Cours electrostatique

1 126 vues

Publié le

0 commentaire
1 j’aime
Statistiques
Remarques
  • Soyez le premier à commenter

Aucun téléchargement
Vues
Nombre de vues
1 126
Sur SlideShare
0
Issues des intégrations
0
Intégrations
2
Actions
Partages
0
Téléchargements
92
Commentaires
0
J’aime
1
Intégrations 0
Aucune incorporation

Aucune remarque pour cette diapositive

Cours electrostatique

  1. 1. 1 Module d’Electricité 2ème partie : Electrostatique © Fabrice Sincère (version 3.0.1) http://pagesperso-orange.fr/fabrice.sincere
  2. 2. 2 Introduction • Principaux constituants de la matière : - protons : charge électrique + e ≈ +1,6 10 -19 coulomb - neutrons : pas de charge (= neutre) - électrons : - e • Un atome a autant d’électrons que de protons : il est globalement neutre. • Un corps électrisé (+ ou -) est un corps qui n’est pas neutre.
  3. 3. 3 Conducteurs et isolants électriques Un conducteur métallique possède des électrons libres. • mouvement d’ensemble d’électrons libres = courant électrique • l’électrocinétique est l’étude des courants électriques Un isolant ne possède pas d’électron libre. L’électrostatique est l’étude de l’électricité statique des corps électrisés (conducteur ou isolant).
  4. 4. 4 Electrisation d’un corps • Excès d’électrons (-): corps électrisé négativement • Carence en électrons (+) : ‘ ‘ positivement - électrisation des isolants : par frottement Les charges sont immobiles (= statiques) - électrisation des conducteurs : par influence Les charges se déplacent jusqu’à atteindre un état d’équilibre (fig. 1) : boule en métal (initialement neutre) + + + On approche une règle en verre (électrisée par frottement avec un chiffon) + + + - - -
  5. 5. 5 • Application : Machine de Whimshurst (100 kV)
  6. 6. 6 Décharge électrostatique Un courant apparaît quand un corps électrisé se décharge dans un autre. Remarque : courant très intense (mais très bref) tension très élevée >> kV spectaculaire : foudre >> MV Exemple : décharge électrostatique d’un corps humain : • 10 A • 10 kV • < 1 µs
  7. 7. 7
  8. 8. 8 Chapitre 1 Champ électrostatique Force électrostatique • Soit deux corps ponctuels de charges q1 et q2 (fig. 2) : • Sens - charges de même signe : répulsion - signe opposé : attraction 1/2F r 2/1F r
  9. 9. 9 • Intensité : Loi de Coulomb ²r qq 109 ²r qq 4 1 FFF 21921 0 1/22/1 ⋅≈ πε === ε0 ≈ 8,85⋅10-12 F/m : permittivité diélectrique du vide r : distance (m) F en newton (N)
  10. 10. 10 Champ électrostatique E Un corps ponctuel de charge q crée un champ électrostatique radial (fig.3) : E r q < 0 : sens du champ inversé Intensité (en V/m) : ²r q 109E 9 ⋅≈
  11. 11. 11 Relation entre E et F Un corps chargé soumis à un champ électrostatique est l’objet d’une force électrostatique (fig. 4) : Champ électrostatique crée par un ensemble de charges (fig.5) EqF rr = E r F r 2E r 1E r E r ∑= i i )M(E)M(E rr
  12. 12. 12 Lignes de champ Une ligne de champ est tangente en tous points au champ (fig. 6) : L’ensemble des lignes de champ forme le spectre. Exemple : spectre d’une charge ponctuelle (fig. 7) : E r E r q>0
  13. 13. 13 Chapitre 2 Théorème de Gauss Flux d’un champ à travers une surface Cas particulier (fig. 8) : • champ uniforme (lignes de champ parallèles) • surface plane Remarques : Φ = ES quand E ⊥ surface Φ = 0 quand E // surface S r S r S r ESSE =⋅=Φ rr °= ⋅=Φ 45cosES SE rr 0SE =⋅=Φ rr E r E r E r
  14. 14. 14 Théorème de Gauss Soit une surface fermée (S) contenant une charge électrique totale qint (fig. 9) : ΦΦΦΦ = qint / εεεε0 + ++++++ ++ + +++++ + + + + + (S)
  15. 15. 15 Application : champ crée par un plan uniformément chargé (fig. 10) Densité surfacique de charge : σ (C/m²) Champ ⊥ plan On choisit une surface cylindrique fermée de section S : qint = σS Φ = ES + ES + 0 = 2ES Φ = qint / ε0 02 E ε σ = + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + + + + + + + ++ + + + + + + + S r E r S r E r
  16. 16. 16 Chapitre 3 Potentiel électrique A tout point M de l’espace, on peut associer un potentiel électrique V(M). Relation entre champ E et différence de potentiel électrique (fig. 11) Remarques : dans un circuit électrique : d.d.p. = tension E est dirigé dans le sens des potentiels décroissants E ⊥ surface équipotentielle (V=cte) E = 0 dans un volume équipotentiel E r rd r rdEVVdV 12 rr ⋅−=−=
  17. 17. 17 Cas particulier : champ uniforme Considérons deux plaques métalliques parallèles, soumises à une tension U (fig. 12) : Application : accélération du faisceau d’électrons d’un téléviseur à tube cathodique (25 kV) E r E = U/d
  18. 18. 18 Origine du courant électrique (fig. 13) fem (tension) ⇒ champ électrique ⇒ force électrostatique ⇒ mise en mouvement des électrons libres ⇒ courant électrique E r F r
  19. 19. 19 Chapitre 4 Conducteur en équilibre électrostatique Soit un conducteur plein chargé négativement (fig. 14) : Charges uniquement en surface. Champ nul à l’intérieur (application : cage de Faraday). Conducteur équipotentiel (V=cte). A l’extérieur : lignes de champ ⊥ surface - - - - - - - - - 0E cteV rr = = E r
  20. 20. 20 Chapitre 5 Le condensateur Un condensateur est constitué de deux conducteurs (= armatures) séparés par un isolant (= diélectrique). Symbole : U ⇒ champ E ⇒ charges électriques sur les armatures Q = QA = - QB : charge du condensateur Capacité électrique (en farad) : Appliquons une tension U aux bornes d’un condensateur (fig. 15) : E r C = Q/U
  21. 21. 21 εr : permittivité diélectrique relative ≈ 1 pour l’air sec jusqu’à 10 000 pour les céramiques S : aire de chaque armature (m²) d : épaisseur du diélectrique (m) Capacité d’un condensateur plan C = εεεε0 εεεεr S/d
  22. 22. 22 Champ disruptif (ou rigidité diélectrique) Au delà d’une certaine intensité (Ed), un isolant devient conducteur. Exemples : • Condensateur : U > tension de “claquage” ⇒ destruction du diélectrique • Air : Ed ≈ 3⋅106 V/m d = 1 mm : U >> kV ⇒ décharge électrostatique (bougies d’automobile, briquet piézo-électrique …)
  23. 23. 23 d >> m : U >> MV : foudre
  24. 24. 24 Chapitre 6 Compléments sur le condensateur ∑= i iéq CC Association de condensateurs ♦ en parallèle Q1 = C1U Q2 = C2U Q = CéqU Conservation de la charge : Q = Q1 + Q2 Donc : Céq = C1 + C2 En parallèle, les capacités s’additionnent :
  25. 25. 25 ♦ association en série ∑= i iéq C 1 C 1 Energie emmagasinée par un condensateur Un condensateur contient de l’énergie sous forme électromagnétique : ²CU 2 1 W = avec : W : énergie en joule (J) C : capacité (F) U : tension aux bornes (V)
  26. 26. 26 dt dq i += Relation entre courant et tension dans un condensateur q = +Cu d’où : dt du Ci += (en convention récepteur) Rappel : L’intensité du courant électrique i (en A) est définie par :
  27. 27. 27 Charge et décharge d’un condensateur ♦ Charge d’un condensateur à travers une résistance Loi des branches : E = Ri + u On obtient une équation différentielle : E dt du RCu =+
  28. 28. 28 Supposons le condensateur initialement déchargé (u = 0 V). On ferme K à l’instant t = 0. Solution : )e1(E)t(u RC t − −= τ = RC est la constante de temps du circuit. Remarque : après une durée de 3τ, le condensateur est chargé à 95 %
  29. 29. 29 dt du Ci −= ♦ Décharge d’un condensateur à travers une résistance Loi d’Ohm : u = +Ri 0 dt du RCu:où'd =+
  30. 30. 30 Supposons le condensateur initialement chargé (u = E). On ferme K à t = 0. τ − ⋅= t eE)t(u:Solution
  31. 31. 31 dt du CI += ♦ Charge à courant constant La charge est linéaire (tension en forme de rampe) : C I t u :pente = ∆ ∆
  32. 32. 32 Condensateur en régime sinusoïdal Alimentons un condensateur avec une tension sinusoïdale alternative de pulsation ω. ) 2 tsin(ÛC )tcos(ÛC )tsin(Û dt d C dt )t(du C)t(i u u u π +ϕ+ωω= ϕ+ωω= ϕ+ω= = Déphasage : ϕu/i = ϕu - ϕi = -90° Impédance : ω == C 1 Iˆ Uˆ Z

×