stored in semi-structured stores such as Apache HBase[2] or Apache Cassandra[21]. These systems allow for low-latency record-level reads and writes, but lag far behind the static file formats in terms of sequential read throughput for applications such as SQL-based analytics or machine learning.
  16. Ambari se positionne en alternative à Chef, Puppet pour les solutions génériques ou encore à Cloudera Manager pour le monde Hadoop.
  17. Flink’s core is a streaming dataflow engine that provides data distribution, communication, and fault tolerance for distributed computations over data streams. Flink includes several APIs for creating applications that use the Flink engine: DataSet API for static data embedded in Java, Scala, and Python, DataStream API for unbounded streams embedded in Java and Scala, and Table API with a SQL-like expression language embedded in Java and Scala. Flink also bundles libraries for domain-specific use cases: Machine Learning library, and Gelly, a graph processing API and library. You can integrate Flink easily with other well-known open source systems both for data input and output as well as deployment.
  18. Apache Mesos abstracts CPU, memory, storage, and other compute resources away from machines (physical or virtual), enabling fault-tolerant and elastic distributed systems to easily be built and run effectively.