Mécanique des
Milieux Continus
Golay Frédéric - Bonelli Stéphane




                                    01/02/2011
                                          ISITV
MMC




Golay - Bonelli   -2-
Ce cours de mécanique des milieux continus est à la base de l’enseignement de mécanique à l’ISITV. Les
notions abordées ici, transport de champs, lois de conservation, ..., seront reprises ultérieurement en
mécanique des solides et mécanique des fluides. Dans une première partie, nous aborderons les notations
tensorielles et vectorielles indispensables à toute étude scientifique, puis dans une deuxième partie, nous
étudierons la cinématique des milieux continus. Après avoir introduit la modélisation des efforts et les lois de
conservation par le principe des puissances virtuelles, nous appliquerons ces lois de conservation aux lois de
comportement de l’élasticité linéaire (en mécanique des solides) et aux lois de comportement des fluides
newtoniens (en mécanique des fluides).




                                                      -3-                                        Golay - Bonelli
MMC




Golay - Bonelli   -4-
Sommaire




            TABLE DES MATIERES



Notations tensorielles ....................................................................................................... 9

1        Vecteurs et tenseurs ............................................................................................... 9
      1.1 Notations ............................................................................................................................................... 9
      1.2 Changement de repère ........................................................................................................................ 12

2        Permutations et déterminants............................................................................... 14
      2.1    Les symboles de permutation .............................................................................................................. 14
      2.2    Déterminant d’une matrice ................................................................................................................. 14
      2.3    Polynôme caractéristique .................................................................................................................... 15
      2.4    Adjoint d’un tenseur antisymétrique ................................................................................................... 15

3        Calcul vectoriel et analyse vectorielle .................................................................... 16
      3.1 Calcul vectoriel ..................................................................................................................................... 16
      3.2 Analyse vectorielle ............................................................................................................................... 16
      3.3 Transformation d’intégrales ................................................................................................................ 17

4        Formules essentielles en Mécanique des Milieux Continus .................................... 18
      4.1    Coordonnées cartésiennes orthonormées .......................................................................................... 18
      4.2    Coordonnées cylindriques ................................................................................................................... 19
      4.3    Coordonnées sphériques ..................................................................................................................... 20
      4.4    Comment retrouver les formules ........................................................................................................ 21

5        A retenir ............................................................................................................... 23

CINEMATIQUE ................................................................................................................. 25

1        Le mouvement et ses représentations ................................................................... 25
      1.1 Configuration ....................................................................................................................................... 25
      1.2 Variables de Lagrange et variables d’Euler .......................................................................................... 26
      1.3 Dérivées particulaires .......................................................................................................................... 26

2        Déformation d’un milieux continu ......................................................................... 27
      2.1 Notion de déformation ........................................................................................................................ 27
      2.2 Tenseur des déformations ................................................................................................................... 28
      2.3 Conditions de compatibilité ................................................................................................................. 30

3        Transport, dérivées particulaires ........................................................................... 30
      3.1    Transport d’un volume ........................................................................................................................ 30
      3.2    Transport d’une surface orientée ........................................................................................................ 31
      3.3    Dérivée particulaire d’une intégrale de volume .................................................................................. 32
      3.4    Dérivée particulaire d’une intégrale de surface .................................................................................. 33

4        A retenir ............................................................................................................... 35

EFFORTS DANS LES MILIEUX CONTINUS ........................................................................... 37
                                                                              -5-                                                             Golay - Bonelli
MMC

1        Définitions ............................................................................................................ 37
      1.1 Forces ................................................................................................................................................... 37
      1.2 Vecteur-contrainte et tenseur des contraintes .................................................................................... 37

2        Equilibre ............................................................................................................... 39
      2.1    Le Principe des Puissances Virtuelles (Germain 1972) ......................................................................... 39
      2.2    Puissance virtuelle des efforts intérieurs ............................................................................................. 39
      2.3    Puissance virtuelle des efforts extérieurs ............................................................................................ 40
      2.4    Application du Principe des Puissances Virtuelles ............................................................................... 40
      2.5    Equilibre ............................................................................................................................................... 41
      2.6    Autre présentation: Principe fondamental de la dynamique............................................................... 42

3        Quelques propriétés du tenseur des contraintes ................................................... 43
      3.1    Symétrie du tenseur des contraintes ................................................................................................... 43
      3.2    Contrainte normale et contrainte tangentielle .................................................................................... 44
      3.3    Directions principales, contraintes principales .................................................................................... 44
      3.4    Invariants .............................................................................................................................................. 44
      3.5    Cercles de Mohr ................................................................................................................................... 44

4        Exemples de tenseur des contraintes .................................................................... 47
      4.1 Tenseur uniaxial ................................................................................................................................... 47
      4.2 Tenseur sphérique................................................................................................................................ 47

5        A retenir ............................................................................................................... 48

ELASTICITE ...................................................................................................................... 49

1        Approche expérimentale: essai de traction............................................................ 49

2        Loi de comportement élastique linéaire (en HPP) .................................................. 50
      2.1    Forme générale .................................................................................................................................... 50
      2.2    Matériau élastique homogène isotrope............................................................................................... 50
      2.3    Matériau élastique homogène orthotrope .......................................................................................... 50
      2.4    Matériau élastique homogène isotrope transverse ............................................................................. 51
      2.5    Caractéristiques de quelques matériaux .............................................................................................. 51
      2.6    Critères de limite d’élasticité ............................................................................................................... 52

3        Le problème d’élasticité ........................................................................................ 53
      3.1    Ecriture générale .................................................................................................................................. 53
      3.2    Formulation en déplacement ............................................................................................................... 53
      3.3    Formulation en contrainte ................................................................................................................... 53
      3.4    Théorème de superposition ................................................................................................................. 53
      3.5    Elasticité plane ..................................................................................................................................... 54
      3.6    Thermoélasticité .................................................................................................................................. 55

4        A retenir ............................................................................................................... 58

INTRODUCTION A LA MECANIQUE DES FLUIDES............................................................... 59

1        Loi de comportement ............................................................................................ 59
      1.1    Fluide Newtonien ................................................................................................................................. 59
      1.2    Fluide incompressible........................................................................................................................... 60
      1.3    Fluide non-visqueux ............................................................................................................................. 60
      1.4    Fluide au repos ..................................................................................................................................... 60



Golay - Bonelli                                                                -6-
Sommaire

2        Conservation de la masse ...................................................................................... 60

3        Equation du mouvement ....................................................................................... 61

4        A retenir ............................................................................................................... 62

Bibliographie ................................................................................................................... 63


Annexes: Rappels de mécaniques des solides rigides ....................................................... 65

1        Cinématiques du solide ......................................................................................... 65
      1.1 Description du mouvement ................................................................................................................. 65
      1.2 Composition des mouvements ............................................................................................................ 66

2        Cinétique .............................................................................................................. 68
      2.1 Définitions ............................................................................................................................................ 68
      2.2 Eléments de cinétique ......................................................................................................................... 68
      2.3 Cinétique du solide rigide .................................................................................................................... 69

3        Equations fondamentales de la mécanique des solides .......................................... 72
      3.1 Torseur associé aux efforts externes ................................................................................................... 72
      3.2 Loi fondamentale de la dynamique ..................................................................................................... 72




                                                                              -7-                                                             Golay - Bonelli
MMC




Golay - Bonelli   -8-
Notations tensorielles




NOTATIONS TENSORIELLES


1     Vecteurs et tenseurs
Avertissement: L’objectif de ce chapitre, est de familiariser les étudiants avec les notations tensorielles. Afin
d’en simplifier le contenu, nous ne considérerons que des bases orthonormées.

1.1 Notations

1.1.1 Vecteur
Dans un espace euclidien ξ à trois dimensions, soit e1, e2 , e3 une base orthonormée. Un vecteur V est

représenté par ses composantes V1 , V2 , V3

                                         3
            V = V1e1 +V2e2 +V3e3 = ∑Viei
                                        i =1                                                                  (1.1)
En utilisant la convention de sommation, ou convention d’Einstein, on écrit

            V = Viei
                                                                                                              (1.2)

où, chaque fois qu’un indice est répété, il convient de faire varier cet indice de 1 à 3 et de faire la somme. Dans
l’expression (2) l’indice i est un "indice muet".

En notation matricielle on écrira parfois
                              
                                
                                 
                                
                    V         
                                
                               1
                                 

                     {}
                              
                                
                                 
                                
            V = V = V         
                              
                                 
                                 
                               2
                              
                              
                              
                                 
                                 
                                 
                                                                                                              (1.3)
                                
                    V         
                                
                               3
                                 
                              
                                
                                 


et le vecteur transposé

                      {}
                          T
                 T
            V = V             = V = V1 V2 V3
                                                                                                              (1.4)

1.1.2 Application linéaire de ξ dans ξ
Soit A une application linéaire, dans la base e1, e2 , e3 . Cette application est représentée par une matrice 3x3

notée A :
        
                A A A 
                 11    12  13 
                A A A 
                 21    22  23 
                              
                 A31 A32 A33 
                               

Si W est un vecteur tel que W = AV , alors les composantes de W sont données par

            W1 = A11V1 + A12V2 + A13V3
            W2 = A21V1 + A22V2 + A23V3
            W3 = A31V1 + A32V2 + A33V3

et en utilisant les conventions de sommation où j est un indice muet

                                                       -9-                                         Golay - Bonelli
MMC

           Wi = AijVj
                                                                                                           (1.5)
et en notation vectorielle

           {W } = A {V }
On définit les symboles de Kronecker par
                 1
                           si    i=j
           δij = 
                 
                 0
                           si    i≠j                                                                      (1.6)
                 
                 

En particulier l’application identité 1 est représentée par la matrice

                        δ13  1 0 0
                             
           
           δ
            11
           
                  δ12
                        δ23  = 0 1 0
                             
           
           δ      δ22
            21
           
                                       
           
           δ
            31   δ32   δ33  0 0 1
                                     
La composition de deux applications linéaires se traduit par le produit de leur matrice représentative, c’est-à-
dire

           C =A B                ou encore    C  = A B 
                                                   
et en notation indicielle

           C ij = Aik Bkj
                                                                                                           (1.7)

1.1.3 Formes bilinéaires
Soit A une forme bilinéaire sur ξ , c’est-à-dire une application bilinéaire de ξ × ξ dans ℝ . Dans la base
e1, e2 , e3 elle est représentée par une matrice Aij telle que


               ( )
           A V ,W = AijVWj
                        i                                                                                  (1.8)

ou en notation matricielle

               ( )
           A V ,W = V A {W }
                        

En particulier, la forme bilinéaire représentée dans toute base par les symboles de Kronecker est le produit
scalaire. Si ( e1, e2 , e3 ) est une base orthonormée, alors

           ei ⋅ e j = δij

et le produit scalaire de deux vecteurs est donné par

           V ⋅W = Viei ⋅Wje j = VWj ei ⋅ e j = δijVWj = VWi
                                 i                 i     i


ou en notation matricielle

V ⋅W = V {W }


1.1.4 Tenseurs

1.1.4.1 Tenseur du second ordre
Un tenseur du second ordre T est un opérateur linéaire qui fait correspondre à tout vecteur V de l’espace
euclidien un vecteur W de ce même espace.

Golay - Bonelli                                                   - 10 -
Notations tensorielles


           W =T V     ()
                                                                                
Cet opérateur peut être représenté par une matrice 3x3, notée T  ou        T  ou T , telle que
                                                                              

           Wi = TijVj

ou en notation matricielle

           {W } = T  {V }
ou

           W = TV

* Un tenseur est dit symétrique si Tij = Tji

* Un tenseur est dit antisymétrique si Tij = − ji
                                              T

* Un tenseur est dit isotrope si Tij = t δij

* On peut toujours décomposer un tenseur en une partie symétrique et antisymétrique
                     S       A
           T = T +T                      Tij = TijS + TijA
                                    ou

                           1                  1
                  TijS =      (
                             T + Tji
                           2 ij
                                           )
                                        TijA = Tij −Tji
                                              2
                                                             (     )
           avec                      et

1.1.4.2 Tenseur d’ordre supérieur
On peut définir un vecteur V                   par ses composantes Vi , ou par les coefficients de la forme linéaire

X → X ⋅V = XiVi , car la base choisie est orthonormée (voir les notions de vecteurs covariants et
contravariants).
On peut alors considérer le vecteur comme un tenseur du premier ordre.
De même, une fonction scalaire peut être considérée comme un tenseur d’ordre zéro.

Un tenseur du troisième ordre S est un opérateur linéaire qui, à tout vecteur Z fait correspondre un tenseur
du second ordre T .

           T = S (Z )        ou encore          Tij = Sijk Z k


1.1.4.3 Produit tensoriel
On définit le produit tensoriel du vecteur U par le vecteur V , noté U ⊗ V , comme le tenseur d’ordre deux,

                                                                                 (
défini par la forme bilinéaire qui aux vecteurs X et Y fait correspondre U ⋅ X V ⋅Y     )( )
Les 9 produits tensoriels ei ⊗ e j définissent une base de l’espace vectoriel des tenseurs d’ordre deux, si bien
que l’on peut écrire un tenseur T comme

           T = Tijei ⊗ e j

ou encore, par exemple,

                                                                 - 11 -                                  Golay - Bonelli
MMC

                                                         
                                      
                                    uv 1 1
                                      
                                              u1v2 u1v3 
                                                         
           u ⊗ v = ui v jei ⊗ e j = u v
                                      
                                      
                                       2 1
                                              u2v2 u2v3 
                                                         
                                    uv       u3v2 u3v3 
                                       3 1
                                                        



1.1.4.4 Contraction et produit contracté
Soit le produit tensoriel A ⊗ B ⊗ C , on appelle contraction, l’opération qui lui fait correspondre le vecteur

A(B ⋅ C ) . Le produit contracté d’un tenseur d’ordre 4 R et d’un tenseur d’ordre 3 S est défini par le tenseur
d’ordre 5


                      (                       )(                    )
           R ⋅ S = Rijklei ⊗ e j ⊗ ek ⊗ el ⋅ S pqrep ⊗ eq ⊗ er = Rijkm Smqrei ⊗ e j ⊗ ek ⊗ eq ⊗ er


Le produit doublement contracté d’un tenseur d’ordre 4 R et d’un tenseur d’ordre 3 S est défini par le
tenseur d’ordre 3


                       (                      )(                        )
           R : S = Rijklei ⊗ e j ⊗ ek ⊗ el : S pqrep ⊗ eq ⊗ er = Rijnm Smnrei ⊗ e j ⊗ er

Par exemple, le produit doublement contracté de deux tenseurs d’ordre 2 T et T ′ est le scalaire

                          (        )(              )
           T : T ′ = Tijei ⊗ e j : T ′ pqep ⊗ ea = TijTji′


1.2 Changement de repère

1.2.1 Matrice de passage
Soit e1, e2 , e3 une base orthonormée et e1′, e2 , e3 une autre base orthonormée.
                                               ′ ′

On définit la matrice de passage Q telle que:

           e1′ = Q11e1 + Q12e2 + Q13e3
           e2′ = Q21e1 + Q22e2 + Q23e3
             ′
           e3 = Q31e1 + Q32e2 + Q33e3

ou encore, en notations indicielles

           ei′ = Qije j

et en notation matricielle

           {e ′} = Q  {e }
Les deux bases étant orthonormées, on doit avoir

           δij = ei′ ⋅ e j′ = Qikek ⋅ Qjlel = QikQjl δkl = QikQjk

ce qui montre que la matrice inverse de Q est QT . En particulier on tire la relation inverse:

           ei = Qjie j′


1.2.2 Vecteurs
Soit V un vecteur de composantes Vi dans la base e1, e2 , e3 et Vi ′ dans la base e1′, e2 , e3 .
                                                                                        ′ ′

           V = Viei = Viei′
                        ′
Golay - Bonelli                                                - 12 -
Notations tensorielles

En utilisant la matrice de passage

           V = Viei = VQkiek
                       i


soit

           Vk′ = VQki
                  i
                                     et                i
                                                         ′
                                                 Vk = VQik

ou encore, en notation matricielle

           {V ′} = Q  {V }                         {V } = Q  {V ′}
                                                                         T
                                            et

Remarque: le produit scalaire est un invariant, c’est à dire que cette fonction est indépendante du repère
choisi.
En notation indicielle

           V ′. ′ = VkWk′ = VQkiWjQkj = δijVWj = VWi = V .
              W       ′      i              i     i
                                                         W

et en notation matricielle


                                 { }
                                        
                                                     {}            { }
                                                            T
           V ′. ′ = V ′ W ′ =  Q  V 
              W                       
                                         
                                                                Q  W
                                                                 
                                        
                       Q  Q  W = V
                           T
                 = V    
                                       { }                  {W } = V .W
1.2.3 Application linéaire
                                                                                    ′
Soit A une application linéaire, de composantes Aij dans la base e1, e2 , e3 . et Aij dans la base e1′, e2 , e3 .
                                                                                                         ′ ′

En notation indicielle

           Wi ′ = AikVk′ = QijWj = Qij AjmVm = Qij AjmQkmVk′
                    ′

d’où
             ′
           Aik = Qij AjmQkm

et en notation matricielle

           {W ′} = A′ {V ′} = Q  {W } = Q  A {V } = Q  A Q  {V }
                                                                                                 T




soit

           A′ = Q  A Q 
                                     T
                  

1.2.4 Forme bilinéaire
                                                                                    ′
Soit A une application linéaire, de composantes Aij dans la base e1, e2 , e3 . et Aij dans la base e1′, e2 , e3 .
                                                                                                         ′ ′

           A(V ,W ) = AijVWj = AijVWj′ = AijQkiVk′ mjWm
                          i
                                 ′ i′            Q     ′

soit

            ′
           Akm = AijQkiQmj

et en notation matricielle

                                           { }
               A(V ,W ) = V A W = V ′ A′  W ′ =
                                                                    { }
            
                   { }
                                          { }                                    { }
                       T
            Q  V ′  A Q  W ′ = V ′ Q  A Q  W ′
                 T                  T                             T
                      
                                                  
                     

                                                                             - 13 -                                 Golay - Bonelli
MMC

soit

            A′ = Q  A Q 
                                       T
                   

1.2.5 Tenseur d’ordre 2
Soit T un tenseur d’ordre 2, en notation indicielle

            T = Tijei ⊗ e j = Tij′ei′ ⊗ e j′ = TijQkiek′ ⊗ Qmjem = TijQkiQmjek′ ⊗ em
                                                               ′                   ′

puis
              ′
            Tkm = TijQkiQmj



2      Permutations et déterminants

2.1 Les symboles de permutation
On introduit les symboles de permutation
                     +1 si i, j , k est une permutation paire de 1, 2, 3
                     
                     
                     
            εijk   = −1 si i, j , k est une permutation impaire de 1, 2, 3
                     
                     
                     0
                     
                        si deux indices sont répétés
                     
Ces symboles représentent le produit mixte des vecteurs de base

                     (
            εijk = ei , e j , ek   )
εijk sont les composantes d’un tenseur du troisième ordre, qui représente, par exemple, la forme trilinéaire
produit mixte:

            (U ,V ,W ) = ε      ijk
                                      U iVjWk

Avec un peu de patience on peut démontrer les résultats suivants
            
                                   
                                    
                                                    
                                          δim δin 
            
                                    δil
                                    
                                   
            εijk εlmn = Det  δjl δjm δjn 
                                                    
            
                                                  
            
            
                                    
                                    δ    δkm δkn 
                                                    
            
            
                                     kl
                                                  
             ε ε = δ δ −δ δ
            
            
            
                   ijk imn        jm kn    jn km
            
                       εijk εijn = 2δkm
            
            
                          εijk εijk = 6
            
            

2.2 Déterminant d’une matrice
Les symboles de permutation permettent le calcul du déterminant d’une matrice par

            εijk Det(A) = εmnp Aim Ajn Akp
                                                                                                       (1.9)
ou encore

                           1
            Det(A) =         ε ε A A A
                           6 ijk mnp im jn kp
On peut également déterminer l’inverse d’une matrice



Golay - Bonelli                                            - 14 -
Notations tensorielles

                                                   1
            B = A−1              et     Bji =          ε ε A A
                                                2Det(A) imn jpq mp nq


2.3 Polynôme caractéristique
Les valeurs propres d’un tenseur du second ordre sont obtenues par la résolution de l’équation caractéristique
            P (λ ) = Det (A − λI )

soit en développant

            1
              ε ε (A − λδim )(Ajn − λδjn )(Akp − λδkp ) = 0
            6 ijk mnp im
ou encore

            P (λ ) = I 3 − λI 2 + λ 2 I 1 − λ 3

avec
            
                      1
            
               I 3 = εijk εmnp Aim Ajn Akp = Det(A)
            
                      6
            
            
            I = A A − A A  = 1 (Tr A)2 − Tr A2 
             2
                1 
                                  
                                   
                                   
                                         
                                         
                                         
                                                     
                                                     
                                                     
                                                     
                                        
            
            
                   
                2  ii jj
                                   
                             ij ji 
                                       2           
                                                     
            
                          I1 =Aii =Tr A
            
            
            
            
            

I 1, I 2 , I 3 sont appelés les invariants fondamentaux du tenseur A.


2.4 Adjoint d’un tenseur antisymétrique
Soit   un tenseur antisymétrique
                    0        − 31 
                         12
                   −
                 =  12   0         
                               23 
                                   
                    31 − 23  0 
                                    
on peut également lui associer le vecteur
                    
                       
                            
                                   
                                    
                    
                ω1  
                   
                   
                   
                   
                    
                    
                    
                    
                       
                       
                       
                       
                                    
                                    
                                    
                                 23 
                                    
                   
                   
                      
                                   
                                    
            ω = ω2  = 
                   
                   
                   
                    
                    
                    
                    
                       
                       
                       
                                    
                                    
                                 31 
                                    
                   
                   
                      
                                   
                                    
                    
                ω3  
                   
                   
                   
                    
                    
                    
                       
                       
                       
                                    
                                    
                                    
                                 12 
                    
                       
                            
                                   
                                    


soit
                     0   ω3 −ω2 
                    
                 = −ω3   0  ω1 
                                 
                     ω2 −ω1 0 
                                  

Le vecteur ω est le vecteur adjoint du tenseur antisymétrique           . En notation indicielle on a:
            
            
            
            
            
                ij
                    = εijk ωk
            
            
            
            
            
            
                ωi = 1 εijk jk
                     2
            
                                                                                                                 (1.10)




                                                              - 15 -                                     Golay - Bonelli
MMC


3    Calcul vectoriel et analyse vectorielle

3.1 Calcul vectoriel
Le produit vectoriel

           c = a ∧b
s’écrit en notation indicielle

           ciei = εijk a jbkei

On peut montrer que

                  (a ∧ b) ∧ c = (a ⋅ c)b − (b ⋅ c)a
           (a ∧ b) ⋅ (c ∧ d ) = (a ⋅ c)(b ⋅ d ) − (a ⋅ d )(b ⋅ c)
3.2 Analyse vectorielle
On note d’une virgule la dérivée partielle, soit , i = ∂ . Les opérateurs exposés dans cette partie seront
                                                      ∂x i
exprimés dans un repère cartésien orthonormé.


* Soit f une fonction scalaire

Le gradient d’une fonction scalaire est un vecteur
                                   ∂f 
                                      
                                  
                                      
                                   ∂x 
                                   1 
                                  
                                   ∂f 
                                       
                                      
           grad f = ∇f = f,i ei = 
                                      
                                       
                                   ∂x 
                                   2
                                  
                                   ∂f 
                                       
                                  
                                      
                                   ∂x 
                                   3 
                                  
                                      
                                       
Le laplacien d’une fonction scalaire est un scalaire

                            ∂2 f        ∂2 f        ∂2 f
           ∆ f = f,ii =             +           +
                            ∂x 1
                               2
                                        ∂x 2
                                           2
                                                    ∂x 3
                                                       2




* Soit v un vecteur
La divergence d’un vecteur est un scalaire

                                 ∂v1        ∂v2        ∂v3
           Div v = vi,i =               +          +
                                 ∂x 1       ∂x 2       ∂x 3

Le rotationnel d’un vecteur est un vecteur
                                                     ∂v
                                                     3 ∂v 2    
                                                    
                                                                
                                                     ∂x − ∂x 
                                                     2          
                                                                 
                                                    
                                                     ∂v
                                                               3
                                                     1 ∂v 3    
           rot v = ∇ ∧ v = εijk vk , j         ei = 
                                                         −      
                                                                 
                                                     ∂x
                                                     3     ∂x 1 
                                                                 
                                                    
                                                     ∂v         
                                                     2     ∂v1 
                                                    
                                                         −      
                                                     ∂x 1 ∂x 2 
                                                                
                                                                 
                                                                
Le gradient d’un vecteur est une matrice

Golay - Bonelli                                                  - 16 -
Notations tensorielles

                                    ∂v      ∂v1    ∂v1 
                                    1
                                    ∂x      ∂x 2   ∂x 3 
                                    1
                                    ∂v      ∂v2    ∂v2 
           ∇ v = vi, j ei ⊗ e j =  2                    
                                    ∂x 1    ∂x 2   ∂x 3 
                                    ∂v      ∂v 3   ∂v 3 
                                    3
                                                         
                                    ∂x 1   ∂x 2   ∂x 3 

Le laplacien d’un vecteur est un vecteur
                              2
                                                     
                                                      
                              ∂ v1 + ∂ v1 + ∂ v1 
                                        2       2
                             
                              2                      
                                                   2 
                              ∂x 1
                                     ∂x 22
                                               ∂x 3   
                                                       △v 
                              2
                                                       
                                                      
                              ∂ v2
                                     ∂ v2
                                        2
                                               ∂ v2   1 
                                                 2
                                                       = △v 
           ∆ v = vi, jj ei =  2 +           +          2
                              ∂x
                              1      ∂x 22
                                               ∂x 3   
                                                   2 
                              2
                                                      △v 
                                                        
                                                           
                              ∂ v3
                                     ∂ 2v 3   ∂ 2v 3   3 
                                                      
                              2 +
                              ∂x
                                             +        
                              1
                             
                                     ∂x 22
                                               ∂x 3 
                                                   2
                                                      
                                                      
                                                      

* Soit T un tenseur du second ordre
La divergence d’un tenseur est un vecteur
                                 ∂T
                                 11 ∂T12       ∂T13 
                                                     
                                
                                      +      +      
                                                     
                                 ∂x
                                 1      ∂x 2   ∂x 3 
                                                     
                                
                                 ∂T                 
                                 21 ∂T22
                                               ∂T23 
                                                     
                                                     
           Div T = Tij , j ei =       +      +      
                                 ∂x
                                 1      ∂x 2   ∂x 3 
                                                     
                                
                                 ∂T                 
                                 31 ∂T32       ∂T33 
                                                     
                                
                                      +      +      
                                                     
                                 ∂x 1
                                        ∂x 2   ∂x 3 
                                                     
                                                    
* Quelques formules utiles

               ( )
           Div f a = f Div a + a ⋅ grad f

           Div (a ∧ b ) = b ⋅ rot a − a ⋅ rot b

                   Div (rot a ) = 0

                  rot (grad f ) = 0

                 ( )
           grad f g = f grad g + g grad f

               ( )
           rot f a = f rot a + grad f ∧ a

                        (     )
                   Div grad f = ∆ f

           rot (rot a ) = grad (Div a ) − ∆a


3.3 Transformation d’intégrales
Soit   un domaine borné et ∂           sa frontière, de normale n .
Soit φ une fonction scalaire, alors

           ∫∫∂ φ n dS = ∫∫∫ grad φ dV

Soit A un vecteur, alors

           ∫∫∂ A ⋅ n dS = ∫∫∫ Div(A) dV


                                                              - 17 -          Golay - Bonelli
MMC


Soit T un tenseur, alors

           ∫∫∂ T ⋅ n dS = ∫∫∫ Div(T ) dV

Soit ∂ un domaine plan de normale n , de frontière Γ . Soit U un vecteur défini sur ce domaine. Si τ est le
vecteur unitaire tangent à Γ , alors

           ∫∫∂ rot(U ) ⋅ n dS = ∫ΓU ⋅ τ dl

Tous ces résultats sont issus du théorème de la divergence

           ∫∫∂ t jkl nl dS = ∫∫∫ t jkl ,l dV



4    Formules essentielles en Mécanique des Milieux Continus

4.1 Coordonnées cartésiennes orthonormées
           OM = xex + yey + zez

* Soit v = vxex + vyey + vzez un vecteur, alors

                                                           ∂v             ∂vx        ∂vx 
                                                           x
                                                           ∂x             ∂y         ∂z 
                                                          
                        ∂vi                                ∂v             ∂vy        ∂vy 
           ∇(v ) = ∇v =      ei ⊗ e j = vi, j ei ⊗ e j =                                 
                                                               y

                        ∂x j                                ∂x            ∂y         ∂z 
                                                           ∂v             ∂vz        ∂vz 
                                                           z
                                                           ∂x             ∂y         ∂z 
                                                                                         
et

                                                                                 ∂vy
           divv =
                    ∂vi
                    ∂x i
                                            (           )
                           = vi,i = Tr grad(v) = ∇v : I =
                                                                     ∂vx
                                                                      ∂x
                                                                           +
                                                                                 ∂y
                                                                                       +
                                                                                           ∂vz
                                                                                           ∂z


                      ( )
           ∆v = div ∇(v ) =
                                         ∂2vi
                                       ∂x j ∂x j
                                                   ei = vi, jj ei = ∆vxex + ∆vyey + ∆vzez


* Soit f une fonction scalaire, alors
                                                 ∂f 
                                                 
                                                 ∂x 
                                                 ∂f 
                             ∂f
           grad ( f ) = ∇f =      ei = f,i ei =  ∂y 
                                                 
                             ∂x i                ∂f 
                                                 
                                                 ∂z 
                                                 
                                                 
                                                 
et


                      (
           ∆f = div grad (f ) =    )       ∂2 f
                                          ∂x j ∂x j
                                                    = f, jj =
                                                              ∂2 f  ∂2 f ∂2 f
                                                                   + 2 + 2
                                                              ∂x 2 ∂y    ∂z
                                                  
                            
                          T  xx
                            
                                   Txy Txz 
                                            
* Soit T = Tij ei ⊗ e j = T 
                             yx
                            
                                   Tyy Tyz  un tenseur symétrique du deuxième ordre, alors:
                                            
                          T       Tzy Tzz 
                             zx
                                                 




Golay - Bonelli                                                  - 18 -
Notations tensorielles

                                                     ∂T
                                                          ∂Txy   ∂Txz 
                                                                       
                                                     xx
                                                                      
                                                                       
                                                        +      +      
                                                     ∂x
                                                           ∂y     ∂z 
                       ∂Tij                          ∂T
                                                     yx   ∂Tyy   ∂Tyz 
                                                                       
           div(T ) =            ei = Tij , j        
                                               ei =     +      +      
                                                                       
                       ∂x j                          ∂x
                                                           ∂y     ∂z 
                                                    
                                                     ∂T               
                                                     zx   ∂Tzy   ∂Tzz 
                                                                       
                                                    
                                                     ∂x + ∂y + ∂z    
                                                    
                                                                      
                                                                       
                                                                      
et
                                                                   ∆T          ∆Txy   ∆Txz 
                     ∂ 2Tij                                          xx
           ∆T =                 ei ⊗ e j = Tij ,kk    ei ⊗ e j = ∆Tyx         ∆Tyy   ∆Tyz 
                    ∂x k ∂x k                                      ∆T
                                                                              ∆Tzy   ∆Tzz 
                                                                      zx                     

4.2 Coordonnées cylindriques
                                               ∂OM                    1 ∂OM              ∂OM
           OM = rer + zez              et          = er ,                   = eθ ,           = ez
                                                ∂r                    r ∂θ                ∂z

           d(OM ) = erdr + rd θeθ + ez dz

            ∂er                 ∂eθ                   ∂ez
                  =0 ,                  =0        ,         =0
            ∂r                   ∂r                   ∂r
           ∂er                  ∂eθ                   ∂ez
                  = eθ ,               = −er      ,         =0
            ∂θ                  ∂θ                    ∂θ
            ∂er                  ∂eθ                  ∂ez
                  =0 ,                  =0        ,         =0
            ∂z                   ∂z                   ∂z

* Soit v = vrer + vθeθ + vzez un vecteur, alors

                             ∂v                                
                             r                1  ∂vr − v  ∂vr 
                                                           
                                                           
                             ∂r               r  ∂θ
                                                 
                                                         θ  ∂z 
                                                            
                                                            
                                                 ∂v        ∂v 
                             ∂v               1 θ +v     
           grad (v ) = ∇v =  θ                  
                                                         r
                                                                θ
                                                                  
                             ∂r               r  ∂θ       
                                                             ∂z 
                                                               
                             ∂v                              ∂vz 
                             z                    1 ∂v z         
                             ∂r                   r ∂θ       ∂z 
                                                                
et


                         ( )
           div v = Tr ∇(v ) = ∇v : I =
                                                      vr
                                                       r
                                                            +
                                                                ∂vr
                                                                ∂r
                                                                      +
                                                                          1 ∂vθ
                                                                          r ∂θ
                                                                                 ∂v
                                                                                + z
                                                                                 ∂z
                               2 ∂vθ vr                    
                       ( )
                         
                         
           ∆v = div ∇v = ∆vr − 2
                         
                              r ∂θ
                                         
                                              
                                               
                                                      2 ∂v v 
                                                              
                                     − 2 er + ∆vθ + 2 r − θ eθ + ∆vzez
                                      r 
                                              
                                               
                                                            2
                                                     r ∂θ r  

* Soit f une fonction scalaire, alors

                                   ∂f      1 ∂f      ∂f
           grad( f ) = ∇f =           er +      eθ +    e
                                   ∂r      r ∂θ      ∂z z
et

                                    ∂2 f         1 ∂f   1 ∂2 f  ∂2 f
           ∆f = div (∇f ) =                  +        + 2      + 2
                                    ∂r   2
                                                 r ∂r r ∂θ   2
                                                                ∂z



                                                                       - 19 -                              Golay - Bonelli
MMC

                             
           
           T
            rr
           
                      Tr θ Trz 
                                
* Soit T = T
           
           
            θr
                      Tθθ Tθz  un tenseur symétrique du deuxième ordre, alors:
                                
           
           T          Tz θ Tzz 
            zr
                            


                     ∂T
                     rr      1 ∂Tr θ    ∂Trz Trr − Tθθ 
                                                        
                    
                         +           +       +         
                                                        
                     ∂r
                             r ∂θ        ∂z       r    
                                                        
                     ∂T
                                                 2Tr θ 
                                                        
                               1 ∂Tθθ     ∂Tθz         
          div(T ) =      θr
                              +          +      +       
                     ∂r
                               r ∂θ        ∂z     r    
                                                        
                     ∂T
                                1 ∂Tz θ   ∂Tzz Tzr    
                    
                    
                           zr
                              +          +      +       
                                                        
                    
                        ∂r      r ∂θ        ∂z    r    
                                                        
                                                       



4.3 Coordonnées sphériques
                                           ∂OM                       1 ∂OM                        1 ∂OM
          OM = rer           et                = er ,                      = eθ ,                         = eφ
                                            ∂r                       r ∂θ                       rsin θ ∂φ

          d(OM ) = erdr + rd θeθ + rsin θ d φ eφ

               ∂ er                               ∂eθ                                   ∂ eφ
                       =0          ,                     =0          ,                         =0
              ∂r                                 ∂r                                     ∂r
             ∂er                                ∂eθ                                     ∂ eφ
                      = eθ         ,                    = −er        ,                         =0
               ∂θ                            ∂θ                                          ∂θ
           ∂er                              ∂eθ                              ∂eφ
                  = sin θeφ        ,               = cos θeφ         ,              = sin θer − cos θeθ
           ∂φ                               ∂φ                               ∂φ

Soit v = vrer + vθeθ + vφeφ un vecteur, alors
                                                                                                                      
                                                                                                                  
                                       
                                          ∂vr      1  ∂vr
                                                      
                                                      
                                                      
                                                                 
                                                                 
                                                                 
                                                                                       1 1 ∂vr
                                                                                         
                                                                                         
                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                                       
                                                                                                                       
                                       
                                       
                                                      
                                                      
                                                           − vθ 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                                         
                                                                                         
                                                                                                   − vφ 
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                                       
                                                                                                                       
                                       
                                          ∂r       r ∂θ
                                                      
                                                      
                                                      
                                                                 
                                                                 
                                                                 
                                                                 
                                                                                          sin θ ∂φ
                                                                                         
                                                                                        r
                                                                                         
                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                                       
                                                                                                                       
                                                                                                                    
                                                                                                                  
                                                                                                                      
                                          ∂v θ     1  ∂vθ
                                                      
                                                      
                                                      
                                                                 
                                                                 
                                                                 
                                                                                  1  1 ∂v θ
                                                                                     
                                                                                     
                                                                                     
                                                                                                           
                                                                                                           
                                                                                                           
                                                                                                                      
          grad (v ) = ∇v =             
                                       
                                       
                                                      
                                                      
                                                           + vr 
                                                                 
                                                                 
                                                                 
                                                                 
                                                                                     
                                                                                     
                                                                                               − cotg θvφ 
                                                                                                           
                                                                                                           
                                                                                                           
                                                                                                           
                                                                                                                       
                                                                                                                       
                                                                                                                       
                                       
                                          ∂r       r  ∂θ
                                                      
                                                      
                                                      
                                                      
                                                                 
                                                                 
                                                                 
                                                                                  r  sin θ ∂φ
                                                                                     
                                                                                     
                                                                                     
                                                                                     
                                                                                                           
                                                                                                           
                                                                                                           
                                                                                                           
                                                                                                                       
                                                                                                                       
                                                                                                                    
                                                                                                                  
                                                             1 ∂vφ           1  1 ∂v φ
                                                                                                                  
                                                                                                                     
                                          ∂vφ                                 
                                                                               
                                                                                                                    
                                                                                                                    
                                                                                                                    
                                       
                                       
                                       
                                                                               
                                                                               
                                                                               
                                                                               
                                                                                          + cotg θvθ + v            
                                                                                                                    
                                                                                                                    
                                                                                                                  r 
                                       
                                          ∂r                r ∂θ            r  sin θ ∂φ
                                                                               
                                                                               
                                                                               
                                                                               
                                                                                                                    
                                                                                                                    
                                                                                                                    
                                                                                                                    
                                                                                                                     
                                       


et

                                       ∂vr              vr        1 ∂vθ 1 ∂vφ              v
          divv = ∇v : I =                         +2          +                   + cot g θ θ
                                           ∂r            r        r ∂θ r sin θ ∂φ           r

                            
                                                                           
                            
                            ∆v − 2 v + 1
                                                      ∂(sin θvθ )     1 ∂vφ 
                                                                             
                             r        
                                        r                        +          
                                                                              
                            
                                   r2 
                                       
                                              sin θ      ∂θ        sin θ ∂φ 
                                                                             
                                                                             
                            
                            
                                                                          
                             ∆v + 2  ∂vr − vθ − cos θ ∂vφ  
                         ( )
           ∆v = div ∇(v ) = 
                            
                            
                                  θ
                                           
                                           
                                       r 2  ∂θ
                                           
                                                    2 sin2 θ sin2 θ ∂φ  
                                                                            
                                                                            
                                                                            
                                                                            
                            
                            
                                        2  r  ∂v            ∂vθ          
                                                                         vφ  
                            
                             ∆vφ +                                        
                                                    + cotg θ      −       
                            
                                    r 2 sin θ  ∂φ
                                               
                                                                           
                                                                ∂φ 2 sin θ  
                                                                            
                            
                                                                             
                                                                              




Golay - Bonelli                                                                    - 20 -
Notations tensorielles

* Soit f une fonction scalaire, alors

                       
                            ∂f     
                                    
                       
                                   
                                    
                       
                            ∂r     
                        1 ∂f 
                                   
                                    
           grad (f ) = 
                                   
                                    
                        r ∂θ 
                       
                        1 ∂f 
                                   
                                    
                       
                        r sin θ ∂φ 
                                    
                       
                       
                                   
                                    
                                    
et


                          (
           ∆f = div grad( f ) =           )       ∂2 f
                                                  ∂r 2
                                                         +
                                                             2 ∂2 f   1
                                                                    + 2 cotg θ
                                                             r ∂θ 2 r
                                                                               ∂f    1
                                                                                  + 2 2
                                                                                          ∂2 f
                                                                               ∂θ r sin θ ∂φ2
                                    
            
           T rr
            
                     Tr θ Tr φ 
                                
* Soit T = T
             θr     Tθθ Tθφ  un tenseur symétrique du deuxième ordre, alors:
                                
                                
           T
             φr     Tφθ Tφφ 
                                   

                          
                                                                                                        
                                                                                                         
                          
                             ∂Trr    ∂Tr θ            ∂Tr φ                                             
                                                                                                         
                                                                                 (                       )
                                                                                                        
                          
                          
                          
                          
                          
                                  +1        + 1              + 1 2Trr − Tθθ − Tφφ + Tr θ cot g θ         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                          
                          
                          
                          
                              ∂r    r ∂θ      r sin θ ∂φ       r                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                        
                          
                              ∂Tθr     ∂Tθθ             ∂Tθφ                                            
                                                                                                         
                                                                                      (              )
                                                                                                        
                                    +1        + 1              + 1 (Tθθ − Tφφ )cotg θ + 3Tr θ
                                                                                                        
           div(T ) =      
                          
                          
                                                                                                         
                                                                                                         
                                                                                                         
                          
                          
                          
                          
                                ∂r    r ∂θ       r sin θ ∂φ       r                                      
                                                                                                         
                                                                                                         
                                                                                                         
                          
                                                                                                        
                                                                                                         
                          
                                ∂Tφr       ∂Tφθ             ∂Tφφ                                        
                                                                                                         
                          
                          
                          
                          
                          
                          
                          
                                  ∂r
                                       +1
                                         r ∂θ
                                                  + 1
                                                     r sin θ ∂φ
                                                                   + 1 2Tθφcotg θ + 3Tr φ
                                                                     r
                                                                                          (      )       
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                                                                                                         
                          
                          
                                                                                                        
                                                                                                         
                                                                                                         



4.4 Comment retrouver les formules
Nous nous plaçons par exemple en coordonnées cylindriques. On note

v = vrer + vθeθ + vzez = viei avec i = r , θ, z et , i = ∂ , 1 ∂ , ∂
                                                         ∂r r ∂θ ∂z
Donc, avec cette convention

                     eθ                           er
           er ,θ =        et eθ,θ = −
                     r                            r
Chercher le gradient d’un tenseur consiste à augmenter l’ordre de ce tenseur, soit

           ∇(∗∗) = (∗∗), j ⊗ e j

Si on applique cette remarque à un vecteur, on obtient:

           ∇(v ) = (viei ), j ⊗ e j

En n’oubliant pas de dériver les vecteurs de base, car nous sommes dans un système de coordonnées
cylindrique,

           ∇v = vi, j ei ⊗ e j + vi ei, j ⊗ e j = vi, j ei ⊗ e j + vi ei,θ ⊗ eθ
             = vi, j ei ⊗ e j + vr er ,θ ⊗ eθ + vθ eθ,θ ⊗ eθ
                                          vr                  vθ
               = vi, j ei ⊗ e j +                 eθ ⊗ eθ −        er ⊗ eθ
                                              r                r
Pour obtenir l’opérateur divergence, il suffit de contracter doublement avec le tenseur unité d’ordre 2,

           div(∗∗) = ∇(∗∗) : 1

soit dans le cas d’un vecteur:


                                                                             - 21 -                                 Golay - Bonelli
MMC

                                                     vr          vr         ∂vr          1 ∂vθ  ∂v
          div(v ) = ∇(v ) : 1 = vi,i +                       =        +              +         + z
                                                         r       r          ∂r           r ∂θ   ∂z
et donc l’opérateur Laplacien pour un scalaire

                                                    ϕ,r          ∂ 2ϕ           1 ∂ϕ   1 ∂ 2ϕ ∂ 2ϕ
           ∆ϕ = div (∇ϕ) = ϕ,ii +                            =              +        + 2     + 2
                                                     r           ∂r 2           r ∂r  r ∂θ 2  ∂z
Appliquons maintenant cette méthodologie à un tenseur d’ordre 2.

           ∇(T ) =      (T e ij i
                                     ⊗ ej   )
                                            ,k
                                                  ⊗ ek
                   = Tij ,k ei ⊗ e j ⊗ ek + Tij ei,k ⊗ e j ⊗ ek + Tij ei ⊗ e j ,k ⊗ ek
                   = Tij ,k ei ⊗ e j ⊗ ek + Tij ei,θ ⊗ e j ⊗ eθ + Tij ei ⊗ e j ,θ ⊗ eθ
                                            Trj                  Tθ j
                   = Tij ,k ei ⊗ e j ⊗ ek +      eθ ⊗ e j ⊗ eθ −      e ⊗ e j ⊗ eθ
                                             r                     r r
                     T                     T
                   + ir ei ⊗ eθ ⊗ eθ − iθ ei ⊗ er ⊗ eθ
                      r                     r
Pour obtenir la trace de ce tenseur d’ordre 3 on contracte les deux derniers indices:

                                                                   Tr θ            Tθθ          Tir
               
          div T  = ∇(T ) : 1 = Tij , j ei                      +          eθ −       e   er +
               
                                                                  r       r       r i
                                  ∂T                              1 ∂Tr θ    ∂Trz Tθθ Trr   
                               =  rr
                                 
                                  ∂r                            +         +      −      +    e
                                                                                              
                                                                  r ∂θ        ∂z    r        
                                                                                              
                                                                                            r  r
                                 
                                  ∂T                              1 ∂Tθθ     ∂Tθz Tr θ Tθr  
                               +  θr
                                 
                                                                +         +      +       +   e
                                                                                               θ
                                  ∂r                              r ∂θ        ∂z             
                                                                                            r 
                                                                                    r        
                                  ∂T                              1 ∂Tz θ    ∂Tzz Tzr  
                               +  zr
                                 
                                                                +         +      +      e
                                                                                         
                                  ∂r
                                                                  r ∂θ        ∂z    r  z
                                                                                         
                                                                                         

On peut donc maintenant retrouver l’opérateur Laplacien d’un vecteur :

           ∆v = div ∇v( )
                                                                                vθ                    vr
                             vr ,θ              v θ, θ            vr ,θ −                  v θ, θ +
              = vi, jjei +           eθ −               r e + vi,r e
                                                         er +                   r e −
                                                             r
                       r      r           r          r           r i               θ

                                
                       2 ∂v θ vr            2 ∂vr  v 
                
                
              = ∆vr − 2               
                             − 2 er + ∆vθ + 2
                                                   − θ  eθ + ∆vzez
                                 
                                                       
                
                     r ∂θ    r      
                                            r ∂θ    r2 
                                                        
                                                        




Golay - Bonelli                                                                      - 22 -
Notations tensorielles


5    A retenir

Convention de sommation :

           V = Viei

Produits tensoriels :
                                                              
                                          
                                    uv     1 1
                                          
                                                  u1v2 u1v3 
                                                             
           u ⊗ v = ui v jei ⊗ e j = u v   
                                          
                                           2 1
                                                  u2v2 u2v3 
                                                             
                                    uv           u3v2 u3v3 
                                           3 1
                                                             


Symboles de permutation :
                                        +1
                                             si i, j , k est une permutation paire de 1, 2, 3
                                        
                                        
                   (
           εijk = ei , e j , ek   )   = −1
                                        
                                        
                                              si i, j , k est une permutation impaire de 1, 2, 3
                                        0
                                             si deux indices sont répétés
                                        
                                        
Produit vectoriel :

           c = a ∧ b = εijk a jbk ei

Quelques opérateurs :

Div v = vi,i , rot v = ∇ ∧ v = εijk vk , j ei , ∇ v = vi, j ei ⊗ e j , Div T = Tij , j ei

En systèmes de coordonnées cylindrique ou sphérique, mieux vaut utiliser un formulaire !




                                                                    - 23 -                                Golay - Bonelli
MMC




Golay - Bonelli   - 24 -
Cinématique




CINEMATIQUE



1      Le mouvement et ses représentations

1.1 Configuration
L’espace physique est rapporté à un repère orthonormé direct (O, e1 , e2 , e 3 ) . L’ensemble des particules ou
points matériels constituant le milieu continu étudié, occupe à chaque instant t, un ensemble de positions dans
l’espace: c’est la configuration du système à l’instant t, noté (t ) (d’intérieur (t ) et de frontière ∂ (t ) ).

On introduit aussi la notion de configuration de référence: c’est la configuration particulière du système à un
instant t 0 fixé. Souvent on prendra 0 = (0) , et on parlera alors de configuration initiale.

Toute particule M 0 de          0
                                     est repérée par son vecteur position X (t ) dans la configuration de référence. Toute
particule M de        (t ) est repérée par son vecteur position x (t ) dans la configuration actuelle (à l’instant t).

                                                    ∂       0
                                                                               ( )
                                                                             Φ X, t                 ∂ (t )
                                e3
                                                        0
                                       e2                                                    (t )         M
                                                                                                         x
                          e1                       M0           X                 ( )
                                                                                u X,t

                                             Figure 1 : Configurations de référence et actuelle

La position de chaque particule M sera donc déterminée si on connaît sa position dans la configuration de
référence et une fonction Φ telle que:

                        ( )
             x (t ) = Φ X , t
                                                                                                                        (2.1)

Φ définit le mouvement par rapport à (O, e1 , e2 , e 3 ) . On devra donc déterminer trois fonctions scalaires, telles
que:
              x = Φ (X , X , X , t )
             
              1
                   1  1   2   3
             x = Φ (X , X , X , t )
              2
                   2  1   2   3
             x = Φ (X , X , X , t )                                                                                    (2.2)
              3
             
                   3  1   2   3


Dire que le milieu est continu, c’est dire que Φ est une fonction continue et biunivoque de X . On supposera
que Φ est différentiable. Le déplacement par rapport à la configuration 0 , à l’instant t, de la particule M 0 est
le vecteur

             u (X , t ) = x (X , t ) − X
                                                                                                                        (2.3)




                                                                    - 25 -                                    Golay - Bonelli
MMC

1.2 Variables de Lagrange et variables d’Euler
Une grandeur attachée à une particule (masse volumique, vitesse,...) peut être définie,

- Soit en fonction de X et t : variables de Lagrange
- Soit en fonction de x et t : variables d’Euler
Le vecteur vitesse d’une particule M est défini par

                            dOM   ∂Φ(X , t )
           V (X , t ) =         =
                             dt     ∂t                                                                     (2.4)

Le vecteur accélération d’une particule M est défini par

                            dV (X , t ) ∂2Φ(X , t )
           Γ(X , t ) =                 =
                               dt         ∂t 2                                                             (2.5)

1.2.1 Trajectoire
On appelle trajectoire d’une particule, la courbe géométrique lieu des positions occupées par cette particule au
                                      ( )
cours du temps. x (t ) = Φ X , t est une représentation paramétrée en temps de la trajectoire. Par définition
de la vitesse,

                           dOM  dx     dx     dx
           V (x , t ) =        = 1 e1 + 2 e2 + 3 e3
                            dt  dt      dt     dt
les trajectoires peuvent être obtenues par la résolution des trois équations

                    dx 1                           dx 2                           dx 3
                                      =                              =                              = dt
           V1 (x 1, x 2 , x 3 , t )       V2 (x 1, x 2 , x 3 , t )       V3 (x 1, x 2 , x 3 , t )          (2.6)


1.2.2 Lignes de courant
A un instant donné, on appelle lignes de courant du mouvement, les lignes qui sont en tout point tangentes au
vecteur vitesse de la particule située en ce point. Soit pour t fixé, deux équations:

                    dx 1                           dx 2                           dx 3
                                      =                              =
           V1 (x 1, x 2 , x 3 , t )       V2 (x 1, x 2 , x 3 , t )       V3 (x 1, x 2 , x 3 , t )          (2.7)

Remarque: Pour un mouvement stationnaire (ou permanent) V (x , t ) = V (x ) . Les lignes de courant et les
trajectoires sont confondues.

1.3 Dérivées particulaires

1.3.1 Définition
Lorsque l’on suit une particule dans son mouvement, la grandeur A attachée à la particule ne dépend que de
t. Par définition, on appelle dérivée particulaire de A à l’instant t , la dérivée de A par rapport à la seule
variable t .

En variables de Lagrange: A = A(X , t )

           dA            ∂A
              (X , t ) =    (X , t )
           dt            ∂t                                                                                (2.8)

En variables d’Euler: A = A(x , t )




Golay - Bonelli                                                                      - 26 -
Cinématique

                          ∂A               ∂A
            dA(x , t ) =      (x , t )dt +      (x , t )dx j
                          ∂t               ∂x j
            dA             ∂A             ∂A            dx j
               (x , t ) =      (x , t ) +      (x , t )
            dt             ∂t             ∂x j          dt
            dA             ∂A             ∂A
               (x , t ) =      (x , t ) +      (x , t ) j
                                                      V
            dt             ∂t             ∂x j

ou encore

            dA ∂A
            dt
               =
                 ∂t
                    + V ⋅∇ A    (          )                                                                                        (2.9)

1.3.2 Application à l’accélération

            Γ(x , t ) =
                          dV (x , t ) ∂V
                            dt
                                     =
                                       ∂t
                                          + V ⋅∇ V    (         )                                                                  (2.10)

que l’on peut également écrire

                          ∂V  1  2
            Γ(x , t ) =      + ∇V + rotV ∧V
                          ∂t  2


2    Déformation d’un milieux continu

2.1 Notion de déformation
On dira qu’un milieu continu en mouvement subit des déformations si les distances relatives des points
matériels varient au cours du temps.
En différenciant (2.1), on obtient:

                                                            ∂Φi
            dx (t ) = ∇ Φ dX                    dx iei =            dX jei
                                                           ∂X j

On note F l’application linéaire qui fait passer de l’espace vectoriel dans lequel peut varier dX dans l’espace
vectoriel où varie a priori dx . Cette application linéaire, appelée tenseur gradient ou application linéaire
tangente, permet donc le passage de la configuration 0 à la configuration (t ) .

                                                            ∂   0
                                                                                           F                ∂ (t )
                                                                             0
                                    e3
                                           e2                   dX                                   (t )
                                                                                                                     dx
                                                                                                            M
                           e1                                       M0

                                                          Figure 2 : Application linéaire tangente

En notation indicielle,
                                                          ∂x            ∂x 1    ∂x 1 
                                                          1
                                                          ∂X            ∂X 2    ∂X 3 
                                                          1
                    ∂Φi             ∂x i                  ∂x            ∂x 2    ∂x 2 
            Fij =          =                   soit F =  2                           
                    ∂X j            ∂X j                  ∂X 1          ∂X 2    ∂X 3                                             (2.11)
                                                          ∂x            ∂x 3    ∂x 3 
                                                          3
                                                                                      
                                                          ∂X1          ∂X 2    ∂X 3 

                                                                             - 27 -                                       Golay - Bonelli
MMC

2.2 Tenseur des déformations

2.2.1 Définition
Le tenseur gradient décrit la transformation locale au voisinage d’une particule donnée. Afin de rendre compte
des déformations, c’est à dire des changements de forme autour de cette particule, on s’intéresse à l’évolution
du produit scalaire de deux vecteurs matériels pris respectivement dans les deux configurations 0 et (t ) .

Considérons trois particules voisines X , X + dX , X + dX ′ . Après déformations, elles occupent dans                (t )
les positions respectives x , x + dx , x + dx ′ .

                                            ∂      0
                                                                                               ∂ (t )
                                                                  0
                          e3
                                                 dX ′                                               dx ′    (t )
                               e2
                                                             dX                               M        dx
                     e1                                M0

                                                       Figure 3 : Notion de déformation
                                                                      
                                                                      
                                                                                      
                                                         ∂x
                                                                         ∂ ′        
                                                                      
             dx ⋅ dx ′ = F (X , t )dX  ⋅ F (X , t )dX ′ =  k dXi  ⋅  x k dX j′ 
                                                                     
                                                           
                                                              
                                                                      
                                                                       
                                                                       
                                                                                     
                         
                                       
                                                          ∂X
                                                            i
                                                                     
                                                                       ∂
                                                                        X ′j
                                                                                      
                                                                                      
                                                              
                                                              
                                                              
                                                                      
                                                                                     
d’où sa variation autour de la transformation
                                                             
                                      
                                      
                                      
                                       ∂x k ∂x k′       
                                                         
                                                         
                                                                                    
             dx ⋅ dx ′ − dX ⋅ dX ′ = 
                                     
                                     
                                     
                                                   − δij  dX idX j′ = Fki Fkj − δij  dX idX j′
                                                         
                                                         
                                                         
                                                         
                                                                       
                                                                       
                                                                       
                                                                                      
                                                                                      
                                                                                      
                                                                                      
                                       ∂X ∂X ′
                                                        
                                                                                    
                                                        
                                                         
                                      
                                           i    j       


soit

             dx ⋅ dx ′ − dX ⋅ dX ′ = 2 dX ε dX ′

en posant

                  1 T                       
                   F (X , t ) F (X , t ) − 1
                                             
             ε=    
                                            
                  2
                                            
                                             
                                                                                                                  (2.12)


L’application linéaire ε est appelée tenseur des déformations. Cette application est symétrique mais dépend
bien sûr de la base (O, e1 , e2 , e 3 ) initialement choisie.


2.2.2 Remarques
* S’il n’y a pas de déformations, alors ε = 0 (et inversement).
         T
* C = F F est appelé le tenseur des dilatations. Ce tenseur est symétrique.
On peut démontrer:

Théorème 1: Les valeurs propres de C sont strictement positives.
                 
Théorème 2: Det F  > 0
                                    ∀t
                 
                 

Théorème 3: ε est symétrique et possède les mêmes vecteurs propres que C .
* Variation de longueur

Soit dX ′ = dX = dl 0 ex et dx = dl , alors

Golay - Bonelli                                                       - 28 -
Cinématique


             dx ⋅ dx ′ − dX ⋅ dX ′ = dl 2 − dl0 = 2 dX ε dX ′ = 2dl0 εxx
                                              2                    2



ou encore, si les déformations sont petites

             dl                               dl − dl0
                 = 1 + 2εxx ≈ 1 + εxx → εxx ≈
             dl0                                 dl0

εxx représente au premier ordre la variation de longueur dans la direction x .

* Variation d’angle

Soit dX = dl 0 ex , dX = dl 0 ey , alors


             dx ⋅ dx − dX ⋅ dX = cos θdldl ′ = 2 dX ε dX ′ = 2dl0 εxy
                                                                2



ou encore,

             2εxy = cos θ 1 + 2εxx 1 + 2εyy

donc εxy représente au premier ordre la variation d’angle entre les directions x et y .


2.2.3 Autre écriture
D’après (2.3) et (2.1)

                            ∂x                ∂u
             F (X , t ) =      (X , t ) = 1 +    (X , t )
                            ∂X                ∂X
soit
                                         T             T                   
                                                                            
                     1  ∂u
                                                                ∂u         
             ε=        
                        X  (X , t ) + ∂u (X , t ) + ∂u (X , t )    (X , t )
                                                                            
                     2 ∂                                        ∂X         
                                                                                                  (2.13)
                       
                                      ∂X            ∂X                     
                                                                            

ou encore en notation indicielle

                      1  ∂u i
                        
                        
                                 ∂u j   ∂ uk ∂ uk 
                                                  
                                                  
             εij =            +      +           
                                                  
                      2  ∂X j
                        
                                ∂X i             
                                        ∂X i ∂X j 


2.2.4 Cas des petites perturbations

                                                             ∂u
Cette hypothèse correspond au cas où u(X , t ) et               (X , t ) sont petits.
                                                             ∂X

En reprenant (20) et en ne retenant que les termes d’ordre 1, on obtient:
                                          T       
                                                   
                      1  ∂u
                                       ∂u (X , t )
                                                   
                     =      (X , t ) +            
             ε HPP    2 X
                        ∂
                                       ∂X
                                                   
                                                   
                                                   
                                                                                                   (2.14)
                                                  

ou encore en notation indicielle

                         1  ∂u i
                           
                           
                                         
                                    ∂u j 
                                         
             εijHPP =            +      
                         2  ∂X j
                           
                                   ∂X i 
                                         
                                         




                                                              - 29 -                      Golay - Bonelli
MMC

2.3 Conditions de compatibilité
A tout déplacement u on fait correspondre une déformation ε . On peut aussi se poser le problème inverse.
Ce problème est dit ’problème de compatibilité géométrique d’un champ de déformation’, ou encore ’problème
d’intégrabilité d’un champ de déformation’.
Les conditions de compatibilité peuvent être établies dans le cas général, cependant nous ne les établirons que
dans le cas des petites perturbations.

Décomposons maintenant le gradient des déplacements en une partie symétrique ε et une partie
antisymétrique ω .

              ∂u
                 (X , t ) = ε(X , t ) + ω(X , t )
              ∂X
                                         T       
                                                                                          
                     1  ∂u
                                                                          1  ∂ui    ∂u j 
              ω=           (X , t ) − ∂u (X , t )
                                                                ωij =              −      
                                                                                            
                                                                              
                     2 X
                       ∂
                                      ∂X
                                                  
                                                  
                                                                             
                                                                            2  ∂X j
                                                                              
                                                                                            
                                                                                       ∂X i 
                                                                                            
                                                 

On a

              ωij ,k = εki, j − εjk ,i

soit en dérivant une nouvelle fois

              ωij ,kl = ωij ,lk i, j, k, l dans { 1, 2, 3}

              ∀ i, j, k, l     εij ,kl + εkl ,ij − εik , jl − εjl ,ik = 0
                                                                                                                  (2.15)
ou encore
                             2ε
                                         = ε33,22 + ε22,33                    + permutation circulaire
              Six équations 
                            
                                    23,23
                            ε13,23 + ε32,31 − ε12,33 − ε33,21
                                                                              + permutation circulaire
                            
                            

Réciproquement, si ε vérifie (2.15), alors les formes différentielles
                                        
              d ωij =  εki, j − εjk ,i  dx k
                      
                      
                      
                      
                                        
                                        
                                        
                                        
                                        



sont exactes; elles permettent donc de construire le champ ω de tenseur antisymétrique. On vérifie ensuite
que les formes différentielles
                                   
              dui =  ωik + εik  dx k
                    
                    
                    
                    
                                
                                
                                
                                



sont exactes, d’où la possibilité de construire un champ de déplacement u (X , t ) défini dans            0
                                                                                                              .



3      Transport, dérivées particulaires

3.1 Transport d’un volume
Soit d   0
             un élément de volume de la configuration de référence, défini par trois vecteurs dX1 , dX 2 , dX 3 . Par la
transformation, ces trois vecteurs se transportent en trois vecteurs dx 1 , dx 2 , dx 3 qui définissent dans la
configuration actuelle un volume d .




Golay - Bonelli                                                             - 30 -
Cinématique




                                                                                                 d
                                                                           dx 3
                          dX 3               d   0
                                                                                      dx 2
                                     dX 2
                                                                                dx1
                                       dX1

                                             Figure 4 : Transport d’un élément de volume

Le volume d      est représenté par le produit mixte des vecteurs dx 1 , dx 2 , dx 3 :

           d = (dx 1 ∧ dx 2 ) ⋅ dx 3

donc

           d = εijk dx 1 j dx 2k dx 3i

Or, d’après (2.11)

           d = εijk Fjp Fkq Fir dX1p dX2q dX 3r

et, d’après (1.9)

                                                                 (
           d = εpqr det(F ) dX1p dX2q dX 3r = det(F ) dX1 ∧ dX 2 ⋅ dX 3           )
donc en définitive

           d = Det(F ) d         0                                                                            (2.16)

3.2 Transport d’une surface orientée
Soit dS un élément de surface de la configuration de référence de normale N . Par la transformation, cette
surface se transporte en une surface ds de normale n dans la configuration actuelle. En considérant un
vecteur V dans la configuration de référence qui se transporte en un vecteur v dans la configuration actuelle,
on peut définir l’élément de volume (dS N ) ⋅V qui se transporte en un élément de volume (ds n ) ⋅ v .




                           N
                                                                                             n
                     dS                                                    ds


                                             Figure 5 : Transport d’un élément de surface

D’après (2.16)

           ds n ⋅ v = det(F ) dS N ⋅V

et comme avec (2.11)

           v =FV

                                T 
                    
           ds n ⋅ FV  = ds         
                                 F n  ⋅V = det F dS N ⋅V
                   
                                
                                     
                                      
                                     

                                                               - 31 -                                Golay - Bonelli
MMC

on obtient finalement
                                      −T
             ds n = det(F )F dS N
                                                                                                                    (2.17)

3.3 Dérivée particulaire d’une intégrale de volume
Soit K (t ) = ∫∫∫   (t )
                           k (x , t ) d , une intégrale de volume sur le domaine   (t ) dans la configuration de référence.
Pour en déterminer la dérivée temporelle, nous devons au préalable exprimer K (t ) sur la configuration de
référence pour "passer" la dérivation sous l’intégrale. En effectuant le changement de variable (2.1), et en
utilisant (2.16)

             d = Det(F ) d            0
                                           =J d       0


on obtient

             K (t ) = ∫∫∫ k (ϕ(X , t ), t ) J d           0
                          0



puis

             dK         dk      
                              dJ 
                        
                = ∫∫∫  J + k    
                         dt     d
             dt       0 
                             dt 
                                 
                                                          0



A ce stade nous devons expliciter dJ / dt . En utilisant les notations indicielles, et en particulier les symboles de
permutation, on a:

                                   1
             J = det F =             ε ε F F F
                                   6 ijk pqr ip jq kr
soit

             dJ  1          ∂Fip
                = εijk εpqr      F F
             dt  2           ∂t jq kr
or

             ∂Fip          ∂2ϕi (X , t )               ∂ϕ 
                                                ∂      i  = ∂ V (X , t ) = ∂ v (x , t ) = ∂vi ∂xl = ∂vi F
              ∂t
                    =
                            ∂t ∂X p
                                           =
                                               ∂X p
                                                      
                                                      
                                                      
                                                           
                                                       ∂t  ∂X
                                                           
                                                           
                                                           
                                                                  (
                                                                  i        )    (
                                                                            ∂X p i
                                                                                         ) ∂x ∂X ∂x lp
                                                                p                             l    p    l


donc

             dJ  1         ∂v
                = εijk εpqr i Flp Fjq Fkr
             dt  2         ∂xl

mais

             εpqr Flp Fjq Fkr = εljk det F

soit

             dJ  1         ∂v            ∂v        ∂v
                = εijk εljk i det F = δil i det F = i J
             dt  2         ∂xl           ∂xl       ∂x i

             dJ
                = J div v
             dt                                                                                                     (2.18)

En reportant dans l’expression de dK / dt

                                                  
             dK
                = ∫∫∫             dk J + k J divv  d
                                                  
                                   dt
                                                  
                                                             0
             dt               0
                                                  
Golay - Bonelli                                                   - 32 -
Cinématique

puis en exprimant l’intégrale sur la configuration actuelle, on obtient finalement
                                dk        
                                 + k divv  d
             dK                 
                = ∫∫∫                      
                                           
             dt          (t )    dt
                                
                                          
                                                                                                                    (2.19)

En utilisant les égalités suivantes,

             dk   ∂k
                =    + v ⋅ ∇k
             dt   ∂t
             div (kv ) = v ⋅ ∇ k + kdivv

on peut écrire (2.19) sous la forme

             dK                  ∂k            
                                                
                = ∫∫∫           
                                    + div (kv ) d
                                                
             dt          (t )   
                                 ∂t
                                               
                                                

ou encore, en utilisant le théorème de la divergence

             dK                 ∂k
                = ∫∫∫              d + ∫∫∂                kv ⋅ n d ∂
             dt          (t )
                                ∂t                 (t )




Application fondamentale: conservation de la masse
La masse d’un système matériel qu’on suit dans son mouvement reste constante.

             M = ∫∫∫          ρ(x, t ) d           dM
                       (t )                            =0
                                              et    dt
où ρ est la masse volumique. On a alors:

             dρ                 ∂ρ
                + ρ divv = 0       + div (ρv ) = 0
             dt              ou ∂t                                                                                   (2.20)


3.4 Dérivée particulaire d’une intégrale de surface
Soit K (t ) = ∫∫Σ(t ) k (x , t ) ⋅ n d Σ , une intégrale de volume sur le domaine Σ(t ) dans la configuration de
référence. Pour en déterminer la dérivée temporelle, nous devons au préalable exprimer K (t ) sur la
configuration de référence pour "passer" la dérivation sous l’intégrale. En effectuant le changement de variable
(2.1), et en utilisant (2.17)
                                      −T
             d Σ n = det(F )F d Σ0N

on obtient
                                                          −T

                                (             )
             K (t ) = ∫∫Σ k ϕ(X , t ), t ⋅ J F d Σ0 N
                         0



puis
                                                                  −T   
                                                                J F  N  d Σ
                             −T
             dK         dk           d                                   
                = ∫∫Σ  ⋅ J F N + k ⋅
                                                                        
                                                                         0
                     0                                                   
             dt         dt
                                     dt                                
                                                                        

                                 −T
on doit donc calculer dF              / dt
                                             −1                                    −1
               −1                               −1                                             −1
                                       dF          dF                            dF                 dF −1
             F F =I             ⇒          F +F       =0                  ⇒             = −F           F
                                        dt         dt                             dt                dt


                                                                       - 33 -                               Golay - Bonelli
MMC


            dF −1  ∂v i ∂ X k            ∂ vi
               F =            ei ⊗ e j =      e ⊗ e j = ∇v
            dt     ∂X k ∂x j             ∂x j i

donc
               −T
                        −1 
                                 T
                                         −T
                             
                    = −F ∇v  = −∇T v F
            dF
                       
                            
             dt        
                            
                             
                             

et
                           −T               −T               −T 
                                                                 
            dK         dk
               = ∫∫Σ  ⋅ J F N + k ⋅ J divv F N − k ⋅ J ∇T v F N d Σ 0
                                                                
                                                                 
                    0                                           
            dt         dt
                                                                
                                                                 

                                          
                                              −T
            dK         dk
                                          
                                           
               = ∫∫Σ  + divv k − k ⋅ ∇T v J F Nd Σ0
                    0                     
            dt         dt
                                          
                                           

puis en exprimant l’intégrale sur la configuration actuelle, on obtient finalement
                                                
                                                 
            dK            dk                    
               = ∫∫Σ(t )  + divv k − ∇v
                                                
                                               k  ⋅ nd Σ
            dt            dt
                                                
                                                 
                                                
                                                                                     (2.21)
en utilisant la dérivée particulaire, (2.21) s’écrit
                                                        
                                                         
            dK           ∂k
                                                        
               = ∫∫Σ(t )                                
                              + divv k + ∇ k v − ∇v k  ⋅ nd Σ
            dt            ∂t
                                                        
                                                         
                                                        
                                                   
            dK
            dt
                         ∂k
               = ∫∫Σ(t ) 
                         
                          ∂t
                         
                         
                                     (     )        
                              + rot k ∧ v + v div k  ⋅ nd Σ
                                                    
                                                    
                                                    
                                                    
                                                    

car

               (      )
           rot k ∧ v = k divv − vdiv k + ∇ k v − ∇ v k




Golay - Bonelli                                             - 34 -
Cinématique


4    A retenir

On appelle Variables de Lagrange le temps et la position initiale : X et t
On appelle Variables d’Euler le temps et la position courante : x et t


Dérivée particulaire

           dA ∂A
           dt
              =
                ∂t
                   + V ⋅∇ A     (        )
Application linéaire tangente

                 ∂x i
           F=           ei ⊗ e j
                ∂X j

Tenseur des déformations

                1 T                       
                 F (X , t ) F (X , t ) − 1
                                           
           ε=    
                                          
                2
                                          
                                           
                                           

Tenseur des déformations sous l’hypothèse des petites perturbations

           ε=
                2
                  (
                1 T
                  ∇ u + ∇u              )
Transport d’un volume

          d = Det(F ) d             0


Transport d’une surface
                                    −T
          ds n = det(F )F dS N

Dérivée d’une intégrale de volume
                                             
           dK                    ∂k + div kv  d
              = ∫∫∫             
                                
                                
                                          ( )
                                              
                                 ∂t
                         (t )
           dt                                 

Dérivée d’une intégrale de surface
                                                     
                                                      
           dK            dk                          
              = ∫∫Σ(t )  + divv k − ∇v
                                                     
                                                    k  ⋅ nd Σ
           dt            dt
                                                     
                                                      
                                                     




                                                                 - 35 -      Golay - Bonelli
MMC




Golay - Bonelli   - 36 -
Equilibre




EFFORTS DANS LES MILIEUX CONTINUS


1       Définitions

1.1 Forces
Elles résument les effets mécaniques, autres que cinématiques, exercés sur le milieu continu considéré par le
reste du domaine physique. Leur schématisation à chaque instant repose sur la définition d’un champ de
vecteur Φ(x , t ) et d’une mesure positive ω , définis sur la configuration actuelle (t ) . Φ(x , t ) est une densité
de force pour la mesure ω .

* Si ω est une mesure de volume, alors Φ(x , t ) est une force volumique (densité volumique de force) définie
dans (t) de la configuration actuelle, par la fonction

                f :    x ∈ (t ) → f (x , t ) ∈ ℝ 3

* Si ω est une mesure de surface, alors Φ(x , t ) est une force surfacique (densité surfacique de force) définie
sur ∂     F
              (t ) de la configuration actuelle, par la fonction

                F:      x ∈∂     F
                                     (t ) → F (x , t ) ∈ ℝ 3

* ... etc ...
Remarques:
* Les forces sont définies sur la configuration actuelle.

* A un instant donné et en un point donné x de ∂ (t ) , on ne peut imposer à la fois le déplacement et la force!.
Mais l’un des deux doit être imposé. On note ∂                 F
                                                                   (t ) la frontière où la force est imposée, et ∂    U
                                                                                                                          (t ) la
frontière où le déplacement est imposé. Dans le cas des appuis mobiles, les composantes non imposées
cinématiquement le sont pour les forces

* Le monde extérieur au milieu considéré doit, pour imposer le déplacement U (t ) au bord ∂                  U
                                                                                                                 (t ) , exercer
des forces que nous noterons R(x , t ) . Comme elles sont à priori inconnues, nous les appellerons réactions
pour éviter de les confondre avec les autres forces qui, elles, sont données.

1.2 Vecteur-contrainte et tenseur des contraintes

1.2.1 Contrainte de Cauchy

                 dF
    C                            Soit un corps (C) en équilibre par application d’un système d’actions mécaniques
                       (2)       extérieures. Imaginons qu’une surface Σ divise (C) en deux parties (1) et (2). La
          Σ        n
                                 partie(1) est en équilibre sous les actions mécaniques extérieures qui lui sont
                  M
                  dΣ             appliquées et les actions mécaniques exercées par la partie (2). Nous admettrons que
    (1)                          sur chaque élément de surface dΣ de Σ , (2) exerce sur (1) une force dF (x , t, n )1/2 de
densité superficielle T (x , t , n ) .

                dF (x , t, n )1/2 = T (x , t, n ) d Σ
                                                                                                                           (3.1)
                                                               - 37 -                                       Golay - Bonelli
MMC

T (x , t , n ) est le vecteur contrainte au point x , relativement à la facette dΣ définie par son vecteur normal n .

La densité surfacique de forces exercées en x dépend de x, t et aussi de l’orientation de la surface Σ au

voisinage de x. Elle est linéairement dépendante de n . On introduit alors l’application σ telle que:

             T (x , t, n ) = σ(x , t ) n
                                                                                                                      (3.2)

L’application σ(x , t ) s’appelle le tenseur des contraintes de Cauchy en x à l’instant t ; il caractérise, dans la
configuration actuelle, les efforts intérieurs de cohésion exercés sur une partie du solide à travers l’élément de
surface n d Σ


1.2.2 Autre écriture du tenseur des contraintes
En utilisant (2.17), (3.1) devient:

                 (                         )
             dF x (X , t ), t, n(N , t ) = Π N (X ) dS


où Π est le tenseur

             Π(X , t ) :      N ∈ R 3 → Π(X , t, N ) = Π(X , t )N       ∈ ℝ3

défini par
                                               −T
             Π(X , t ) = (det F ) σ F
                                                                                                                      (3.3)

Cette application linéaire Π(X , t ) , définie pour X ∈        0
                                                                   , s’appelle le premier tenseur des contraintes de Piola-

Kirchoff en X à l’instant t; la composante Πij est la i ème composante du vecteur contrainte exercée sur la
déformée d’une surface unité, normale à e j , de la configuration de référence. On prendra garde au fait que le

tenseur Π n’est pas symétrique.
Si maintenant on cherche le vecteur "force de cohésion" dans la configuration de référence


                     (        )                     (               )
                                     −1
             dF 0 X , t, N = F (X , t ) dF x (X , t ), t, n(N , t ) = S N (X ) dS


où S est le tenseur défini par
                         −1
             S =F Π
                                                                                                                      (3.4)

Cette application linéaire S (X , t ) , définie pour X ∈       0
                                                                   , s’appelle le second tenseur des contraintes de Piola-

Kirchoff en X à l’instant t. Attention, sa composante Sij n’est pas la i ème composante du vecteur contrainte
exercée sur la déformée d’une surface unité, normale à e j , de la configuration de référence, mais seulement la
i eme composante de son transporté dans la configuration de référence.
Selon le jeu d’écriture adopté, on a donc trois descriptions des contraintes:
                               −1                       −1
                           T
                                             T
             σ = det F  Π F = det F  F S F
                       
                                     
                                       
                 
                              
                                                                                                                    (3.5)




Golay - Bonelli                                              - 38 -
Equilibre


2      Equilibre

2.1 Le Principe des Puissances Virtuelles (Germain 1972)
Pour schématiser les efforts mis en jeu, il est commode d’imaginer des mouvements fictifs (ou virtuels) et
d’analyser le travail ou la puissance qui en résulte. Par exemple, pour évaluer les forces de gravité agissant sur
un objet, on peut imaginer de le soulever (mouvement virtuel de bas en haut).
Un milieu matériel étant isolé, on peut distinguer les actions extérieures qui agissent sur le milieu, des actions
intérieures qui représentent les liaisons existant entre toutes les parties du milieu.
                                                   Axiome d’objectivité
           La puissance virtuelle des efforts intérieurs associée à tout mouvement rigidifiant est nulle.
                                                   Axiome d’équilibre
Pour tout milieu matériel repéré dans un référentiel absolu, à chaque instant et pour tout mouvement virtuel, la
 puissance virtuelle des quantités d’accélération ∏a est égale à la somme des puissances virtuelles des efforts
                                     intérieurs ∏i et des efforts extérieurs ∏e .


2.2 Puissance virtuelle des efforts intérieurs
                                                                                     F


                                     e3
                                              e2                                 n
                                                                      Σ(t )
                                e1        O
                                                         f
                                                                          (t )




Soit un milieu continu    (t ) d’intérieur    (t ) et de frontière ∂ (t). Isolons maintenant un domaine Σ(t ) de
frontière ∂Σ (t) intérieur à   (t), et soit n la normale en un point de ∂Σ(t ) . A un instant t fixé, un mouvement
virtuel défini par une vitesse virtuelle δv est appliqué à Σ(t ) . Cette vitesse est supposée continue et
continûment dérivable sur Σ(t ) .

Pour déterminer la puissance virtuelle des efforts intérieurs nous ferons les hypothèses suivantes:
* Πi admet une densité volumique p i :

           Πi = ∫∫∫Σ pi dx

* Πi est en chaque point une forme linéaire des valeurs en ce point de dv et de ses dérivées premières:

En décomposant le gradient des vitesses virtuelles en une partie symétrique δD et une partie antisymétrique
δW ,

           ∂δv
               = δD + δW
           ∂x
                              T
                                                                    
                1   
                     ∂δv − ∂δv                   1    ∂δvi   ∂δv j 
           δW =                
                                         δWij =             −       
                                                                      
                     ∂x                               
                2   
                           ∂x 
                                
                                                  2   
                                                        ∂x j
                                                               ∂x i 
                                                                      
                               

                                                             - 39 -                                 Golay - Bonelli
MMC

                               T
                                                                 
                       ∂δv                          ∂δvi   ∂δv j 
           δD =
                1     
                            ∂δv 
                                               1                 
                       ∂x +
                      
                                 
                                 
                                       δDij =       
                                                    
                                                           +
                                                             ∂x i 
                                                                   
                                                                   
                2     
                            ∂x 
                                 
                                                2    ∂x j
                                                                  

la densité volumique des efforts intérieurs devient:

           pi = Ai δVi + Bij δWji − σij δDji

Le premier axiome du principe des puissances virtuelles impose que pour tout mouvement de solide rigide la
puissance des efforts intérieurs soit nulle. D’où:

- Soit un mouvement de translation: δv ≠ 0 , δW = 0 et δD = 0

alors

           Πi = ∫∫∫Σ pi dx = ∫∫∫Σ A ⋅ δv dx = 0         ∀Σ
                                                             dans

soit A ⋅ δv = 0   ∀ δv , ou encore A = 0


- Soit un mouvement de rotation: δv = 0 , δW ≠ 0 et δD = 0

alors

           Πi = ∫∫∫Σ pi dx = ∫∫∫Σ B : δW dx = 0           ∀Σ
                                                               dans

soit B : δW = 0       ∀ δW , ou encore B = 0 .

Donc en définitive:

           Πi = − ∫∫∫Σ σ : δD dx
                                                                                                              (3.6)

On peut montrer que le tenseur σ introduit ici correspond bien au tenseur des contraintes de Cauchy.

2.3 Puissance virtuelle des efforts extérieurs
Les efforts extérieurs comprennent
- des efforts exercés à distance par des systèmes extérieurs à         , supposés définis par une densité volumique
de forces f ,

- des efforts de cohésion schématisés par une densité surfacique de force T sur ∂Σ

           Πe = ∫∫∫Σ f ⋅ δv dx + ∫∫∂ΣT ⋅ δv dx
                                                                                                              (3.7)

2.4 Application du Principe des Puissances Virtuelles
Si γ est l’accélération et ρ la masse volumique de chacun des points de ∑ , alors

                                                                
                                                                 
                d                           ∂ρv
                                                                
           Πa =    ∫∫∫Σ ρ v ⋅ δv dx = ∫∫∫Σ                      
                                                 + div(ρv ⊗ v ) ⋅ δv dx
                dt                          ∂t
                                                                
                                                                 
                                                                
                                                         
                                                          
                      ∂v
                                ∂ρ                       
           Πa = ∫∫∫Σ ρ    +v                             
                                    + ρ∇v ⋅ v + div(ρv )v  ⋅ δv dx
                      ∂t
                                ∂t                       
                                                          
                                                         

et en utilisant la conservation de la masse (2.20) et la définition de l'accélération (2.10)

           Πa = ∫∫∫Σ ρ γ ⋅ δv dx
                                                                                                              (3.8)
Golay - Bonelli                                           - 40 -
Equilibre

En application du Principe des Puissances Virtuelles on obtient:

            −∫∫∫Σ σ : δD dx + ∫∫∫Σ f ⋅ δv dx + ∫∫∂ΣT ⋅ δv dx = ∫∫∫Σ ρ γ ⋅ δv dx
                                                                                                                                         (3.9)

Pour exploiter le fait que (3.9) est vérifié pour tout mouvement virtuel, nous allons faire apparaître δv dans
chacun des termes.
En appliquant le théorème de la divergence, le premier terme devient:

                                                        ∂δv
            −∫∫∫Σ σ : δD dx = −∫∫∫Σ σ :                     dx = − ∫∫∂Σ σ ⋅ δv ⋅ n dx + ∫∫∫Σ divx σ ⋅ δv dx
                                                        ∂x
Soit:
                                                           
            ∫∫∂Σ T − σ ⋅ n  ⋅δv dx + ∫∫∫Σ  f + divx σ − ργ  ⋅ δv dx
                 
                           
                                           
                                                             
                                                                                                      ∀ δv
                                                           

Ou encore
            
            
             f + divx σ = ργ dans Σ
            
            
             T = σ ⋅n
                             sur ∂Σ
                                                                                                                                        (3.10)
            
            
            

2.5 Equilibre
En considérant les développements du paragraphe précédent et en se ramenant au domaine (t ) , nous
pouvons donc écrire les équations d’équilibre d’un solide soumis à un champ de forces extérieures f dans (t )
, à un champ de forces extérieures F e sur ∂                      F
                                                                      (t ) et à un déplacement imposé U i sur ∂   U
                                                                                                                      (t ) .

Dans la configuration actuelle:

            f (x , t ) + divx σ(x , t ) = 0              ∀ x ∈ (t )
                                                                                                                                        (3.11)
                                    
                                    
                                    F e (x , t )            ∀ x ∈∂           (t )
            σ(x , t ) ⋅ n(x , t ) = 
                                    
                                                                          F
                                    R(x , t )
                                                            ∀x ∈∂            (t )                                                      (3.12)
                                    
                                                                         U


Dans la configuration de référence:

De même, si on note f 0 , R 0 et F 0 les densités volumiques et surfaciques de forces mesurées dans la
configuration de référence:

            f 0(X , t ) + divX Π(X , t ) = 0                   ∀x∈         0                                                            (3.13)
                                     
                                     F 0 (x , t )
                                                              ∀ x ∈ x −1 (∂               (t ), t )
            Π(X , t ) ⋅ N (X , t ) = 
                                                                                      F
                                      (x , t )
                                     R 0                      ∀ x ∈ ∂ 0U
                                     
                                                                                                                                       (3.14)
Cas des petites perturbations

Reprenons (3.10), en l’exprimant en fonction de X

                                    ∂σij
            fi (x (X , t ), t ) +          (x (X , t ), t ) = 0           ∀ x (X , t ) ∈ (t )
                                    ∂x j

                                    ∂σij              ∂Xk
            fi (x (X , t ), t ) +          (X , t )          (X , t ) = 0              ∀X∈
                                    ∂Xk               ∂x j                                             0




                                                                              - 41 -                                           Golay - Bonelli
MMC


Or x (X , t ) = X + u(X , t ) soit ∂x (X , t ) = 1 + ∂u (X , t )
                                   ∂X                ∂X
On peut donc écrire l’équation d’équilibre sous la forme
                                                                        −1
                                     ∂σij                      
                                                    ∂u         
            fi (x (X , t ), t ) +      (X , t ) 1 +    (X , t ) = 0             ∀X∈
                                  ∂X k              ∂X                                 0

                                                               kj

Sous l’hypothèse des petites perturbations, on peut alors écrire:
                                    −1
                           
                ∂u                              ∂u
            1 +    (X , t )            =1−         (X , t )
                ∂X                              ∂X
                          

soit

                                     ∂σij                 ∂ uk         
            fi (x (X , t ), t ) +         (X , t ) δjk −      (X , t ) = 0    ∀X ∈
                                     ∂X k                ∂X j         
                                                                                             0




Enfin, en ne retenant que les termes d’ordre 0, et après avoir effectué un développement de fi au voisinage de
X, on obtient:

                            ∂σij
            fi (X , t ) +            (X , t ) = 0          ∀X∈
                            ∂X j                                    0



soit

            f (X , t ) + divX σ(X , t ) = 0                ∀x∈      0                                            (3.15)

Le raisonnement qui a permis de remplacer f (x (X , t )) par f (X , t ) , permet aussi de remplacer F e (x (X , t )) par

F e (X, t ) et R(x (X , t )) par R(X , t ) . Donc, comme condition sur la frontière on obtient:
                                         
                                         
                                         
                                         
                                         
                                         
                                         
                                            F e (X , t )        ∀ X ∈∂
            σ(X , t ) ⋅ N (X , t ) =     
                                         
                                         
                                                                             0F
                                         
                                         
                                            R(X ,t )           ∀ X ∈∂                                           (3.16)
                                         
                                                                            0U
                                         
                                         



2.6 Autre présentation: Principe fondamental de la dynamique
(3.10) revient à écrire le Principe Fondamental de la dynamique. Dans un repère galiléen, pour tout système Σ
, le torseur dynamique (dérivée par rapport au temps du torseur cinématique) est égal à la somme des torseurs
des actions intérieures. Soit:

            d           d
               ∫ v dm =     ∫ v ρd Σ
            dt Σ        dt Σ
                                          
                                           
                           dv ρ
                                          
                      =∫                 d Σ
                                 + v ρdivv 
                                           
                        Σ  dt
                                          
                                           
                                          
                                                   
                                                    
                           dv         dρ
                      = ∫ ρ
                                +v       + v ρdivv d Σ
                                                    
                                                    
                        Σ
                           dt         dt           
                                                    
                                                   
                                   d ρ         
                          
                                   
                      = ∫ ργ + v  + ρdivv d Σ
                                                 
                        Σ          dt
                                    
                                                
                                                  
                                                 

donc avec la conservation de la masse



Golay - Bonelli                                                         - 42 -
Equilibre

               d
                  ∫ v dm = ∫ ργd Σ
               dt Σ        Σ

                                  = ∫ fd Σ + ∫ σnd ∂Σ
                                    Σ           ∂Σ


et le théorème de la divergence

               ∫ ργd Σ = ∫ fd Σ + ∫ div σd Σ
               Σ              Σ             Σ


on retrouve le bilan de la quantité de mouvement

           div σ + f = ργ

L’équation de bilan sur les moments du principe fondamental de la dynamique s’écrit:

                              dv
               ∫∫∫Σ OM ∧         dm = ∫∫∂Σ OM ∧ σ ⋅ n dx + ∫∫∫Σ OM ∧ f dx
                                                                                                  (3.17)
                              dt


3    Quelques propriétés du tenseur des contraintes
Dans tous les développements à venir, nous nous placerons dans le cas des petites perturbations pour un
solide en équilibre. En conséquence, nous omettrons les variables x et t.


3.1 Symétrie du tenseur des contraintes
On sait que

                              (         )
               ∫∫∫ OM ∧ ργ − f dx = ∫∫∂ OM ∧ σn dx

soit en notation indicielle

               ∫∫∫ εijk x j (ργk − fk ) e i dx = ∫∫∂ εijk x j σkl nl e i dx

puis, par application du théorème de la divergence
                                            ∂                   
               ∫∫∫ εijk x j (ργk − fk ) −       (εijk x j σkl ) e i dx = 0
                                          ∂x l                  
                     ε x (ργ − f − σ ) − ε σ  dx = 0
               ∫∫∫  ijk j      k    k     kl ,l      ijk kj  e i
                                                               

et par application de l’équation du mouvement

               ∫∫∫ εijk σkjei dx = 0                 ∀ (t )

c’est à dire

               εijk σkj = 0        ∀i

ce qui implique

           ε123 σ23 + ε132 σ32 = 0 ε213 σ13 + ε231σ31 = 0 ε312 σ12 + ε321σ21 = 0
           +σ23 − σ32 = 0 − σ13 + σ31 = 0 + σ12 − σ21 = 0

donc en définitive

           σpq = σqp

Le tenseur des contraintes est symétrique


                                                                       - 43 -            Golay - Bonelli
MMC

3.2 Contrainte normale et contrainte tangentielle

     T (n )                    Considérons une facette de normale n . Tout naturellement, le vecteur contrainte
                          σn   T (n ) peut être décomposé en une composante normale σn et une composante
                               tangentielle τ .
          τ           n




              σn = T (n ) ⋅ n = n ⋅ σ ⋅ n
                                                                                                             (3.18)
et

                                     
                               2               2

              τ = σ ⋅ n  − n ⋅ σ ⋅ n 
                         
                                      
                                        
                  
                                                                                                         (3.19)

On dira que σn est positive en traction et négative en compression.


3.3 Directions principales, contraintes principales
La matrice représentant le tenseur des contraintes est symétrique, elle est donc diagonalisable. Les valeurs
propres sont réelles et appelées contraintes principales (σI , σII , σIII ) . Les vecteurs propres, orthogonaux deux

à deux, sont les directions principales (n I, n II , n III ) . On a donc:

              σI = T (nI ) ⋅ nI      ,   σII = T (nII ) ⋅ nII   ,   σIII = T (nIII ) ⋅ nIII


3.4 Invariants
Le tenseur des contraintes possède trois invariants définis mathématiquement comme les coefficients de
                                      
l’équation caractéristique det σ − α 1 . C’est à dire les quantité scalaires:
                                      
                                       
                               
                                      

              ΣI = Tr (σ)
                                                                                                             (3.20)

                      1                      
              ΣII =       Tr (σ)2 − Tr (σ 2 )
                      2                                                                                  (3.21)

              ΣIII = Det(σ)
                                                                                                             (3.22)
Exprimés en fonction des contraintes principales, on obtient

              ΣI = σI + σII + σIII

              ΣII = σI σII + σII σIII + σIII σI

              ΣIII = σI σII σIII


3.5 Cercles de Mohr
Connaissant le tenseur des contraintes σ , on se propose de déterminer le domaine engendré par l’extrémité
du vecteur contrainte quand n varie. Par commodité, nous nous plaçons dans une base orthonormée dirigée
suivant les directions principales de σ . Soit


Golay - Bonelli                                                 - 44 -
Equilibre

                           
                             
                                                                                                        
                                                                                                                 
                                                                                                                  
                                                                                                         
                      n    
                             
                            1
                              
                                                     σI       
                                                              
                                                              
                                                                       0       0                        n σI 
                                                                                                           
                                                                                                           
                                                                                                            1
                                                                                                                  
                                                                                                                  
                                                                                                                  
                           
                             
                                                                                                          
                                                                                                                 
                                                                                                                  
                                                                                                             
                   n= n    
                           
                           
                              
                              
                            2
                              
                                       ,          σ= 0        
                                                              
                                                              
                                                                      σII      0               et   T = n σII 
                                                                                                           
                                                                                                           
                                                                                                           
                                                                                                            2
                                                                                                                  
                                                                                                                  
                                                                                                                  
                           
                             
                                                                                                        
                                                                                                                 
                                                                                                                  
                                                                                                         
                      n    
                            3
                             
                              
                                                     0        
                                                                      0      σIII                       n σIII 
                                                                                                           
                                                                                                            3
                                                                                                           
                                                                                                                  
                                                                                                                  
                                                                                                                  
                           
                             
                                                                                                      
                                                                                                                 
                                                                                                                  


       avec n1 + n2 + n 3 = 1
             2    2     2



       on trouve aisément

                   σn = σI n1 + σII n2 + σIII n 3
                            2        2          2



       et

                   τ 2 + σn = σI2 n1 + σII n2 + σIII n 3
                          2        2    2   2    2     2



       Dans l’hypothèse où les contraintes principales sont distinctes, on obtient alors après résolution du système:

                                   τ 2 + (σn − σII )(σn − σIII )
                    2
                   n1      =
                                            (σI − σII )(σI − σIII )

                                   τ 2 + (σn − σI )(σn − σIII )
                    2
                   n2      =
                                           (σII − σI )(σII − σIII )

                                   τ 2 + (σn − σI )(σn − σII )
                   n   2
                           =
                       3
                                           (σIII − σI )(σIII − σII )

       Si on ordonne les contraintes principales de telle sorte que σI ≥ σII ≥ σIII , alors

                   τ 2 + (σn − σII )(σn − σIII )                       ≥       0

                   τ 2 + (σn − σI )(σn − σIII )                       ≤        0

                   τ 2 + (σn − σI )(σn − σII )                        ≥       0

       ou encore

                                                                                           
                                                          2                                       2
                            σII + σIII                                     σII − σIII      
                       
                   τ + σn −
                       2                                 
                                                                 ≥                          
                                                                                              
                                                                          
                                                                                             
                       
                                2                       
                                                         
                                                                           
                                                                                 2           
                                                                                              
                                                                                              
                                                                                                                                      (3.23)

                                                                                       
                                                         2                                    2
                            σI + σIII                                      σI − σIII   
                       
                   τ + σn −
                       2                             
                                                                 ≤                      
                                                                                          
                                                                          
                                                                                         
                       
                               2                    
                                                     
                                                                           
                                                                                2        
                                                                                          
                                                                                          
                                                                                                                                      (3.24)

                                                                                      
                                                      2                                   2
                            σI + σII                                     σI − σII     
                       
                   τ + σn −
                       2                             
                                                                 ≥                     
                                                                                         
                                                                        
                                                                                        
                       
                               2                    
                                                     
                                                                         
                                                                              2         
                                                                                         
                                                                                         
                                                                                                                                      (3.25)

             τ                                Dans le plan de Mohr, l’extrémité du vecteur contrainte, d’après (3.24), est donc
                                              intérieure au cercle centré sur Oσn d’abscisse (σI + σIII ) / 2 et de rayon
            T                                  (σI − σIII ) / 2 . Par contre, d’après (3.23) (res. (3.25)), l’extrémité du vecteur
σIII                              σI          contrainte est extérieure au cercle centré sur Oσn d’abscisses (σII + σIII ) / 2
                 σII
                                   σn         (resp.( (σI + σII ) / 2 ) et de rayon (σII − σIII ) / 2 (resp. (σI + σII ) / 2 ).




                                                                                             - 45 -                          Golay - Bonelli
MMC



Description des Cercles principaux:
                                    Nous allons étudier la description du grand Cercle de Mohr. Les facettes concernées
           III                      sont parallèles à la direction associée à la contrainte principale σII .
                     n
 t                                  On constitue avec les directions I,III,II un trièdre direct (O , eI , eIII , eII ) , la normale n
                     θ
                                    de la facette évoluant dans le plan I III.
                          I
                                    Et on définit l’angle θ = (I , n ) , et le vecteur t tel que (n, t , II ) soit direct.

On a alors

             n = Cosθ eI + Sinθ eIII

et

             T = σI Cosθ eI + σIII Sinθ eIII

En utilisant les formules de changement de base de (O , e I , eIII , eII ) à (n, t , II ) , on a donc

                         σI + σIII                 σI − σIII
             σn =                         +                    Cos 2θ
                               2                       2
                                      σI − σIII
                              τ =−                   Sin 2θ
                                          2

       τ
                                                     Lorsque la facette tourne autour de la direction de la contrainte
                                                     principale σII d’un angle donné, l’extrémité du vecteur-contrainte
             σI + σIII
                                                     tourne sur le cercle de Mohr d’un angle double dans le sens opposé
σIII                 2               σI
                                                     (autour du centre du cercle).
                              −2θ             σn
                 T




Golay - Bonelli                                                         - 46 -
Equilibre


4    Exemples de tenseur des contraintes

4.1 Tenseur uniaxial
                             σ 0 0
                                    
           σ = σ e1 ⊗ e1 =  0 0 0
                                    
                             0 0 0

L’équilibre des forces sur la frontière du domaine nous donne:




Sur Σ0 : n = −e1 donc σn = F 0 et F 0 = −σe1


Sur Σ1 : n = e1 donc σn = F 1 et F 1 = σe1

Sur la frontière latérale les pressions sont nulles.
On se trouve en présence d’un chargement uniaxial de traction/compression.
Si σ > 0 c’est un état de tension uniaxiale
Si σ < 0 c’est un état de compression uniaxiale

La direction principale est e1


4.2 Tenseur sphérique
                      −p 0   0 
                      
           σ = −pI =  0 −p 0 
                                
                       0 0 −p 
                                 

Dans ce cas, toute direction est direction principale. La contrainte normale principale est -p. p est appelé la
pression. Si p > 0 on a un état de compression, et si p < 0 on a un état de tension.
Par exemple pour un fluide au repos:
D’après l’équation d’équilibre

           div σ + ρg = 0
           −divpI + ρg = 0
           −gradp + ρg = 0

                    ∂p     ∂p          ∂p
           soit          =      = 0 et      = −ρg
                    ∂x 1   ∂x 2        ∂x 3

           et     p = p0 − ρgx 3

Donc, pour un fluide au repos p + ρgx 3 = Cste .




                                                       - 47 -                                   Golay - Bonelli
MMC


5    A retenir

Vecteur contrainte et tenseur des contraintes de Cauchy

            T (x , t, n ) = σ(x , t ) n

Le tenseur des contraintes est symétrique !
Equilibre

            f (x , t ) + divx σ(x , t ) = 0             ∀ x ∈ (t )

                                    
                                    
                                    F e (x , t )        ∀ x ∈∂          (t )
            σ(x , t ) ⋅ n(x , t ) = 
                                    
                                                                     F
                                    R(x , t )
                                                        ∀x ∈∂           (t )
                                    
                                                                 U


Contrainte normale

            σn = T (n ) ⋅ n = n ⋅ σ ⋅ n

Contrainte tangentielle

                                    
                                2                   2

             τ = σ ⋅ n  − n ⋅ σ ⋅ n 
                        
                                     
                                       
                 
                                    




Golay - Bonelli                                                          - 48 -
Elasticité




  ELASTICITE


  1      Approche expérimentale: essai de traction
  Pour déterminer l’évolution d’un système déformable, nous avons déjà déterminé les équations de la
  cinématique et de la sthénique. A ces équations, il est maintenant nécessaire d’adjoindre une relation
  supplémentaire reliant les efforts internes et les grandeurs cinématiques. Cette relation, appelée Loi de
  Comportement, dépend du matériau considéré. La construction d’une loi de comportement est basée sur des
  observations expérimentales.
  Dans ce chapitre nous exposerons le modèle de comportement des matériaux élastiques, sous l’hypothèse des
  petites perturbations.


                                    Pour effectuer un essai de traction simple sur un métal, on utilise une
                          F         éprouvette cylindrique caractérisée par:
                                    - des extrémités surdimensionnées
                                    - des congés de raccordement (pour éviter les concentrations de contrainte)
  S0          L           L +△L     - une partie médiane cylindrique dans laquelle le champ de contrainte est
                                    supposé homogène, de traction simple parallèlement à l’axe de l’éprouvette.
                                    L’essai de traction consiste à enregistrer l’évolution de l’allongement relatif de la
                                    longueur initiale L0 en fonction de la force de traction F , ou du rapport F / S 0
                          F
                                    , où S 0 représente l’aire initiale de la section de l’éprouvette.


                                                 La figure ci-contre représente un tel enregistrement pour un acier
                              Plasticité         inox. On remarque alors les propriétés suivantes:
                              irréversible       - Le diagramme est indépendant de la vitesse de chargement
        F Élasticité
σ11 =
        S réversible                             - La partie OA du diagramme est réversible. Si on charge jusqu’à un
        σe           A                           niveau inférieur à σ 0 , alors la décharge décrit la même courbe OA.

                                                 - La partie réversible est linéaire

                                                 - Si on effectue un chargement au delà du seuil σ 0 , puis une
                                                 décharge, l’éprouvette présente une déformation permanente.
        O
                                                 La partie réversible du diagramme de traction est, par définition,
                                       ∆L        représentative du comportement élastique du matériau. σ 0 est la
                                 ε11 =
            Déformation                L
            permanente                           limite initiale d’élasticité du matériau. La linéarité du segment OA A
                                                 caractérise le comportement élastique linéaire du matériau.




                                                            - 49 -                                       Golay - Bonelli
MMC


2    Loi de comportement élastique linéaire (en HPP)

2.1 Forme générale
A partir des observations expérimentales on peut écrire que les contraintes dépendent linéairement des
déformations. En l’absence d’effets thermique et de contraintes initiales on a:


           σ(x, t ) = C (x ) : ε(x , t )
                                                                                                            (4.1)


C est un tenseur du quatrième ordre, dont les composantes sont les coefficients d’élasticité du matériau.

           σij (x, t ) = C ijkl εkl (x , t )

En utilisant les propriétés des tenseurs de contrainte et de déformation, on peut montrer que:

           C ijkl = C jikl = C ijlk = C jilk


Le tenseur C , dont la matrice représentative comporte 81 composantes, ne dépend donc plus que de 21
paramètres indépendants.

2.2 Matériau élastique homogène isotrope
Toutes les directions sont équivalentes, de telle sorte que la loi de comportement est invariante dans toute
rotation de la configuration de référence. Ce modèle s’applique à la plupart des matériaux: acier, béton, ...
Si la configuration est libre de contraintes, alors la loi de comportement s’écrit:

           σ = λ Tr (ε) 1 + 2 µ ε
                                                                                                            (4.2)
ou encore en notation indicielle

           σij = λεkk δij + 2µεij

Les coefficients matériel λ et µ , qui dépendent de la particule considérée, sont appelés les coefficients de
Lamé. Leur expression en fonction du module d’Young E et du coefficient de Poisson ν , est

                      E                                     νE
           µ=                       et        λ=
                  2 (1 + ν )                        (1 + ν ) (1 − 2ν )

ou

                  µ(3λ + 2µ)                               λ
           E=                            et        ν=
                    λ+µ                                 2(λ + µ)

avec, en inversant (4.2)

                        ν                           1+ν
           ε=       −     Tr (σ) 1             +            σ
                        E                               E                                                   (4.3)


2.3 Matériau élastique homogène orthotrope
Le matériau possède trois directions privilégiées deux à deux orthogonales. La loi de comportement est
invariante par les symétries par rapport aux plans orthogonaux construits à partir de ces directions. Dans ces
matériaux, on peut classer les tôles laminées, les composites tissés, le bois, certains bétons structurés, ...
Dans ce cas on montre que la matrice de comportement est définie par 9 paramètres indépendants. Dans le
repère principal d’orthotropie, la loi se met sous la forme:


Golay - Bonelli                                                     - 50 -
Elasticité

                                            −ν12         −ν13                             
                                   1                                    0     0        0 
                                   E         E1           E1
                                   1                                                      
                                   −ν        1           −ν 23                            
              
                      
                                  21                                   0     0        0     
                                                                                                       
                                                                                                        
              
              
                 ε11  
                       
                                                                                              
                                                                                                
                                                                                                   σ11 
                                                                                                        
                                                                                                        
              
              
              
                       
                       
                                  E2        E2              E2                               
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
                 ε22  
                       
                                  −ν       −ν 32                                             
                                                                                                
                                                                                                   σ22 
                                                                                                        
                                                                                                        
              
              
              
                       
                       
                                  31                        1                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
              
              ε
                       
                       
                       
                                                                       0     0        0      
                                                                                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                    σ33 
                                                                                                        
                                                                                                        
              
                  33 
                             =      E3        E3             E3                               
                                                                                                       
                                                                                                        
              
              
              
              2ε
                       
                       
                                                                                             
                                                                                                
                                                                                                
                                                                                                        
                                                                                                    σ12 
                                                                                                                             (4.4)
              
              
              
                       
                    12 
                                   0             0          0
                                                                         1
                                                                               0        0 
                                                                                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
              
              2ε
              
                       
                       
                       
                                                                                              
                                                                                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                    σ23 
                                                                                                        
              
              
              
                       
                    23 
                                                                      G12                    
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
              
                       
                       
                                                                                             
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                    0                                                              σ13 
                                                                                        0 
              2ε
              
              
              
                       
                       
                    13 
                                                                               1                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
                      
                       
                                                 0          0          0                      
                                                                                                
                                                                                                       
                                                                                                        
                                                                                                        
                                                                             G23           
                                                                                           
                                    0             0          0          0     0
                                                                                        1 
                                                                                           
                                                                                     G13 

Avec les conditions de symétrie

              ν12           ν21   ν13       ν 31       ν 32        ν23
                        =               =                     =
              E1            E2    E1        E3         E3          E2


2.4 Matériau élastique homogène isotrope transverse
Un matériau homogène isotrope transverse est tel que la matrice de comportement est invariante par toute
rotation autour d’un axe privilégié. En utilisant cette invariance, on montre que seuls 5 paramètres
indépendants caractérisent le comportement. Si l’axe est porté par la direction 3, on a alors:
                                            −ν12         −ν13                             
                                    1                                   0     0        0 
                                    E        E1           E1
                                    1                                                     
                                    −ν       1           −ν13                             
              
                      
                                   21                                  0     0        0     
                                                                                                       
                                                                                                        
              
              
                 ε11  
                       
                                                                                              
                                                                                                
                                                                                                   σ11 
                                                                                                        
                                                                                                        
              
              
              
                       
                       
                                   E1       E1              E1                               
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
                 ε22  
                       
                                   −ν      −ν 31                                             
                                                                                                
                                                                                                   σ22 
                                                                                                        
                                                                                                        
              
              
              
                       
                       
                                   31                       1                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
              
              ε
                       
                       
                       
                                                                       0     0        0      
                                                                                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                    σ33 
                                                                                                        
                                                                                                        
              
                  33 
                             =     E3         E3             E3                               
                                                                                                       
                                                                                                        
              
              
              
              2ε
                       
                       
                                                                                             
                                                                                                
                                                                                                
                                                                                                        
                                                                                                    σ12 
                                                                                                                             (4.5)
              
              
              
                       
                    12 
                                  0              0          0
                                                                      1
                                                                               0        0 
                                                                                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
              
              2ε
              
                       
                       
                       
                                                                                              
                                                                                                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                    σ23 
                                                                                                        
              
              
              
                       
                    23 
                                                                   G12                       
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
              
                       
                       
                                                                                             
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                   0                                                               σ13 
                                                                                        0 
              2ε
              
              
              
                       
                       
                    13 
                                                                               1                
                                                                                                
                                                                                                
                                                                                                        
                                                                                                        
                                                                                                        
              
              
                      
                       
                                                 0          0          0                      
                                                                                                
                                                                                                       
                                                                                                        
                                                                                                        
                                                                             G13           
                                                                                           
                                   0              0          0          0     0
                                                                                        1 
                                                                                           
                                                                                     G13 




2.5 Caractéristiques de quelques matériaux
Matériaux isotropes usuels:
Matériau                                    E en Gpa                                    ν                   ρ en kg/l

acier                                       210                                        0.285                7.8
fonte grise                                 90 à 120                                   0.29                 7.1
aluminium                                   71                                         0.34                 2.6
béton                                       10                                         0.15                 2.4
fibre de verre E                            73                                         0.15                 2.54
Graphite HM                                 350                                        0.4                  1.92
résine époxy                                3.8                                        0.31                 1.15

                                                                              - 51 -                                Golay - Bonelli
MMC



Matériaux composites:


                          Unidirectionnel        Tissu                  Unidirectionnel       Unidirectionnel
                          Verre/Epoxy            Verre/Epoxy            CarboneHT/Epoxy       Kevlar/Epoxy
                          50%                    50%                    50%                   50%

    ρ en g/cm 3           1,87                   1,87                   1,49                  1,32

   E 1 en Mpa             38000                  21000                  116000                65000

   E 2 en Mpa             11500                  21000                  7500                  4900

    ν12                   0,28                   0,26                   0,32                  0,34




2.6 Critères de limite d’élasticité
Les critères de résistance que nous allons définir représentent des valeurs limites pour les contraintes
maximales, et permettent de ce fait de garder un caractère élastique aux déformations.

2.6.1 Critère de Tresca
Il consiste à considérer de manière indépendante les trois contraintes de cisaillement maximal du tricercle de
Mohr. Soit en fonction des contraintes principales
                  
                                                     
                                                      
            Sup  σI − σII , σI − σIII , σII − σIII
                
                
                
                                                      
                                                      
                                                      
                                                         ≤   2σ0
                 
                                                     
                                                      
                                                                                                               (4.6)

2.6.2 Critère de Von-Mises
              1                                        
                
                (σ − σ )2 + (σ − σ )2 + (σ
                
                
                
                                              − σIII )2 
                                                        
                                                        
                                                        
                                                                   ≤   σ0
              2   I   II      I   III     II                                                                  (4.7)

ou encore

              1
              2
                (
                (σ11 − σ22 )2 + (σ11 − σ33 )2 + (σ22 − σ33 )2 + 6(σ12 + σ13 + σ23 )
                                                                   2     2     2
                                                                                     )    ≤   σ0


2.6.3 Critère de Hill
le critère de Hill s’applique dans le cas de matériaux élastique orthotropes

            F (σ11 − σ22 )2 + H (σ11 − σ 33 )2 + G (σ22 − σ 33 )2 + 2L σ23 + 2M σ13 + 2N σ12 = 1
                                                                        2        2        2
                                                                                                                (4.8)
où F , H ,G , L, M , N sont des constantes fonctions des contraintes à ruptures.




Golay - Bonelli                                           - 52 -
Elasticité


3    Le problème d’élasticité

3.1 Ecriture générale
Cinématique : + Equations de compatibilité

              ε=
                   1
                   2
                     (
                     ∇ u + ∇T u    )
              u = U 0 (X )     sur ∂    U


Equilibre :

              div σ + f = 0            dans
                     
                     
                     
                     F sur ∂
                     
                     
                     
                     
              σn =   
                     
                     
                     
                                   F
                     
                     
                     
                     
                         R sur ∂   U
                     
                     


Loi de comportement :

              σ = λTr (ε)I + 2µε


3.2 Formulation en déplacement
              div σ + f = 0
              div (λTr (ε)I + 2µε) + f = 0
              λ∇(Tr (ε)) + 2µdiv(ε) + f = 0
              λ∇(div u ) + µdiv(∇ u ) + µdiv(∇T u ) + f = 0

soit l’équation de Navier

              (λ + µ)∇(div u ) + µdiv(∇ u ) + f = 0
                                                                                                           (4.9)
Remarque: Si on prend la divergence de l’équation de Navier

              (λ + 2µ)∆(div u ) + div( f ) = 0

Donc, si le champ de forces volumiques est tel que div f = 0 alors div u est une fonction harmonique.


3.3 Formulation en contrainte
En partant de l’écriture des équations de compatibilité, on peut démontrer les équations de Michell

                              1                ν
              div(∇ σ) +         ∇(∇Tr (σ)) +     div f I + ∇ f + ∇T f = 0
                             1+ν              1−ν                                                        (4.10)

Soit, si le champ de force est uniforme, on obtient les équations de Beltrami.

              (1 + ν )div(∇ σ) + ∇(∇Tr (σ)) = 0
                                                                                                         (4.11)

3.4 Théorème de superposition




                                                        - 53 -                                 Golay - Bonelli
MMC


Si ( , f , F ) et ( , g,G ) sont deux jeux de données engendrant respectivement des solutions u et v , alors
   U              V
αu + β v   est solution du problème de données (αU + βV , α f + βg, αF + βG ) (Le problème est
évidemment linéaire).

3.5 Elasticité plane

3.5.1 Contraintes planes
Dans le cas où le chargement est dans le plan 12, la structure mince dans la direction 3, on peut faire
l’hypothèse que le problème est plan et libre de contraintes dans la direction 3.
Dans ce cas
                σ (x , x ) σ (x , x ) 0
                 11 1 2          12    1    2     
           σ = σ21 (x 1, x 2 ) σ22 (x 1, x 2 ) 0
                                                  
                    0               0          0
                                                   
et d’après la loi de comportement
                 ε (x , x ) ε (x , x )                0        
                 11 1 2          11   1     2                  
           ε = ε21 (x 1, x 2 ) ε22 (x 1, x 2 )       0        
                                                                
                                                               
                     0               0         ε33 (x 1, x 2 )
                                                                
On remarquera que la déformation suivant 3 est non nulle.

3.5.2 Déformations planes
Dans le cas où le chargement est dans le plan 12, la structure très élancée dans la direction 3, sans possibilités
de déplacement suivant 3, on peut faire l’hypothèse que le problème est plan sous l’hypothèse des
déformations planes.
Dans ce cas
                 ε (x , x ) ε (x , x ) 0
                 11 1 2          12    1     2     
           ε = ε21 (x 1, x 2 ) ε22 (x 1 , x 2 ) 0
                                                   
                     0               0          0
                                                    
et d’après la loi de comportement
                σ (x , x ) σ (x , x )                0         
                 11 1 2          12    1    2                  
           σ = σ21 (x 1, x 2 ) σ22 (x 1, x 2 )      0         
                                                                
                                                               
                    0               0          σ33 (x 1, x 2 )
                                                                
On remarquera que la contrainte suivant 3 est non nulle.
D’après (4.3)

                   1+ν      ν                
           ε33 =       σ33 − σ11 + σ22 + σ33  = 0
                              
                              
                              
                              
                                              
                                              
                                              
                                              
                    E       E
donc
                                   
           σ33 = ν σ11 + σ22 
                   
                   
                   
                   
                              
                              
                              
                              


Nous allons prouver que les contraintes peuvent être déterminées par une seule fonction scalaire.
En appliquant l’équation d’équilibre (3.11) on a :



Golay - Bonelli                                                     - 54 -
Elasticité

           σ + σ = 0
            11,1
                    12,2
           
           σ21,1 + σ22,2 = 0
           
           
           
donc
           
           
           
           
           
           
               ∃φ(x 1, x 2 ) / σ11 = φ,2 et σ12 = −φ,1
           
           
           
           
           
           
               ∃ψ(x1,x2 ) / σ21 =ψ,2 et σ22 =−ψ,1
           
           


comme le tenseur des contraintes est symétrique, on a ψ,2 + φ,1 = 0 , donc

           ∃χ(x 1, x 2 )    / φ = χ,2     et   ψ = −χ,1

en définitive on a prouvé
                             
                             
                             
                             
                             σ = χ,22
                              11
                             
                             
                             
           ∃χ(x 1 , x 2 )   / σ =χ,11
                             
                             
                             
                               22
                             
                             
                             
                             
                             σ =−χ,12
                              12
                             
                             


χ est appelée la fonction d’Airy.

Le tenseur des contraintes devant vérifier l’équation de Beltrami (4.11), on a

          (1 + ν )σij ,kk + σkk ,ij = 0

d’où
           ∆∆ χ = 0

χ est donc une fonction biharmonique.


3.6 Thermoélasticité

3.6.1 Thermodynamique : équations de bilan
Jusqu’à présent nous avons utilisé les équations de bilan suivantes:
Conservation de la masse

           dρ
              + ρ divv = 0
           dt
Conservation de la quantité de mouvement

          div σ + f = ργ             dans

Conservation du moment cinétique (3.17)
Nous introduisons maintenant l’équation de bilan de conservation d’énergie, ou encore le premier principe de
la thermodynamique:

           d
           dt
              (E + K ) = Pext + Q
où

E représente l’énergie interne E = ∫ ρe d          (e densité d’ énergie interne)


K représente l’énergie cinétique K = ∫ 2 ρv ⋅ v d
                                       1
                                                          ( v la vitesse)




                                                          - 55 -                             Golay - Bonelli
MMC


Pext représente la puissance des efforts extérieurs Pext = ∫ f ⋅ v d + ∫ F ⋅ v d
                                                                        ∂



Q représente le taux de chaleur reçu Q = ∫ r d − ∫ q ⋅ n d       (q vecteur de chaleur et r source de chaleur)
                                                       ∂


Par application du premier principe, en utilisant (5.7) on a:

                de
           ∫ρ      d + ∫ ρv ⋅ γ d = ∫ f ⋅ v d + ∫ F ⋅ v d + ∫ r d − ∫ q ⋅ n d
                dt                              ∂                   ∂


en utilisant la conservation de la quantité de mouvement (3.9)

                de
           ∫ρ      d = ∫ σ : ε d + ∫ r d − ∫ q ⋅n d
                dt                         ∂


Soit, par application du théorème de la divergence, la forme locale du premier principe

           ρe = σ : ε + r − divq
            ɺ
                                                                                                           (4.12)
Nous présentons également, sans plus de discussion le second principe de la thermodynamique:

           dS   r     q ⋅n
              ≥∫ d −∫      d
           dt   T   ∂  T
où T est la température et S l’entropie. Ce second principe s’écrit sous sa forme locale

                      q  r
           ρs + div
            ɺ           − ≥0
                      T T                                                                                  (4.13)

où s représente l’entropie massique

3.6.2 Equation de la chaleur
On peut exprimer l’énergie interne massique e en fonction de l’entropie massique s , de la température T et
l’énergie libre ψ .
           e = ψ + Ts
                                                                                                           (4.14)
En thermoélasticité, sous l’hypothèse des petites perturbations, pour un écart de température par rapport à la
température au repos T − T0 petit, on a:

           ψ = ψ(ε,T )

Grace au second principe on peut montrer que

                  ∂ψ                 ∂ψ
           σ=ρ           et   s =−
                  ∂ε                 ∂T

donc, le premier principe peut s’écrire
                 ɺ     ɺ
           ρe = ρψ + ρTs + ρTs
             ɺ               ɺ

et comme

           ɺ  ∂ψ     ∂ψ ɺ  σ        ɺ
           ψ=    :ε+
                  ɺ     T = : ε − sT
                              ɺ
              ∂ε     ∂T    ρ

on a

               ɺ      ɺ   ɺ       ɺ
           σ : ε − ρsT + ρsT + ρsT = σ : ε + r − divq
                                         ɺ

or
Golay - Bonelli                                        - 56 -
Elasticité


                ∂ψ 
                        ∂2 ψ     ∂2 ψ ɺ     1 ∂σ     ∂s ɺ
               
           s = −   
           ɺ       =−
                    
                ∂T 
                              :ε−
                               ɺ        T =−      :ε+
                                                   ɺ     T
                       ∂ ε∂T     ∂T  2
                                             ρ ∂T     ∂T

c’est à dire que le premier principe s’écrit

                 ∂σ          ∂s ɺ
           −T       : ε + ρT
                      ɺ         T = r − divq
                 ∂T          ∂T

En introduisant la chaleur spécifique C = T ∂s
                                            ∂T

                 ∂σ          ɺ
           −T       : ε + ρCT = r − divq
                      ɺ
                 ∂T

puis la loi de Fourier q = −k∇T , où k représente la conductivité thermique,

                 ∂σ          ɺ
           −T       : ε + ρCT = r + divk∇T
                      ɺ
                 ∂T
En général la contribution mécanique est négligeable par rapport aux autres contributions, si bien que
l’équation de bilan de l’énergie conduit à l’équation de la chaleur :
                     ∂T          
           ρCT = ρC 
              ɺ     
                        + v ⋅ ∇T  = r + divk∇T
                                  
                                  
                     ∂t
                                 
                                                                                                        (4.15)

Dans le cas où le problème à traiter est stationnaire, sans source de chaleur, avec une conductivité constante,
on retrouve l’équation habituelle :
           ∆T = 0

3.6.3 Loi de comportement thermo-élastique
Dans le cadre de la thermoélasticité , l’énergie libre spécifique s’écrit comme un développement limité au
second ordre en déformation et température, ou plutôt en déformation et écart de température τ = T − T0
(supposés “ petits ”) :

                          1                   1
           ρψ(ε,T ) =       ε : C : ε − ρs τ − ρbτ − β : ε τ
                          2                   2
Par définition

                   ∂ψ                                    
           σ=ρ          (ε,T ) = C : ε − βτ = C : ε − ατ 
                                                         
                                                          
                                                  
                                                         
                   ∂ε

où α représente le tenseur des dilatations thermiques
Dans le cas isotrope la loi de comportement thermo-élastique s’écrit :

           σ = λTr (ε)1 + 2µε − (3λ + 2µ)ατ




                                                         - 57 -                                 Golay - Bonelli
MMC


4    A retenir

Loi de comportement élastique linéaire isotrope

           σ = λ Tr (ε) 1 + 2 µ ε

                              ν                    1+ν
           ε=         −         Tr (σ) 1       +         σ
                              E                     E
Critère de Tresca
                  
                                                            
                                                             
          Sup  σI − σII , σI − σIII , σII − σIII
              
              
              
              
                                                             
                                                             
                                                             
                                                             
                                                             
                                                                 ≤   2σ0
                  
                                                            
                                                             




Le problème d’élasticité
          
          
          
          
          
          
          
               2
                          (
          ε = 1 ∇ u + ∇T u                )
          
          u = U 0 (X ) sur ∂
          
                               U
          
          div σ + f = 0
                              dans
          
                 
                  
                 
          σ n = F sur ∂ F
                 
                  
                  
          
          
                  
                  
                  
                  
          
          
                  R
                  
                      sur ∂ U
          
          
                  
                  
                  
          σ = λTr (ε)I + 2µε
          
          
          


Equation de Navier

          (λ + µ)∇(div u ) + µdiv(∇ u ) + f = 0



En élasticité plane sous l’hypothèse des deformations planes :
                                   
         σ33 = ν σ11 + σ22  et ε33 = 0
                 
                 
                 
                 
                            
                            
                            
                            




Conservation de l’énergie

           d
           dt
              (E + K ) = Pext + Q
Forme locale de la conservation de l’énergie

           ρe = σ : ε + r − divq
            ɺ

Equation de la chaleur
               ∂T          
                            
                           
               ∂t + v ⋅ ∇T  = r + divk∇T
           ρC 
              
              
                            
                            

Loi de comportement thermoélastique isotrope

           σ = λTr (ε)1 + 2µε − (3λ + 2µ)ατ


Golay - Bonelli                                                  - 58 -
Mécanique des fluides




INTRODUCTION A LA MECANIQUE DES FLUIDES


1    Loi de comportement
En mécanique des fluides, nous travaillerons toujours en variables d’Euler
Comme pour les matériaux solides (qui sont des fluides qui s’ignorent ..) les lois de comportement fluide sont
élaborées à partir de l’expérience.



                                                    Fluide viscoplastique
                                                      Fluide à seuil
                                   τ
                                                  Fluide fluidifiant

                                                   Newton

                                                               Fluide
                                                               épaississant




                                                               dU
                                                               dy




1.1 Fluide Newtonien
Pour un fluide Newtonien, les contraintes sont une fonction affine des vitesses de déformation. Soit,

           σ = −pI + λTr (D)I + 2µD
                                                                                                           (5.1)
où

           D=
                 1
                 2
                   (            T
                   grad v + grad v     )                                                                   (5.2)

soit, en notation indicielle

                   1  ∂vi
                     
                     
                                   
                              ∂v j 
                                   
           Dij =           +      
                   2  ∂x j
                     
                             ∂x i 
                                   
                                   

µ est la viscosité dynamique (dimension Poiseuille ≡ M )
                                                     LT
λ est le second coefficient de viscosité

                                                      µ                      2
On introduit également la viscosité cinématique ν =     (dimension Stokes ≡ L )
                                                      ρ                     T



                                                      - 59 -                                     Golay - Bonelli
MMC

1.2 Fluide incompressible
Si le fluide est incompressible, alors on a vu que divv = 0                        ou   TrD = 0

Donc, (5.1) devient

           σ = −pI + 2µD
                                                                                                     (5.3)

1.3 Fluide non-visqueux
Si le fluide est parfait, alors on a ne tient pas compte de la viscosité, donc (5.1) devient

           σ = −pI
                                                                                                     (5.4)
Le tenseur des contraintes est alors sphérique.
En particulier, l’action d’un fluide non visqueux sur une paroi est normale à la paroi (d’après l’équation
d’équilibre).

1.4 Fluide au repos
Si le fluide est au repos, alors v = 0 , donc (5.1) devient

           σ = −pI
                                                                                                     (5.5)


2    Conservation de la masse
La masse d’un système matériel qu’on suit dans son mouvement reste constante.

                                                               dM
           M = ∫∫∫          (t )
                                   ρ(x, t ) d          et          =0
                                                                dt
où ρ est la masse volumique. On a alors (2.20)

           dρ
           dt
              + ρ divv = 0                       ou
                                                               ∂ρ
                                                               ∂t
                                                                        ( )
                                                                  + div ρv = 0
                                                                                                     (5.6)

Si on considère une grandeur différentiable Ψ quelconque, on a alors pour un fluide incompressible

           d                                           dψ
              ∫∫∫           ψ dm = ∫∫∫                    dm
           dt        (t )                       (t )
                                                       dt                                            (5.7)

Démonstration:

           d                              d
              ∫∫∫   (t )
                            ψ dm =           ∫∫∫       (t )
                                                              ψ ρd
           dt                             dt
                           d ψρ           
           = ∫∫∫           
                           
                                + ψρdiv v  d
                                           
                                           
                    (t )
                            dt
                                          
                                           
                          dψ    dρ           
                                              
           = ∫∫∫         ρ
                             +ψ              
                                    + ψρdiv v  d
                    (t )                     
                          dt
                                dt           
                                                 
           = ∫∫∫      ρ d ψ + ψ  d ρ + ρdiv v  d
                      
                                                 
                       dt         dt            
                                                 
                      
                    (t )
                                               
                                                  
                       dψ 
           = ∫∫∫ (t ) ρ
                           d
                       dt 
                      
                           
                            
                           dψ
           = ∫∫∫    (t )
                              dm
                           dt
Soit Σ un domaine géométrique fixe traversé par le fluide,

Golay - Bonelli                                                           - 60 -
Mécanique des fluides


           ∫∫∂Σ ρv ⋅ n d ∂Σ = ∫∫∫Σ div(ρv ) d Σ         (d ′aprés le théorème de la divergence)
                              ∂ρ
                     = ∫∫∫Σ −    dΣ                     (d ′après la conservation de la masse)
                              ∂t
                          ∂
                    = − ∫∫∫Σ ρ d Σ                                     (car Σ est fixé )
                          ∂t
                           ∂
                     = − ∫∫∫Σ dm
                           ∂t
Si le fluide est incompressible, alors la masse volumique est constante et

           ∂ρ d ρ
              =    =0
           ∂t   dt

Si on note qm le débit massique à travers une surface S et q v le débit volumique, alors

           qm = ∫ ∫S ρv ⋅ n d ∂Σ = ρ ∫ ∫S v ⋅ n d ∂Σ = ρqv

Donc, en définitive:

Pour un domaine Σ fixe traversé par un fluide incompressible ∫∫∂Σ v ⋅ n d ∂Σ = 0 : le débit volumique à
travers la frontière ∂Σ est nul.


3    Equation du mouvement
D’après l’équation du mouvement(3.10),

                           dv
           f + div σ = ρ
                           dt
D’où, pour un fluide newtonien

               dv                                           
           ρ            = f + div −pI + λTr (D )I + 2µD 
                                                            
                                                             
               dt                  
                                                            
                                                            
                    = f − div pI  + λdiv Tr (D )I  + 2µdiv D 
                                                            
                               
                                         
                                                    
                                                               
                                                                
                                      ( )           (
                    = f − ∇p + λ∇ divv + µdiv ∇v + ∇T v            )
Soit l’équation de Navier-Stokes compressible

           ρ
               dv
               dt
                                          ( )
                  = f − ∇p + (λ + µ)∇ divv + µ∆v
                                                                                                              (5.8)

* Pour un fluide incompressible, divv = 0 , donc (5.8) devient:
                                  
                                   
               dv    ∂v
                                  
           ρ      = ρ             
                          + v ⋅ ∇v  = f − ∇p + µ∆v
               dt     ∂t
                                  
                                   
                                  
                                                                                                              (5.9)
* Pour un fluide non visqueux, (5.8) devient:
                                  
                                   
               dv    ∂v
                                  
           ρ      = ρ             
                          + v ⋅ ∇v  = f − ∇p
               dt     ∂t
                                  
                                   
                                  
                                                                                                             (5.10)




                                                          - 61 -                                    Golay - Bonelli
MMC


4    A retenir

Loi de comportement pour un fluide newtonien

           σ = −pI + λTr (D)I + 2µD

Conservation de la masse pour un fluide incompressible

          divv = 0
Grace à la conservation de la masse pour un fluide incompressible

           d                                   dψ
              ∫∫∫   (t )
                           ψ dm = ∫∫∫   (t )
                                                  dm
           dt                                  dt
Equation de Navier Stokes compressible

           ρ
               dv
               dt
                  = f − ∇p + (λ + µ)∇ divv + µ∆v ( )




Golay - Bonelli                                        - 62 -
Bibliographie




         BIBLIOGRAPHIE

[1] Mécanique des Milieux Continus, Cours ESIM 1984, Equipe IMST Marseille.
[2] G. Duvaut, Mécanique des Milieux Continus, ed. Masson 1990.
[3] P. Germain - P. Muller, Introduction à la Mécanique des Milieux Continus, ed. Masson 1995.
[4] J. Salençon, Mécanique des Milieux Continus, ed. ellipse 1988.
[5] P. Germain, Mécanique, ed. ellipse, ecole polytechnique, tomes I et II.
[6] G. Dhatt, J.L. Batoz, Modélisation des structures par éléments finis: Solides élastiques, ed. Hermes, tome I.
[7] A. Bazergui, T. Bui-Quoc,A. Biron, G. McIntyre, C. Laberge, Résistance des matériaux, ed. de l’école
polytechnique de Montréal 1993.
[8] J. Coirier, Mécanique des Milieux Continus, ed. Dunos 1997.
[9] J. Lemaitre, J.L. Chaboche, Mécanique des matériaux solides, ed. Dunos 1996.
[10] O. Débordes, Thermodynamique des milieux continus, ESM2, Cours du DEA de Mécanique 2001.




                                                       - 63 -                                       Golay - Bonelli
MMC




Golay - Bonelli   - 64 -
Annexes




ANNEXES: RAPPELS DE MECANIQUES DES SOLIDES RIGIDES


1      Cinématiques du solide
Avertissement: L’objectif de ce chapitre, est de familiariser les étudiants avec les notations tensorielles. Afin
d’en simplifier le contenu, nous ne considérerons que des bases orthonormées.

1.1 Description du mouvement
Soit S un ensemble de particules tel que la distances entre deux particules quelconques reste pratiquement
constante au cours du mouvement. On étudie l'ensemble S en le considérant indéformable: solide rigide.

1.1.1 Système de référence
Dans un espace euclidien ξ à trois dimensions, soit e1, e2 , e3 une base orthonormée. On définit un référentiel

d'observation par cet espace euclidien et le temps: ℜ (ξ,t ) . On définit la dérivée d'un vecteur U par rapport
au temps dans ce référentiel par:

           dU           dU i
                    =          ei
           dt           dt
                ℜ



1.1.2 Mouvement d'un solide
Soit S un solide rigide en mouvement par rapport à ℜ . Soit ξS (O, e1 , e2 , e3 ) un espace euclidien lié à S.

Considérons un vecteur lié à S, dont les composantes sont représentées par X dans ξ et X S dans ξS .

On note Q l'opérateur linéaire définissant le passage de ξ à ξS .

           X S = Q X et X = Q T X S

Comme X S est indépendant du temps puisque lié à S, on a:

           dX           dQ T                   dQ T
                    =                   XS =              Q X = LX
           dt            dt         ℜ
                                                dt    ℜ
                ℜ


or

           Q TQ = I

C'est à dire

           dQ T        dQ
                Q + QT    =0
            dt         dt
           L + LT = 0

L est un opérateur linéaire antisymétrique, on peut donc définir un vecteur         (d'après (1.10)) tel que:

           dX
                    = LX =               ∧X
           dt
                ℜ                                                                                                   (6.1)
avec

                                                                     - 65 -                            Golay - Bonelli
MMC

                    1
               =      ε L e
                    2 ijk ji k

1.1.3 Torseur cinématique
Soient A et P deux particules du solide S.

             OP = OA + AP
donc par dérivation

             dOP                dOA                 d AP              dOA
                           =                    +                 =             +       ∧ AP
              dt                 dt                   dt               dt
                       ℜ                    ℜ                 ℜ             ℜ


soit

             V (P ) = V (A ) +                      ∧ AP
                                                                                                                                             (6.2)

On définit le torseur cinématique par le vecteur vitesse de A par rapport à ℜ , V (A ) et le vecteur de rotation
                                 
                                 V (A )
                                        
                                       
instantanée       :V            =
                                       
                                        
                           ℜ     
                                       
                                        
                                 
                                       
                                        

1.1.4 Accélération
             V (P ) = V (A ) +                      ∧ AP

             dV (P )                  dV (A )                d                          d AP
                                =                       +             ∧ AP +        ∧
               dt                       dt                   dt                           dt
                           ℜ                        ℜ             ℜ                            ℜ


Soit


             γ (P ) = γ (A ) +
                                            d
                                            dt
                                                        ∧ AP +          ∧   (            )
                                                                                ∧ AP = γ (A ) +
                                                                                                   d
                                                                                                   dt
                                                                                                            ∧ AP +   (   ⋅ AP   )   −   2
                                                                                                                                            AP
                                                    ℜ                                                   ℜ                                        (6.3)

1.2 Composition des mouvements


L'espace temps est commun à tous les référentiels d'observation. on considère deux référentiels ℜa ξ a , t et                           (        )
   (     )
ℜb ξ , t .


1.2.1 Dérivation composée
                                                        (               )
Soit U un vecteur dans la base ξ a O, e1a , e2a , e3a , U = U ieia par dérivation:
                                                                  .

             dU                dU i
                       =              eia
             dt                dt
                  ℜa



                                                        (               )
Soit U un vecteur dans la base ξ b O, e1b , e2b , e3b , U = U ieib par dérivation:
                                                                  .

             dU                dU i                  deib
                       =              eib + U i
             dt                dt                       dt
                  ℜa




Golay - Bonelli                                                                 - 66 -
Annexes

Car ξ b est en mouvement par rapport à ξ a , et d'après (6.1)

             deib
                     =            ξq /ξb    ∧ eib
              dt

d'où, avec      ξq / ξb      représentant le vecteur rotation de ξ b par rapport à ξ a :

             dU                       dU
                             =                      +        ξq / ξb   ∧U
             dt          a
                                      dt        b
                     ℜ                      ℜ                                                                                                                                                                        (6.4)

1.2.2 Composition des vitesses
Soit P ∈ S :

             O a P = O aO b + O b P
             dO a P                        dO aO b                     dO b P
                                      =                           +
              dt                             dt                         dt
                             ℜa                              ℜa                    ℜa


Et donc d’après (6.4)

             dO a P                        dO aO b                     dO b P
                                      =                           +                      +            ξq / ξb   ∧ ObP
              dt                             dt                         dt
                             ℜa                              ℜa                    ℜb


soit

             V a (P ) = V b (P ) +                                     V e (P )
                                                                                                                                                                                                                     (6.5)
                             a                       b       Vitesse d ' entrainement
             Vitesse / ℜ              Vitesse / ℜ




1.2.3 Composition des accélérations
On dérive (6.5) par rapport à ℜa :

             d 2O a P                       d 2O aO b                      d 2O b P                                       dO b P                  d       ξ q / ξb                                          dO b P
                     2
                                      =                  2
                                                                       +          2
                                                                                                      +     ξq / ξb   ∧                       +                           ∧ Ob P +           ξ q / ξb   ∧
                dt                                  dt                       dt                                            dt                             dt                                                 dt
                                 ℜa                               ℜa                         ℜb                                          ℜb                          ℜa                                              ℜa



             γ a (P ) = γ a (O b ) + γ b (P ) + ξq / ξb ∧ V b (P ) +
                                                                                                                                              b                                        
                                                                                                                                                                                          
                         d ξq / ξb                         
                                                                                                                                               dO P                                     
                        
                        
                         dt
                                              q b       q b 
                                       + ξ /ξ ∧ ξ /ξ  ∧ O b P + +                                                                   q    b
                                                                                                                                              ∧
                                                                                                                                               
                                                                                                                                                dt                       +   q   b
                                                                                                                                                                                      ∧O P
                                                                                                                                                                                          
                                                                                                                                                                                          
                                                                                                                                                                                              b
                                                            
                                                                                                                                 ξ /ξ                                         ξ /ξ
                        
                                                                                                                                             
                                                                                                                                                                                         
                                                                                                                                                                                          
                                   ℜb                                                                                                                             b
                                                                                                                                                                     ℜ                    

                                                                            d     ξ q / ξb                                                                     
                                                                                                                                                                
             γ a (P ) = γ b (P ) + γ a (O b ) +                                                       ∧ ObP +              ξq / ξb        
                                                                                                                                         ∧    ξ q / ξb   ∧ ObP  + 2             ξ q / ξb   ∧ V b (P )
                                                                                dt                                                                             
                                                                                              ℜ   b                                                                           Accélération de Coriolis

                                                                                             Accélération d ' entrainement



             γ a (P ) = γ b (P ) + γ e (P ) + γ c (P )                                                                                                                                                               (6.6)




                                                                                                                - 67 -                                                                                  Golay - Bonelli
MMC


2    Cinétique

La cinématique ne s'intéresse au mouvement des corps que du point de vue de l'espace et du temps: durée,
vitesse, distance, etc …; tandis qu'en cinétique on introduit, en plus, le concept de masse, c'est à dire qu'on
tient compte aussi de la masse

2.1 Définitions
On définit la masse d’un solide S par :

           m = ∫∫∫S dm(P ) = ∫∫∫S ρ(P , t )dv
                                                                                                          (6.7)
Où ρ représente la densité volumique de masse.

On définit G le centre de masse (ou d’inertie) du solide S par :

           ∀O ∈ξ          ∫∫∫S OPdm(P ) = mOG                                                             (6.8)

2.2 Eléments de cinétique

2.2.1 Torseur cinétique
On définit le Torseur Cinétique ou Torseur des quantités de mouvement par :
                    
                     R=
                             ∫∫∫S V (P )dm (P )  Résultante cinétique de S /ℜ
           κ       =
                    
               ℜ    k A = ∫∫∫ AP ∧ V (P )dm (P ) Moment cinétique en A /ℜ
                                                                                                         (6.9)
                    
                             S


On peut remarquer que si le repère ℜ est fixe, alors :

                    d
           R=          ∫∫∫S OP (P )dm(P ) = mV (G )
                    dt

2.2.2 Torseur dynamique
On définit le Torseur dynamique par :
                    
                    
                        d = ∫∫∫S γ(P )dm (P )   Résultante dynamique de S /ℜ
           A       =
                    
               ℜ    δ A = ∫∫∫ AP ∧ γ(P )dm (P ) Moment dynamique en A /ℜ
                                                                                                        (6.10)
                    
                             S




2.2.3 Relation entre torseur cinématique et torseur dynamique
En dérivant par rapport au temps dans ℜ on obtient :

                   dR
           d=
                   dt                                                                                    (6.11)

           dk A             dAP
                     = ∫∫∫S     ∧V (P )dm(P ) + ∫∫∫S AP ∧ γ(P )dm(P )
            dt               dt
                            dAO                        dOP
                     = ∫∫∫S     ∧ V (P )dm(P ) + ∫∫∫S      ∧V (P )dm(P ) + ∫∫∫S AP ∧ γ(P )dm(P )
                             dt                         dt
                     = − (A) ∧ ∫∫∫S V (P )dm(P ) + δ A
                        V

                    dk A
           δA =          +V (A) ∧ mV (G )
                     dt                                                                                  (6.12)




Golay - Bonelli                                        - 68 -
Annexes


            δ A = ∫∫∫S AP ∧ γ(P )dm(P ) = ∫∫∫S AG ∧ γ(P )dm(P ) + ∫∫∫S GP ∧ γ(P )dm(P )
            δ A = AG ∧ d + δG

                    dk G
            δA =         + AG ∧ m γ(G )
                     dt                                                                                                               (6.13)

2.2.4 Energie cinétique
On définit l’énergie cinétique du solide S par :

                        1       2
           T (S ) =       ∫∫∫S V (P )dm(P )
                        2                                                                                                             (6.14)

2.2.5 Théorème de Koenig
Soit ξ (O, e1, e2 , e3 ) un espace euclidien et ξG (G, e1 , e2 , e3 ) un espace euclidien barycentrique lié au solide S.

            k A = k G + AG ∧ mV (G )
                                                                                                                                      (6.15)

            δ A = δG + AG ∧ m γ(G )
                                                                                                                                      (6.16)

                             dOP dOP
           T (S ) = ∫∫∫S         ⋅    dm
                              dt   dt

                        1      dOG dOG      1     dGP dGP            dGP dOG
           T (S ) =       ∫∫∫S     ⋅    dm + ∫∫∫S     ⋅    dm + ∫∫∫S     ⋅    dm
                        2       dt   dt     2      dt   dt            dt   dt

                             1
           T (S ) = Tℜ (S ) + mV 2 (G )
                      G
                             2                                                                                                        (6.17)


2.3 Cinétique du solide rigide

2.3.1 Opérateur d’inertie
On définit l’opérateur d’inertie par J A tel que :

            JA :                                            (
                        u ∈ ξ → J A (u ) = ∫∫∫ AP ∧ u ∧ AP dm           )
Si AP = x iei alors


                    (           )
            AP ∧ u ∧ AP = εijk x j εkpq u p x qei = δpi δqj x j u p x qei − δqi δpj x j u p xqei = x j ui x jei − x j u j x iei


                    (           )    (            )                               (      ) (
            AP ∧ u ∧ AP = x j2ek ⊗ ek ⋅ (uiei ) − (x k x iek ⊗ ei ) ⋅ u je j = x j2ek ⊗ ek − x k x jek ⊗ e j ⋅ (uiei )        )
Et l’opérateur d’inertie est représenté par la matrice :
                    I       −I 12    −I 13 
                    1
            I A = −I 12     I2      −I 23 
                                            
                   −I 13   −I 23     I3 
                                             
Où




                                                                    - 69 -                                                   Golay - Bonelli
MMC


                        (
             I 1 = ∫∫∫ x 2 + x 3 dm
                         2     2
                                           )                     I 12 = ∫∫∫ x 1x 2dm
             I2   = ∫∫∫ (x         2
                                   1
                                       + x )dm2
                                              3
                                                                 I 13 = ∫∫∫ x 1x 3dm
             I3   = ∫∫∫ (x         2
                                   1
                                       + x )dm2
                                              2
                                                                 I 23 = ∫∫∫ x 2x 3dm




2.3.2 Influence des symétries matérielles
       •   Si le solide S possède un plan de symétrie (A, e1, e2 ) , alors

             ∫∫∫ x 1x 3dm = ∫∫∫ x 1x 3dm + ∫∫∫ x 1x 3dm = ∫∫∫ x 1x 3dm − ∫∫∫ x 1x 3dm = 0
                                           x 3 ≥0                      x 3 <0                   x 3 ≥0    x 3 ≥0


Soit
                     I                −I 12          0 
                     1
             I A = −I 12              I2            0 
                                                        
                     0                0             I3 
                                                         

       •   Si le solide S possède un axe de symétrie (A, e3 ) , alors

             ∫∫∫ ⋯ ρdx 1dx 2dx 3 = ∫∫∫ ⋯ ρrdrd θdx 3

Et comme

             ∫∫∫ x 1x 3 ρdx 1dx 2dx 3 = ∫∫∫ r cos θx 3 ρrdrd θdx 3 = 0

             ∫∫∫ x 1x 2 ρdx 1dx 2dx 3 = ∫∫∫ r sin θ cos θx 3 ρrdrd θdx 3 = 0
                                             2




on a finalement
                    I         0           0 
                     1
             I A =  0        I2          0 
                                             
                     0       0           I3 
                                              

       •   Moment d’inertie par rapport à une droite ∆ (de vecteur unitaire δ ) passant par A
       Soit H le projeté orthogonal d’un point P du solide S, on a alors :
                                            2                                                                         2

                                                                                                                       (      )
                         2             2                                                                   2     2
                                   
                                             
                                                      
                                                       
             I ∆ = ∫∫∫ PH dm = ∫∫∫  AP − AH dm = ∫∫∫  δ                                                                
                                                                                                                          
                                                                                                               AP − AP .δ dm
                    S           S           
                                                   S                                                                   
                                                                                                                          

                                                                                   
                               ( )(                              ) (            ) dm = ∫∫∫ δ.δ (AP.AP ) − AP (AP.δ)dm
                                                                                2
                       
             I ∆ = ∫∫∫  δ.δ AP .AP − AP .δ
                       
                    S                                                                           S




                      S 
                         
                                       (
             I ∆ = δ.∫∫∫ δ AP .AP − AP AP .δ
                                                            )          (           )dm
                   (           )
Et comme a ∧ b ∧ c = (a ⋅ c )b − a ⋅ b c ,                       ( )
                                                  (               )
             I ∆ = δ.∫∫∫ AP ∧ δ ∧ AP dm = δ ⋅ J A (δ) = δ ⋅ I A ⋅ δ
                           S




Golay - Bonelli                                                                                - 70 -
Annexes

       •   Théorème de Huyggens généralisé

                                  (
            J A (u ) = ∫∫∫ AP ∧ u ∧ AP dm     )
                          (           )         (
            = ∫∫∫ AG ∧ u ∧ AP dm + ∫∫∫ GP ∧ u ∧ AP dm  )
            = AG ∧ (u ∧ ∫∫∫ APdm ) + ∫∫∫ GP ∧ (u ∧ AG )dm + ∫∫∫ GP ∧ (u ∧ GP )dm

            = AG ∧ (u ∧ mAG ) + ( ∫∫∫ GPdm ) ∧ (u ∧ AG ) + ∫∫∫ GP ∧ (u ∧ GP )dm

Soit

                              (           )
            J A (u ) = AG ∧ u ∧ mAG + J G (u )

       •   Théorème de Huyggens appliqué au moment d’inertie par rapport à une droite ∆ (de vecteur unitaire
           δ ) passant par A (tel que AG ⊥ δ ) et ∆’ (de vecteur unitaire δ )passant par G.
                                                                                                       
                                             
                                                           (        
                                                                         )                       (     )
                                                                                2
            I ∆ = δ ⋅ J A (δ) = δI A δ = δ ⋅ AG ∧ δ ∧ mAG + J G (δ) = δ ⋅ mAG δ − m δ ⋅ AG AG + IG δ 
                                                                   
                                                                                                      
                                                                                                        
                                                                          
                                                                                                       
                                                                                                        
soit
                                  2     
                                         
                                                  2
                                        
            I ∆ = δI A δ = δ ⋅ mAG + IG  δ = mAG + IG
                               
                                        
                                         



2.3.3 Moment cinétique du solide


            k A = ∫∫∫S AP ∧V (P )dm(P )

Soit Q un point quelconque du solide

                              (
            k A = ∫∫∫S AP ∧ V (Q ) +      ∧ QP dm(P )  )
                                          (
            k A = mAG ∧V (Q ) + ∫∫∫S AQ + QP ∧                 ) (               )
                                                                       ∧ QP dm(P )


            k A = mAG ∧V (Q ) + AQ ∧          (                              )
                                                      ∧ ∫∫∫S QPdm(P ) + ∫∫∫S QP ∧    (       )
                                                                                         ∧ QP dm(P )

D’où

            k A = mAG ∧ V (Q ) + mAQ ∧            (             )
                                                       ∧ QG + J G ( )

Dans le cas particulier où Q=G, on obtient :

            k A = mAG ∧V (G ) + J G ( )

C'est-à-dire

            kG = JG ( )


2.3.4 Energie cinétique du solide
                 1      2
         T (S ) = ∫∫∫S V (P )dm(P )
                 2
Soit Q un point quelconque du solide

                                                                    - 71 -                             Golay - Bonelli
MMC


                             (                    )
                                                    2
                       1
            T (S ) =     ∫∫∫S V (Q ) +    ∧ QP dm(P )
                       2

                             ( )                        (              )                     (       )
                                    2                                                                2
                       1                                                            1
            T (S ) =     ∫∫∫S V (Q ) dm(P ) + ∫∫∫S V (Q ) ⋅      ∧ QP dm(P ) +        ∫∫∫S       ∧ QP dm(P )
                       2                                                            2

            T (S ) =
                       m 2
                       2
                         V (Q ) + mV (Q ) ⋅   (   ∧ QG +)   1
                                                            2
                                                              ∫∫∫S
                                                                       
                                                                     ⋅ QP ∧
                                                                       
                                                                              (       )
                                                                                        
                                                                                   ∧ QP dm(P )
                                                                                        
                                                                                        

Soit

            T (S ) =
                       m 2
                       2
                         V (Q ) + mV (Q ) ⋅   (   ∧ QG +)   1
                                                            2
                                                                ⋅ JQ ( )

Dans le cas particulier où Q=G, on obtient :

                       m 2        1
            T (S ) =     V (G ) +        ⋅ JG ( )
                       2          2


3      Equations fondamentales de la mécanique des solides

3.1 Torseur associé aux efforts externes
Soit f (P ) une densité volumique de force exercée sur le solide S .

Soit F (P ) une densité surfacique de force exercée sur la frontière du solide ∂S .

Soit F(P ) une densité linéique de force exercée sur une courbe Γ .

Soit F i une force ponctuelle exercée en un point Pi de S .

Le torseur des efforts extérieurs est défini par :
                      
                      
                      R = ∫∫∫ f (P ) + ∫∫ F (P ) + ∫ F(P ) + ∑ F i
                      
                      
            Fe (S ) =       S          ∂S          Γ         i
                      C A = ∫∫∫ AP ∧ f (P ) + ∫∫ AP ∧ F (P ) + ∫ AP ∧ F(P ) + ∑ AP ∧ F i
                      
                      
                      
                              S                 ∂S               Γ            i




3.2 Loi fondamentale de la dynamique
Il existe au moins un référentiel Galiléen associé à une chronologie, tel que :
            ∀S , ∀ t    Torseur dynamique =Torseur des forces extérieures

Ou encore

            ∀S , ∀ t      ( )
                        A d, δ A = Fe (R,C A )

En conséquence, on peut énoncer :
Théorème de la résultante dynamique : dans un référentiel galiléen

            R = m γ(G )

Théorème du moment dynamique : dans un référentiel galiléen, soit A un point fixe

                   dk A
            δA =        =CA
                    dt



Golay - Bonelli                                             - 72 -

Mmc

  • 1.
    Mécanique des Milieux Continus GolayFrédéric - Bonelli Stéphane 01/02/2011 ISITV
  • 2.
  • 3.
    Ce cours demécanique des milieux continus est à la base de l’enseignement de mécanique à l’ISITV. Les notions abordées ici, transport de champs, lois de conservation, ..., seront reprises ultérieurement en mécanique des solides et mécanique des fluides. Dans une première partie, nous aborderons les notations tensorielles et vectorielles indispensables à toute étude scientifique, puis dans une deuxième partie, nous étudierons la cinématique des milieux continus. Après avoir introduit la modélisation des efforts et les lois de conservation par le principe des puissances virtuelles, nous appliquerons ces lois de conservation aux lois de comportement de l’élasticité linéaire (en mécanique des solides) et aux lois de comportement des fluides newtoniens (en mécanique des fluides). -3- Golay - Bonelli
  • 4.
  • 5.
    Sommaire TABLE DES MATIERES Notations tensorielles ....................................................................................................... 9 1 Vecteurs et tenseurs ............................................................................................... 9 1.1 Notations ............................................................................................................................................... 9 1.2 Changement de repère ........................................................................................................................ 12 2 Permutations et déterminants............................................................................... 14 2.1 Les symboles de permutation .............................................................................................................. 14 2.2 Déterminant d’une matrice ................................................................................................................. 14 2.3 Polynôme caractéristique .................................................................................................................... 15 2.4 Adjoint d’un tenseur antisymétrique ................................................................................................... 15 3 Calcul vectoriel et analyse vectorielle .................................................................... 16 3.1 Calcul vectoriel ..................................................................................................................................... 16 3.2 Analyse vectorielle ............................................................................................................................... 16 3.3 Transformation d’intégrales ................................................................................................................ 17 4 Formules essentielles en Mécanique des Milieux Continus .................................... 18 4.1 Coordonnées cartésiennes orthonormées .......................................................................................... 18 4.2 Coordonnées cylindriques ................................................................................................................... 19 4.3 Coordonnées sphériques ..................................................................................................................... 20 4.4 Comment retrouver les formules ........................................................................................................ 21 5 A retenir ............................................................................................................... 23 CINEMATIQUE ................................................................................................................. 25 1 Le mouvement et ses représentations ................................................................... 25 1.1 Configuration ....................................................................................................................................... 25 1.2 Variables de Lagrange et variables d’Euler .......................................................................................... 26 1.3 Dérivées particulaires .......................................................................................................................... 26 2 Déformation d’un milieux continu ......................................................................... 27 2.1 Notion de déformation ........................................................................................................................ 27 2.2 Tenseur des déformations ................................................................................................................... 28 2.3 Conditions de compatibilité ................................................................................................................. 30 3 Transport, dérivées particulaires ........................................................................... 30 3.1 Transport d’un volume ........................................................................................................................ 30 3.2 Transport d’une surface orientée ........................................................................................................ 31 3.3 Dérivée particulaire d’une intégrale de volume .................................................................................. 32 3.4 Dérivée particulaire d’une intégrale de surface .................................................................................. 33 4 A retenir ............................................................................................................... 35 EFFORTS DANS LES MILIEUX CONTINUS ........................................................................... 37 -5- Golay - Bonelli
  • 6.
    MMC 1 Définitions ............................................................................................................ 37 1.1 Forces ................................................................................................................................................... 37 1.2 Vecteur-contrainte et tenseur des contraintes .................................................................................... 37 2 Equilibre ............................................................................................................... 39 2.1 Le Principe des Puissances Virtuelles (Germain 1972) ......................................................................... 39 2.2 Puissance virtuelle des efforts intérieurs ............................................................................................. 39 2.3 Puissance virtuelle des efforts extérieurs ............................................................................................ 40 2.4 Application du Principe des Puissances Virtuelles ............................................................................... 40 2.5 Equilibre ............................................................................................................................................... 41 2.6 Autre présentation: Principe fondamental de la dynamique............................................................... 42 3 Quelques propriétés du tenseur des contraintes ................................................... 43 3.1 Symétrie du tenseur des contraintes ................................................................................................... 43 3.2 Contrainte normale et contrainte tangentielle .................................................................................... 44 3.3 Directions principales, contraintes principales .................................................................................... 44 3.4 Invariants .............................................................................................................................................. 44 3.5 Cercles de Mohr ................................................................................................................................... 44 4 Exemples de tenseur des contraintes .................................................................... 47 4.1 Tenseur uniaxial ................................................................................................................................... 47 4.2 Tenseur sphérique................................................................................................................................ 47 5 A retenir ............................................................................................................... 48 ELASTICITE ...................................................................................................................... 49 1 Approche expérimentale: essai de traction............................................................ 49 2 Loi de comportement élastique linéaire (en HPP) .................................................. 50 2.1 Forme générale .................................................................................................................................... 50 2.2 Matériau élastique homogène isotrope............................................................................................... 50 2.3 Matériau élastique homogène orthotrope .......................................................................................... 50 2.4 Matériau élastique homogène isotrope transverse ............................................................................. 51 2.5 Caractéristiques de quelques matériaux .............................................................................................. 51 2.6 Critères de limite d’élasticité ............................................................................................................... 52 3 Le problème d’élasticité ........................................................................................ 53 3.1 Ecriture générale .................................................................................................................................. 53 3.2 Formulation en déplacement ............................................................................................................... 53 3.3 Formulation en contrainte ................................................................................................................... 53 3.4 Théorème de superposition ................................................................................................................. 53 3.5 Elasticité plane ..................................................................................................................................... 54 3.6 Thermoélasticité .................................................................................................................................. 55 4 A retenir ............................................................................................................... 58 INTRODUCTION A LA MECANIQUE DES FLUIDES............................................................... 59 1 Loi de comportement ............................................................................................ 59 1.1 Fluide Newtonien ................................................................................................................................. 59 1.2 Fluide incompressible........................................................................................................................... 60 1.3 Fluide non-visqueux ............................................................................................................................. 60 1.4 Fluide au repos ..................................................................................................................................... 60 Golay - Bonelli -6-
  • 7.
    Sommaire 2 Conservation de la masse ...................................................................................... 60 3 Equation du mouvement ....................................................................................... 61 4 A retenir ............................................................................................................... 62 Bibliographie ................................................................................................................... 63 Annexes: Rappels de mécaniques des solides rigides ....................................................... 65 1 Cinématiques du solide ......................................................................................... 65 1.1 Description du mouvement ................................................................................................................. 65 1.2 Composition des mouvements ............................................................................................................ 66 2 Cinétique .............................................................................................................. 68 2.1 Définitions ............................................................................................................................................ 68 2.2 Eléments de cinétique ......................................................................................................................... 68 2.3 Cinétique du solide rigide .................................................................................................................... 69 3 Equations fondamentales de la mécanique des solides .......................................... 72 3.1 Torseur associé aux efforts externes ................................................................................................... 72 3.2 Loi fondamentale de la dynamique ..................................................................................................... 72 -7- Golay - Bonelli
  • 8.
  • 9.
    Notations tensorielles NOTATIONS TENSORIELLES 1 Vecteurs et tenseurs Avertissement: L’objectif de ce chapitre, est de familiariser les étudiants avec les notations tensorielles. Afin d’en simplifier le contenu, nous ne considérerons que des bases orthonormées. 1.1 Notations 1.1.1 Vecteur Dans un espace euclidien ξ à trois dimensions, soit e1, e2 , e3 une base orthonormée. Un vecteur V est représenté par ses composantes V1 , V2 , V3 3 V = V1e1 +V2e2 +V3e3 = ∑Viei i =1 (1.1) En utilisant la convention de sommation, ou convention d’Einstein, on écrit V = Viei (1.2) où, chaque fois qu’un indice est répété, il convient de faire varier cet indice de 1 à 3 et de faire la somme. Dans l’expression (2) l’indice i est un "indice muet". En notation matricielle on écrira parfois       V     1  {}       V = V = V      2       (1.3)   V     3      et le vecteur transposé {} T T V = V = V = V1 V2 V3 (1.4) 1.1.2 Application linéaire de ξ dans ξ Soit A une application linéaire, dans la base e1, e2 , e3 . Cette application est représentée par une matrice 3x3 notée A :   A A A   11 12 13  A A A   21 22 23     A31 A32 A33   Si W est un vecteur tel que W = AV , alors les composantes de W sont données par W1 = A11V1 + A12V2 + A13V3 W2 = A21V1 + A22V2 + A23V3 W3 = A31V1 + A32V2 + A33V3 et en utilisant les conventions de sommation où j est un indice muet -9- Golay - Bonelli
  • 10.
    MMC Wi = AijVj (1.5) et en notation vectorielle {W } = A {V } On définit les symboles de Kronecker par 1  si i=j δij =   0  si i≠j (1.6)   En particulier l’application identité 1 est représentée par la matrice δ13  1 0 0    δ  11  δ12 δ23  = 0 1 0    δ δ22  21       δ  31 δ32 δ33  0 0 1     La composition de deux applications linéaires se traduit par le produit de leur matrice représentative, c’est-à- dire C =A B ou encore C  = A B        et en notation indicielle C ij = Aik Bkj (1.7) 1.1.3 Formes bilinéaires Soit A une forme bilinéaire sur ξ , c’est-à-dire une application bilinéaire de ξ × ξ dans ℝ . Dans la base e1, e2 , e3 elle est représentée par une matrice Aij telle que ( ) A V ,W = AijVWj i (1.8) ou en notation matricielle ( ) A V ,W = V A {W }   En particulier, la forme bilinéaire représentée dans toute base par les symboles de Kronecker est le produit scalaire. Si ( e1, e2 , e3 ) est une base orthonormée, alors ei ⋅ e j = δij et le produit scalaire de deux vecteurs est donné par V ⋅W = Viei ⋅Wje j = VWj ei ⋅ e j = δijVWj = VWi i i i ou en notation matricielle V ⋅W = V {W } 1.1.4 Tenseurs 1.1.4.1 Tenseur du second ordre Un tenseur du second ordre T est un opérateur linéaire qui fait correspondre à tout vecteur V de l’espace euclidien un vecteur W de ce même espace. Golay - Bonelli - 10 -
  • 11.
    Notations tensorielles W =T V ()   Cet opérateur peut être représenté par une matrice 3x3, notée T  ou T  ou T , telle que     Wi = TijVj ou en notation matricielle {W } = T  {V } ou W = TV * Un tenseur est dit symétrique si Tij = Tji * Un tenseur est dit antisymétrique si Tij = − ji T * Un tenseur est dit isotrope si Tij = t δij * On peut toujours décomposer un tenseur en une partie symétrique et antisymétrique S A T = T +T Tij = TijS + TijA ou 1 1 TijS = ( T + Tji 2 ij ) TijA = Tij −Tji 2 ( ) avec et 1.1.4.2 Tenseur d’ordre supérieur On peut définir un vecteur V par ses composantes Vi , ou par les coefficients de la forme linéaire X → X ⋅V = XiVi , car la base choisie est orthonormée (voir les notions de vecteurs covariants et contravariants). On peut alors considérer le vecteur comme un tenseur du premier ordre. De même, une fonction scalaire peut être considérée comme un tenseur d’ordre zéro. Un tenseur du troisième ordre S est un opérateur linéaire qui, à tout vecteur Z fait correspondre un tenseur du second ordre T . T = S (Z ) ou encore Tij = Sijk Z k 1.1.4.3 Produit tensoriel On définit le produit tensoriel du vecteur U par le vecteur V , noté U ⊗ V , comme le tenseur d’ordre deux, ( défini par la forme bilinéaire qui aux vecteurs X et Y fait correspondre U ⋅ X V ⋅Y )( ) Les 9 produits tensoriels ei ⊗ e j définissent une base de l’espace vectoriel des tenseurs d’ordre deux, si bien que l’on peut écrire un tenseur T comme T = Tijei ⊗ e j ou encore, par exemple, - 11 - Golay - Bonelli
  • 12.
    MMC    uv 1 1  u1v2 u1v3    u ⊗ v = ui v jei ⊗ e j = u v    2 1 u2v2 u2v3    uv u3v2 u3v3   3 1   1.1.4.4 Contraction et produit contracté Soit le produit tensoriel A ⊗ B ⊗ C , on appelle contraction, l’opération qui lui fait correspondre le vecteur A(B ⋅ C ) . Le produit contracté d’un tenseur d’ordre 4 R et d’un tenseur d’ordre 3 S est défini par le tenseur d’ordre 5 ( )( ) R ⋅ S = Rijklei ⊗ e j ⊗ ek ⊗ el ⋅ S pqrep ⊗ eq ⊗ er = Rijkm Smqrei ⊗ e j ⊗ ek ⊗ eq ⊗ er Le produit doublement contracté d’un tenseur d’ordre 4 R et d’un tenseur d’ordre 3 S est défini par le tenseur d’ordre 3 ( )( ) R : S = Rijklei ⊗ e j ⊗ ek ⊗ el : S pqrep ⊗ eq ⊗ er = Rijnm Smnrei ⊗ e j ⊗ er Par exemple, le produit doublement contracté de deux tenseurs d’ordre 2 T et T ′ est le scalaire ( )( ) T : T ′ = Tijei ⊗ e j : T ′ pqep ⊗ ea = TijTji′ 1.2 Changement de repère 1.2.1 Matrice de passage Soit e1, e2 , e3 une base orthonormée et e1′, e2 , e3 une autre base orthonormée. ′ ′ On définit la matrice de passage Q telle que: e1′ = Q11e1 + Q12e2 + Q13e3 e2′ = Q21e1 + Q22e2 + Q23e3 ′ e3 = Q31e1 + Q32e2 + Q33e3 ou encore, en notations indicielles ei′ = Qije j et en notation matricielle {e ′} = Q  {e } Les deux bases étant orthonormées, on doit avoir δij = ei′ ⋅ e j′ = Qikek ⋅ Qjlel = QikQjl δkl = QikQjk ce qui montre que la matrice inverse de Q est QT . En particulier on tire la relation inverse: ei = Qjie j′ 1.2.2 Vecteurs Soit V un vecteur de composantes Vi dans la base e1, e2 , e3 et Vi ′ dans la base e1′, e2 , e3 . ′ ′ V = Viei = Viei′ ′ Golay - Bonelli - 12 -
  • 13.
    Notations tensorielles En utilisantla matrice de passage V = Viei = VQkiek i soit Vk′ = VQki i et i ′ Vk = VQik ou encore, en notation matricielle {V ′} = Q  {V } {V } = Q  {V ′} T et Remarque: le produit scalaire est un invariant, c’est à dire que cette fonction est indépendante du repère choisi. En notation indicielle V ′. ′ = VkWk′ = VQkiWjQkj = δijVWj = VWi = V . W ′ i i i W et en notation matricielle { }   {} { } T V ′. ′ = V ′ W ′ =  Q  V  W     Q  W     Q  Q  W = V T = V         { } {W } = V .W 1.2.3 Application linéaire ′ Soit A une application linéaire, de composantes Aij dans la base e1, e2 , e3 . et Aij dans la base e1′, e2 , e3 . ′ ′ En notation indicielle Wi ′ = AikVk′ = QijWj = Qij AjmVm = Qij AjmQkmVk′ ′ d’où ′ Aik = Qij AjmQkm et en notation matricielle {W ′} = A′ {V ′} = Q  {W } = Q  A {V } = Q  A Q  {V } T soit A′ = Q  A Q  T         1.2.4 Forme bilinéaire ′ Soit A une application linéaire, de composantes Aij dans la base e1, e2 , e3 . et Aij dans la base e1′, e2 , e3 . ′ ′ A(V ,W ) = AijVWj = AijVWj′ = AijQkiVk′ mjWm i ′ i′ Q ′ soit ′ Akm = AijQkiQmj et en notation matricielle { } A(V ,W ) = V A W = V ′ A′  W ′ =     { }   { } { } { } T  Q  V ′  A Q  W ′ = V ′ Q  A Q  W ′ T T T              - 13 - Golay - Bonelli
  • 14.
    MMC soit A′ = Q  A Q  T         1.2.5 Tenseur d’ordre 2 Soit T un tenseur d’ordre 2, en notation indicielle T = Tijei ⊗ e j = Tij′ei′ ⊗ e j′ = TijQkiek′ ⊗ Qmjem = TijQkiQmjek′ ⊗ em ′ ′ puis ′ Tkm = TijQkiQmj 2 Permutations et déterminants 2.1 Les symboles de permutation On introduit les symboles de permutation +1 si i, j , k est une permutation paire de 1, 2, 3    εijk = −1 si i, j , k est une permutation impaire de 1, 2, 3   0   si deux indices sont répétés  Ces symboles représentent le produit mixte des vecteurs de base ( εijk = ei , e j , ek ) εijk sont les composantes d’un tenseur du troisième ordre, qui représente, par exemple, la forme trilinéaire produit mixte: (U ,V ,W ) = ε ijk U iVjWk Avec un peu de patience on peut démontrer les résultats suivants      δim δin     δil    εijk εlmn = Det  δjl δjm δjn          δ δkm δkn      kl    ε ε = δ δ −δ δ    ijk imn jm kn jn km   εijk εijn = 2δkm    εijk εijk = 6   2.2 Déterminant d’une matrice Les symboles de permutation permettent le calcul du déterminant d’une matrice par εijk Det(A) = εmnp Aim Ajn Akp (1.9) ou encore 1 Det(A) = ε ε A A A 6 ijk mnp im jn kp On peut également déterminer l’inverse d’une matrice Golay - Bonelli - 14 -
  • 15.
    Notations tensorielles 1 B = A−1 et Bji = ε ε A A 2Det(A) imn jpq mp nq 2.3 Polynôme caractéristique Les valeurs propres d’un tenseur du second ordre sont obtenues par la résolution de l’équation caractéristique P (λ ) = Det (A − λI ) soit en développant 1 ε ε (A − λδim )(Ajn − λδjn )(Akp − λδkp ) = 0 6 ijk mnp im ou encore P (λ ) = I 3 − λI 2 + λ 2 I 1 − λ 3 avec   1   I 3 = εijk εmnp Aim Ajn Akp = Det(A)   6   I = A A − A A  = 1 (Tr A)2 − Tr A2   2 1                  2  ii jj  ij ji  2     I1 =Aii =Tr A      I 1, I 2 , I 3 sont appelés les invariants fondamentaux du tenseur A. 2.4 Adjoint d’un tenseur antisymétrique Soit un tenseur antisymétrique  0 − 31   12 − =  12 0  23     31 − 23 0   on peut également lui associer le vecteur          ω1                  23          ω = ω2  =              31           ω3               12          soit  0 ω3 −ω2   = −ω3 0 ω1     ω2 −ω1 0   Le vecteur ω est le vecteur adjoint du tenseur antisymétrique . En notation indicielle on a:       ij = εijk ωk       ωi = 1 εijk jk 2   (1.10) - 15 - Golay - Bonelli
  • 16.
    MMC 3 Calcul vectoriel et analyse vectorielle 3.1 Calcul vectoriel Le produit vectoriel c = a ∧b s’écrit en notation indicielle ciei = εijk a jbkei On peut montrer que (a ∧ b) ∧ c = (a ⋅ c)b − (b ⋅ c)a (a ∧ b) ⋅ (c ∧ d ) = (a ⋅ c)(b ⋅ d ) − (a ⋅ d )(b ⋅ c) 3.2 Analyse vectorielle On note d’une virgule la dérivée partielle, soit , i = ∂ . Les opérateurs exposés dans cette partie seront ∂x i exprimés dans un repère cartésien orthonormé. * Soit f une fonction scalaire Le gradient d’une fonction scalaire est un vecteur  ∂f        ∂x   1    ∂f     grad f = ∇f = f,i ei =      ∂x   2   ∂f       ∂x   3      Le laplacien d’une fonction scalaire est un scalaire ∂2 f ∂2 f ∂2 f ∆ f = f,ii = + + ∂x 1 2 ∂x 2 2 ∂x 3 2 * Soit v un vecteur La divergence d’un vecteur est un scalaire ∂v1 ∂v2 ∂v3 Div v = vi,i = + + ∂x 1 ∂x 2 ∂x 3 Le rotationnel d’un vecteur est un vecteur  ∂v  3 ∂v 2       ∂x − ∂x   2     ∂v 3  1 ∂v 3   rot v = ∇ ∧ v = εijk vk , j ei =   −    ∂x  3 ∂x 1     ∂v   2 ∂v1    −   ∂x 1 ∂x 2       Le gradient d’un vecteur est une matrice Golay - Bonelli - 16 -
  • 17.
    Notations tensorielles  ∂v ∂v1 ∂v1   1  ∂x ∂x 2 ∂x 3   1  ∂v ∂v2 ∂v2  ∇ v = vi, j ei ⊗ e j =  2   ∂x 1 ∂x 2 ∂x 3   ∂v ∂v 3 ∂v 3   3    ∂x 1 ∂x 2 ∂x 3  Le laplacien d’un vecteur est un vecteur  2     ∂ v1 + ∂ v1 + ∂ v1  2 2   2  2   ∂x 1  ∂x 22 ∂x 3     △v   2       ∂ v2  ∂ v2 2 ∂ v2   1  2  = △v  ∆ v = vi, jj ei =  2 + +   2  ∂x  1 ∂x 22 ∂x 3    2   2   △v        ∂ v3  ∂ 2v 3 ∂ 2v 3   3    2 +  ∂x +   1   ∂x 22 ∂x 3  2    * Soit T un tenseur du second ordre La divergence d’un tenseur est un vecteur  ∂T  11 ∂T12 ∂T13     + +    ∂x  1 ∂x 2 ∂x 3     ∂T   21 ∂T22  ∂T23    Div T = Tij , j ei =  + +   ∂x  1 ∂x 2 ∂x 3     ∂T   31 ∂T32 ∂T33     + +    ∂x 1  ∂x 2 ∂x 3     * Quelques formules utiles ( ) Div f a = f Div a + a ⋅ grad f Div (a ∧ b ) = b ⋅ rot a − a ⋅ rot b Div (rot a ) = 0 rot (grad f ) = 0 ( ) grad f g = f grad g + g grad f ( ) rot f a = f rot a + grad f ∧ a ( ) Div grad f = ∆ f rot (rot a ) = grad (Div a ) − ∆a 3.3 Transformation d’intégrales Soit un domaine borné et ∂ sa frontière, de normale n . Soit φ une fonction scalaire, alors ∫∫∂ φ n dS = ∫∫∫ grad φ dV Soit A un vecteur, alors ∫∫∂ A ⋅ n dS = ∫∫∫ Div(A) dV - 17 - Golay - Bonelli
  • 18.
    MMC Soit T untenseur, alors ∫∫∂ T ⋅ n dS = ∫∫∫ Div(T ) dV Soit ∂ un domaine plan de normale n , de frontière Γ . Soit U un vecteur défini sur ce domaine. Si τ est le vecteur unitaire tangent à Γ , alors ∫∫∂ rot(U ) ⋅ n dS = ∫ΓU ⋅ τ dl Tous ces résultats sont issus du théorème de la divergence ∫∫∂ t jkl nl dS = ∫∫∫ t jkl ,l dV 4 Formules essentielles en Mécanique des Milieux Continus 4.1 Coordonnées cartésiennes orthonormées OM = xex + yey + zez * Soit v = vxex + vyey + vzez un vecteur, alors  ∂v ∂vx ∂vx   x  ∂x ∂y ∂z   ∂vi  ∂v ∂vy ∂vy  ∇(v ) = ∇v = ei ⊗ e j = vi, j ei ⊗ e j =   y ∂x j  ∂x ∂y ∂z   ∂v ∂vz ∂vz   z  ∂x ∂y ∂z    et ∂vy divv = ∂vi ∂x i ( ) = vi,i = Tr grad(v) = ∇v : I = ∂vx ∂x + ∂y + ∂vz ∂z ( ) ∆v = div ∇(v ) = ∂2vi ∂x j ∂x j ei = vi, jj ei = ∆vxex + ∆vyey + ∆vzez * Soit f une fonction scalaire, alors  ∂f     ∂x   ∂f  ∂f grad ( f ) = ∇f = ei = f,i ei =  ∂y    ∂x i  ∂f     ∂z        et ( ∆f = div grad (f ) = ) ∂2 f ∂x j ∂x j = f, jj = ∂2 f ∂2 f ∂2 f + 2 + 2 ∂x 2 ∂y ∂z    T  xx  Txy Txz    * Soit T = Tij ei ⊗ e j = T   yx  Tyy Tyz  un tenseur symétrique du deuxième ordre, alors:   T  Tzy Tzz   zx   Golay - Bonelli - 18 -
  • 19.
    Notations tensorielles  ∂T  ∂Txy ∂Txz    xx     + +   ∂x  ∂y ∂z  ∂Tij  ∂T  yx ∂Tyy ∂Tyz   div(T ) = ei = Tij , j  ei =  + +   ∂x j  ∂x  ∂y ∂z    ∂T   zx ∂Tzy ∂Tzz     ∂x + ∂y + ∂z         et  ∆T ∆Txy ∆Txz  ∂ 2Tij  xx ∆T = ei ⊗ e j = Tij ,kk ei ⊗ e j = ∆Tyx ∆Tyy ∆Tyz  ∂x k ∂x k  ∆T  ∆Tzy ∆Tzz  zx  4.2 Coordonnées cylindriques ∂OM 1 ∂OM ∂OM OM = rer + zez et = er , = eθ , = ez ∂r r ∂θ ∂z d(OM ) = erdr + rd θeθ + ez dz ∂er ∂eθ ∂ez =0 , =0 , =0 ∂r ∂r ∂r ∂er ∂eθ ∂ez = eθ , = −er , =0 ∂θ ∂θ ∂θ ∂er ∂eθ ∂ez =0 , =0 , =0 ∂z ∂z ∂z * Soit v = vrer + vθeθ + vzez un vecteur, alors  ∂v     r 1  ∂vr − v  ∂vr       ∂r r  ∂θ   θ  ∂z      ∂v  ∂v   ∂v 1 θ +v   grad (v ) = ∇v =  θ   r θ   ∂r r  ∂θ   ∂z       ∂v ∂vz   z 1 ∂v z   ∂r r ∂θ ∂z    et ( ) div v = Tr ∇(v ) = ∇v : I = vr r + ∂vr ∂r + 1 ∂vθ r ∂θ ∂v + z ∂z  2 ∂vθ vr    ( )   ∆v = div ∇v = ∆vr − 2   r ∂θ     2 ∂v v   − 2 er + ∆vθ + 2 r − θ eθ + ∆vzez r     2 r ∂θ r   * Soit f une fonction scalaire, alors ∂f 1 ∂f ∂f grad( f ) = ∇f = er + eθ + e ∂r r ∂θ ∂z z et ∂2 f 1 ∂f 1 ∂2 f ∂2 f ∆f = div (∇f ) = + + 2 + 2 ∂r 2 r ∂r r ∂θ 2 ∂z - 19 - Golay - Bonelli
  • 20.
    MMC    T  rr  Tr θ Trz    * Soit T = T    θr Tθθ Tθz  un tenseur symétrique du deuxième ordre, alors:    T Tz θ Tzz   zr    ∂T  rr 1 ∂Tr θ ∂Trz Trr − Tθθ     + + +    ∂r  r ∂θ ∂z r    ∂T  2Tr θ    1 ∂Tθθ ∂Tθz  div(T ) =  θr + + +   ∂r  r ∂θ ∂z r    ∂T  1 ∂Tz θ ∂Tzz Tzr     zr + + +     ∂r r ∂θ ∂z r     4.3 Coordonnées sphériques ∂OM 1 ∂OM 1 ∂OM OM = rer et = er , = eθ , = eφ ∂r r ∂θ rsin θ ∂φ d(OM ) = erdr + rd θeθ + rsin θ d φ eφ ∂ er ∂eθ ∂ eφ =0 , =0 , =0 ∂r ∂r ∂r ∂er ∂eθ ∂ eφ = eθ , = −er , =0 ∂θ ∂θ ∂θ ∂er ∂eθ ∂eφ = sin θeφ , = cos θeφ , = sin θer − cos θeθ ∂φ ∂φ ∂φ Soit v = vrer + vθeθ + vφeφ un vecteur, alors           ∂vr 1  ∂vr        1 1 ∂vr               − vθ         − vφ          ∂r r ∂θ         sin θ ∂φ  r                      ∂v θ 1  ∂vθ        1  1 ∂v θ         grad (v ) = ∇v =       + vr         − cotg θvφ           ∂r r  ∂θ         r  sin θ ∂φ                  1 ∂vφ 1  1 ∂v φ       ∂vφ             + cotg θvθ + v    r    ∂r r ∂θ r  sin θ ∂φ            et ∂vr vr 1 ∂vθ 1 ∂vφ v divv = ∇v : I = +2 + + cot g θ θ ∂r r r ∂θ r sin θ ∂φ r      ∆v − 2 v + 1 ∂(sin θvθ ) 1 ∂vφ    r   r +     r2    sin θ ∂θ sin θ ∂φ           ∆v + 2  ∂vr − vθ − cos θ ∂vφ   ( ) ∆v = div ∇(v ) =    θ   r 2  ∂θ   2 sin2 θ sin2 θ ∂φ              2  r  ∂v ∂vθ  vφ     ∆vφ +     + cotg θ −    r 2 sin θ  ∂φ    ∂φ 2 sin θ        Golay - Bonelli - 20 -
  • 21.
    Notations tensorielles * Soitf une fonction scalaire, alors   ∂f         ∂r   1 ∂f     grad (f ) =      r ∂θ    1 ∂f       r sin θ ∂φ         et ( ∆f = div grad( f ) = ) ∂2 f ∂r 2 + 2 ∂2 f 1 + 2 cotg θ r ∂θ 2 r ∂f 1 + 2 2 ∂2 f ∂θ r sin θ ∂φ2    T rr  Tr θ Tr φ    * Soit T = T  θr Tθθ Tθφ  un tenseur symétrique du deuxième ordre, alors:     T  φr Tφθ Tφφ          ∂Trr ∂Tr θ ∂Tr φ   ( )        +1 + 1 + 1 2Trr − Tθθ − Tφφ + Tr θ cot g θ          ∂r r ∂θ r sin θ ∂φ r         ∂Tθr ∂Tθθ ∂Tθφ   ( )   +1 + 1 + 1 (Tθθ − Tφφ )cotg θ + 3Tr θ   div(T ) =           ∂r r ∂θ r sin θ ∂φ r           ∂Tφr ∂Tφθ ∂Tφφ           ∂r +1 r ∂θ + 1 r sin θ ∂φ + 1 2Tθφcotg θ + 3Tr φ r ( )               4.4 Comment retrouver les formules Nous nous plaçons par exemple en coordonnées cylindriques. On note v = vrer + vθeθ + vzez = viei avec i = r , θ, z et , i = ∂ , 1 ∂ , ∂ ∂r r ∂θ ∂z Donc, avec cette convention eθ er er ,θ = et eθ,θ = − r r Chercher le gradient d’un tenseur consiste à augmenter l’ordre de ce tenseur, soit ∇(∗∗) = (∗∗), j ⊗ e j Si on applique cette remarque à un vecteur, on obtient: ∇(v ) = (viei ), j ⊗ e j En n’oubliant pas de dériver les vecteurs de base, car nous sommes dans un système de coordonnées cylindrique, ∇v = vi, j ei ⊗ e j + vi ei, j ⊗ e j = vi, j ei ⊗ e j + vi ei,θ ⊗ eθ = vi, j ei ⊗ e j + vr er ,θ ⊗ eθ + vθ eθ,θ ⊗ eθ vr vθ = vi, j ei ⊗ e j + eθ ⊗ eθ − er ⊗ eθ r r Pour obtenir l’opérateur divergence, il suffit de contracter doublement avec le tenseur unité d’ordre 2, div(∗∗) = ∇(∗∗) : 1 soit dans le cas d’un vecteur: - 21 - Golay - Bonelli
  • 22.
    MMC vr vr ∂vr 1 ∂vθ ∂v div(v ) = ∇(v ) : 1 = vi,i + = + + + z r r ∂r r ∂θ ∂z et donc l’opérateur Laplacien pour un scalaire ϕ,r ∂ 2ϕ 1 ∂ϕ 1 ∂ 2ϕ ∂ 2ϕ ∆ϕ = div (∇ϕ) = ϕ,ii + = + + 2 + 2 r ∂r 2 r ∂r r ∂θ 2 ∂z Appliquons maintenant cette méthodologie à un tenseur d’ordre 2. ∇(T ) = (T e ij i ⊗ ej ) ,k ⊗ ek = Tij ,k ei ⊗ e j ⊗ ek + Tij ei,k ⊗ e j ⊗ ek + Tij ei ⊗ e j ,k ⊗ ek = Tij ,k ei ⊗ e j ⊗ ek + Tij ei,θ ⊗ e j ⊗ eθ + Tij ei ⊗ e j ,θ ⊗ eθ Trj Tθ j = Tij ,k ei ⊗ e j ⊗ ek + eθ ⊗ e j ⊗ eθ − e ⊗ e j ⊗ eθ r r r T T + ir ei ⊗ eθ ⊗ eθ − iθ ei ⊗ er ⊗ eθ r r Pour obtenir la trace de ce tenseur d’ordre 3 on contracte les deux derniers indices:   Tr θ Tθθ Tir   div T  = ∇(T ) : 1 = Tij , j ei + eθ − e er +     r r r i  ∂T 1 ∂Tr θ ∂Trz Tθθ Trr   =  rr   ∂r + + − + e   r ∂θ ∂z r   r  r   ∂T 1 ∂Tθθ ∂Tθz Tr θ Tθr   +  θr   + + + + e  θ  ∂r r ∂θ ∂z  r   r   ∂T 1 ∂Tz θ ∂Tzz Tzr   +  zr   + + + e   ∂r  r ∂θ ∂z r  z   On peut donc maintenant retrouver l’opérateur Laplacien d’un vecteur : ∆v = div ∇v( ) vθ vr vr ,θ v θ, θ vr ,θ − v θ, θ + = vi, jjei + eθ − r e + vi,r e er + r e − r r r r r r i θ   2 ∂v θ vr   2 ∂vr v    = ∆vr − 2  − 2 er + ∆vθ + 2  − θ  eθ + ∆vzez      r ∂θ r    r ∂θ r2    Golay - Bonelli - 22 -
  • 23.
    Notations tensorielles 5 A retenir Convention de sommation : V = Viei Produits tensoriels :    uv  1 1  u1v2 u1v3    u ⊗ v = ui v jei ⊗ e j = u v    2 1 u2v2 u2v3    uv  u3v2 u3v3   3 1   Symboles de permutation : +1  si i, j , k est une permutation paire de 1, 2, 3   ( εijk = ei , e j , ek ) = −1   si i, j , k est une permutation impaire de 1, 2, 3 0  si deux indices sont répétés   Produit vectoriel : c = a ∧ b = εijk a jbk ei Quelques opérateurs : Div v = vi,i , rot v = ∇ ∧ v = εijk vk , j ei , ∇ v = vi, j ei ⊗ e j , Div T = Tij , j ei En systèmes de coordonnées cylindrique ou sphérique, mieux vaut utiliser un formulaire ! - 23 - Golay - Bonelli
  • 24.
  • 25.
    Cinématique CINEMATIQUE 1 Le mouvement et ses représentations 1.1 Configuration L’espace physique est rapporté à un repère orthonormé direct (O, e1 , e2 , e 3 ) . L’ensemble des particules ou points matériels constituant le milieu continu étudié, occupe à chaque instant t, un ensemble de positions dans l’espace: c’est la configuration du système à l’instant t, noté (t ) (d’intérieur (t ) et de frontière ∂ (t ) ). On introduit aussi la notion de configuration de référence: c’est la configuration particulière du système à un instant t 0 fixé. Souvent on prendra 0 = (0) , et on parlera alors de configuration initiale. Toute particule M 0 de 0 est repérée par son vecteur position X (t ) dans la configuration de référence. Toute particule M de (t ) est repérée par son vecteur position x (t ) dans la configuration actuelle (à l’instant t). ∂ 0 ( ) Φ X, t ∂ (t ) e3 0 e2 (t ) M x e1 M0 X ( ) u X,t Figure 1 : Configurations de référence et actuelle La position de chaque particule M sera donc déterminée si on connaît sa position dans la configuration de référence et une fonction Φ telle que: ( ) x (t ) = Φ X , t (2.1) Φ définit le mouvement par rapport à (O, e1 , e2 , e 3 ) . On devra donc déterminer trois fonctions scalaires, telles que:  x = Φ (X , X , X , t )   1  1 1 2 3 x = Φ (X , X , X , t )  2  2 1 2 3 x = Φ (X , X , X , t ) (2.2)  3   3 1 2 3 Dire que le milieu est continu, c’est dire que Φ est une fonction continue et biunivoque de X . On supposera que Φ est différentiable. Le déplacement par rapport à la configuration 0 , à l’instant t, de la particule M 0 est le vecteur u (X , t ) = x (X , t ) − X (2.3) - 25 - Golay - Bonelli
  • 26.
    MMC 1.2 Variables deLagrange et variables d’Euler Une grandeur attachée à une particule (masse volumique, vitesse,...) peut être définie, - Soit en fonction de X et t : variables de Lagrange - Soit en fonction de x et t : variables d’Euler Le vecteur vitesse d’une particule M est défini par dOM ∂Φ(X , t ) V (X , t ) = = dt ∂t (2.4) Le vecteur accélération d’une particule M est défini par dV (X , t ) ∂2Φ(X , t ) Γ(X , t ) = = dt ∂t 2 (2.5) 1.2.1 Trajectoire On appelle trajectoire d’une particule, la courbe géométrique lieu des positions occupées par cette particule au ( ) cours du temps. x (t ) = Φ X , t est une représentation paramétrée en temps de la trajectoire. Par définition de la vitesse, dOM dx dx dx V (x , t ) = = 1 e1 + 2 e2 + 3 e3 dt dt dt dt les trajectoires peuvent être obtenues par la résolution des trois équations dx 1 dx 2 dx 3 = = = dt V1 (x 1, x 2 , x 3 , t ) V2 (x 1, x 2 , x 3 , t ) V3 (x 1, x 2 , x 3 , t ) (2.6) 1.2.2 Lignes de courant A un instant donné, on appelle lignes de courant du mouvement, les lignes qui sont en tout point tangentes au vecteur vitesse de la particule située en ce point. Soit pour t fixé, deux équations: dx 1 dx 2 dx 3 = = V1 (x 1, x 2 , x 3 , t ) V2 (x 1, x 2 , x 3 , t ) V3 (x 1, x 2 , x 3 , t ) (2.7) Remarque: Pour un mouvement stationnaire (ou permanent) V (x , t ) = V (x ) . Les lignes de courant et les trajectoires sont confondues. 1.3 Dérivées particulaires 1.3.1 Définition Lorsque l’on suit une particule dans son mouvement, la grandeur A attachée à la particule ne dépend que de t. Par définition, on appelle dérivée particulaire de A à l’instant t , la dérivée de A par rapport à la seule variable t . En variables de Lagrange: A = A(X , t ) dA ∂A (X , t ) = (X , t ) dt ∂t (2.8) En variables d’Euler: A = A(x , t ) Golay - Bonelli - 26 -
  • 27.
    Cinématique ∂A ∂A dA(x , t ) = (x , t )dt + (x , t )dx j ∂t ∂x j dA ∂A ∂A dx j (x , t ) = (x , t ) + (x , t ) dt ∂t ∂x j dt dA ∂A ∂A (x , t ) = (x , t ) + (x , t ) j V dt ∂t ∂x j ou encore dA ∂A dt = ∂t + V ⋅∇ A ( ) (2.9) 1.3.2 Application à l’accélération Γ(x , t ) = dV (x , t ) ∂V dt = ∂t + V ⋅∇ V ( ) (2.10) que l’on peut également écrire ∂V 1 2 Γ(x , t ) = + ∇V + rotV ∧V ∂t 2 2 Déformation d’un milieux continu 2.1 Notion de déformation On dira qu’un milieu continu en mouvement subit des déformations si les distances relatives des points matériels varient au cours du temps. En différenciant (2.1), on obtient: ∂Φi dx (t ) = ∇ Φ dX dx iei = dX jei ∂X j On note F l’application linéaire qui fait passer de l’espace vectoriel dans lequel peut varier dX dans l’espace vectoriel où varie a priori dx . Cette application linéaire, appelée tenseur gradient ou application linéaire tangente, permet donc le passage de la configuration 0 à la configuration (t ) . ∂ 0 F ∂ (t ) 0 e3 e2 dX (t ) dx M e1 M0 Figure 2 : Application linéaire tangente En notation indicielle,  ∂x ∂x 1 ∂x 1   1  ∂X ∂X 2 ∂X 3   1 ∂Φi ∂x i  ∂x ∂x 2 ∂x 2  Fij = = soit F =  2  ∂X j ∂X j  ∂X 1 ∂X 2 ∂X 3  (2.11)  ∂x ∂x 3 ∂x 3   3    ∂X1 ∂X 2 ∂X 3  - 27 - Golay - Bonelli
  • 28.
    MMC 2.2 Tenseur desdéformations 2.2.1 Définition Le tenseur gradient décrit la transformation locale au voisinage d’une particule donnée. Afin de rendre compte des déformations, c’est à dire des changements de forme autour de cette particule, on s’intéresse à l’évolution du produit scalaire de deux vecteurs matériels pris respectivement dans les deux configurations 0 et (t ) . Considérons trois particules voisines X , X + dX , X + dX ′ . Après déformations, elles occupent dans (t ) les positions respectives x , x + dx , x + dx ′ . ∂ 0 ∂ (t ) 0 e3 dX ′ dx ′ (t ) e2 dX M dx e1 M0 Figure 3 : Notion de déformation           ∂x   ∂ ′   dx ⋅ dx ′ = F (X , t )dX  ⋅ F (X , t )dX ′ =  k dXi  ⋅  x k dX j′                        ∂X   i    ∂   X ′j         d’où sa variation autour de la transformation       ∂x k ∂x k′       dx ⋅ dx ′ − dX ⋅ dX ′ =     − δij  dX idX j′ = Fki Fkj − δij  dX idX j′             ∂X ∂X ′           i j  soit dx ⋅ dx ′ − dX ⋅ dX ′ = 2 dX ε dX ′ en posant 1 T  F (X , t ) F (X , t ) − 1  ε=    2     (2.12) L’application linéaire ε est appelée tenseur des déformations. Cette application est symétrique mais dépend bien sûr de la base (O, e1 , e2 , e 3 ) initialement choisie. 2.2.2 Remarques * S’il n’y a pas de déformations, alors ε = 0 (et inversement). T * C = F F est appelé le tenseur des dilatations. Ce tenseur est symétrique. On peut démontrer: Théorème 1: Les valeurs propres de C sont strictement positives.   Théorème 2: Det F  > 0   ∀t     Théorème 3: ε est symétrique et possède les mêmes vecteurs propres que C . * Variation de longueur Soit dX ′ = dX = dl 0 ex et dx = dl , alors Golay - Bonelli - 28 -
  • 29.
    Cinématique dx ⋅ dx ′ − dX ⋅ dX ′ = dl 2 − dl0 = 2 dX ε dX ′ = 2dl0 εxx 2 2 ou encore, si les déformations sont petites dl dl − dl0 = 1 + 2εxx ≈ 1 + εxx → εxx ≈ dl0 dl0 εxx représente au premier ordre la variation de longueur dans la direction x . * Variation d’angle Soit dX = dl 0 ex , dX = dl 0 ey , alors dx ⋅ dx − dX ⋅ dX = cos θdldl ′ = 2 dX ε dX ′ = 2dl0 εxy 2 ou encore, 2εxy = cos θ 1 + 2εxx 1 + 2εyy donc εxy représente au premier ordre la variation d’angle entre les directions x et y . 2.2.3 Autre écriture D’après (2.3) et (2.1) ∂x ∂u F (X , t ) = (X , t ) = 1 + (X , t ) ∂X ∂X soit  T T   1  ∂u  ∂u  ε=   X (X , t ) + ∂u (X , t ) + ∂u (X , t ) (X , t )  2 ∂ ∂X   (2.13)   ∂X ∂X   ou encore en notation indicielle 1  ∂u i   ∂u j ∂ uk ∂ uk    εij =  + +   2  ∂X j   ∂X i  ∂X i ∂X j  2.2.4 Cas des petites perturbations ∂u Cette hypothèse correspond au cas où u(X , t ) et (X , t ) sont petits. ∂X En reprenant (20) et en ne retenant que les termes d’ordre 1, on obtient:  T   1  ∂u  ∂u (X , t )  =  (X , t ) +  ε HPP 2 X ∂  ∂X    (2.14)   ou encore en notation indicielle 1  ∂u i    ∂u j   εijHPP =  +  2  ∂X j   ∂X i    - 29 - Golay - Bonelli
  • 30.
    MMC 2.3 Conditions decompatibilité A tout déplacement u on fait correspondre une déformation ε . On peut aussi se poser le problème inverse. Ce problème est dit ’problème de compatibilité géométrique d’un champ de déformation’, ou encore ’problème d’intégrabilité d’un champ de déformation’. Les conditions de compatibilité peuvent être établies dans le cas général, cependant nous ne les établirons que dans le cas des petites perturbations. Décomposons maintenant le gradient des déplacements en une partie symétrique ε et une partie antisymétrique ω . ∂u (X , t ) = ε(X , t ) + ω(X , t ) ∂X  T     1  ∂u   1  ∂ui ∂u j  ω=  (X , t ) − ∂u (X , t )  ωij =  −    2 X ∂  ∂X     2  ∂X j   ∂X i     On a ωij ,k = εki, j − εjk ,i soit en dérivant une nouvelle fois ωij ,kl = ωij ,lk i, j, k, l dans { 1, 2, 3} ∀ i, j, k, l εij ,kl + εkl ,ij − εik , jl − εjl ,ik = 0 (2.15) ou encore  2ε  = ε33,22 + ε22,33 + permutation circulaire Six équations   23,23 ε13,23 + ε32,31 − ε12,33 − ε33,21  + permutation circulaire   Réciproquement, si ε vérifie (2.15), alors les formes différentielles   d ωij =  εki, j − εjk ,i  dx k          sont exactes; elles permettent donc de construire le champ ω de tenseur antisymétrique. On vérifie ensuite que les formes différentielles   dui =  ωik + εik  dx k         sont exactes, d’où la possibilité de construire un champ de déplacement u (X , t ) défini dans 0 . 3 Transport, dérivées particulaires 3.1 Transport d’un volume Soit d 0 un élément de volume de la configuration de référence, défini par trois vecteurs dX1 , dX 2 , dX 3 . Par la transformation, ces trois vecteurs se transportent en trois vecteurs dx 1 , dx 2 , dx 3 qui définissent dans la configuration actuelle un volume d . Golay - Bonelli - 30 -
  • 31.
    Cinématique d dx 3 dX 3 d 0 dx 2 dX 2 dx1 dX1 Figure 4 : Transport d’un élément de volume Le volume d est représenté par le produit mixte des vecteurs dx 1 , dx 2 , dx 3 : d = (dx 1 ∧ dx 2 ) ⋅ dx 3 donc d = εijk dx 1 j dx 2k dx 3i Or, d’après (2.11) d = εijk Fjp Fkq Fir dX1p dX2q dX 3r et, d’après (1.9) ( d = εpqr det(F ) dX1p dX2q dX 3r = det(F ) dX1 ∧ dX 2 ⋅ dX 3 ) donc en définitive d = Det(F ) d 0 (2.16) 3.2 Transport d’une surface orientée Soit dS un élément de surface de la configuration de référence de normale N . Par la transformation, cette surface se transporte en une surface ds de normale n dans la configuration actuelle. En considérant un vecteur V dans la configuration de référence qui se transporte en un vecteur v dans la configuration actuelle, on peut définir l’élément de volume (dS N ) ⋅V qui se transporte en un élément de volume (ds n ) ⋅ v . N n dS ds Figure 5 : Transport d’un élément de surface D’après (2.16) ds n ⋅ v = det(F ) dS N ⋅V et comme avec (2.11) v =FV    T     ds n ⋅ FV  = ds   F n  ⋅V = det F dS N ⋅V          - 31 - Golay - Bonelli
  • 32.
    MMC on obtient finalement −T ds n = det(F )F dS N (2.17) 3.3 Dérivée particulaire d’une intégrale de volume Soit K (t ) = ∫∫∫ (t ) k (x , t ) d , une intégrale de volume sur le domaine (t ) dans la configuration de référence. Pour en déterminer la dérivée temporelle, nous devons au préalable exprimer K (t ) sur la configuration de référence pour "passer" la dérivation sous l’intégrale. En effectuant le changement de variable (2.1), et en utilisant (2.16) d = Det(F ) d 0 =J d 0 on obtient K (t ) = ∫∫∫ k (ϕ(X , t ), t ) J d 0 0 puis dK dk  dJ   = ∫∫∫  J + k   dt d dt 0   dt   0 A ce stade nous devons expliciter dJ / dt . En utilisant les notations indicielles, et en particulier les symboles de permutation, on a: 1 J = det F = ε ε F F F 6 ijk pqr ip jq kr soit dJ 1 ∂Fip = εijk εpqr F F dt 2 ∂t jq kr or ∂Fip ∂2ϕi (X , t )  ∂ϕ  ∂  i  = ∂ V (X , t ) = ∂ v (x , t ) = ∂vi ∂xl = ∂vi F ∂t = ∂t ∂X p = ∂X p      ∂t  ∂X    ( i ) ( ∂X p i ) ∂x ∂X ∂x lp p l p l donc dJ 1 ∂v = εijk εpqr i Flp Fjq Fkr dt 2 ∂xl mais εpqr Flp Fjq Fkr = εljk det F soit dJ 1 ∂v ∂v ∂v = εijk εljk i det F = δil i det F = i J dt 2 ∂xl ∂xl ∂x i dJ = J div v dt (2.18) En reportant dans l’expression de dK / dt   dK = ∫∫∫ dk J + k J divv  d    dt    0 dt 0   Golay - Bonelli - 32 -
  • 33.
    Cinématique puis en exprimantl’intégrale sur la configuration actuelle, on obtient finalement dk   + k divv  d dK  = ∫∫∫   dt (t )  dt     (2.19) En utilisant les égalités suivantes, dk ∂k = + v ⋅ ∇k dt ∂t div (kv ) = v ⋅ ∇ k + kdivv on peut écrire (2.19) sous la forme dK  ∂k   = ∫∫∫   + div (kv ) d  dt (t )   ∂t    ou encore, en utilisant le théorème de la divergence dK ∂k = ∫∫∫ d + ∫∫∂ kv ⋅ n d ∂ dt (t ) ∂t (t ) Application fondamentale: conservation de la masse La masse d’un système matériel qu’on suit dans son mouvement reste constante. M = ∫∫∫ ρ(x, t ) d dM (t ) =0 et dt où ρ est la masse volumique. On a alors: dρ ∂ρ + ρ divv = 0 + div (ρv ) = 0 dt ou ∂t (2.20) 3.4 Dérivée particulaire d’une intégrale de surface Soit K (t ) = ∫∫Σ(t ) k (x , t ) ⋅ n d Σ , une intégrale de volume sur le domaine Σ(t ) dans la configuration de référence. Pour en déterminer la dérivée temporelle, nous devons au préalable exprimer K (t ) sur la configuration de référence pour "passer" la dérivation sous l’intégrale. En effectuant le changement de variable (2.1), et en utilisant (2.17) −T d Σ n = det(F )F d Σ0N on obtient −T ( ) K (t ) = ∫∫Σ k ϕ(X , t ), t ⋅ J F d Σ0 N 0 puis   −T   J F  N  d Σ −T dK  dk d  = ∫∫Σ  ⋅ J F N + k ⋅      0 0   dt  dt  dt     −T on doit donc calculer dF / dt −1 −1 −1 −1 −1 dF dF dF dF −1 F F =I ⇒ F +F =0 ⇒ = −F F dt dt dt dt - 33 - Golay - Bonelli
  • 34.
    MMC dF −1 ∂v i ∂ X k ∂ vi F = ei ⊗ e j = e ⊗ e j = ∇v dt ∂X k ∂x j ∂x j i donc −T  −1  T −T  = −F ∇v  = −∇T v F dF    dt      et  −T −T −T   dK  dk = ∫∫Σ  ⋅ J F N + k ⋅ J divv F N − k ⋅ J ∇T v F N d Σ 0    0   dt  dt       −T dK  dk    = ∫∫Σ  + divv k − k ⋅ ∇T v J F Nd Σ0 0   dt  dt    puis en exprimant l’intégrale sur la configuration actuelle, on obtient finalement    dK  dk  = ∫∫Σ(t )  + divv k − ∇v   k  ⋅ nd Σ dt  dt      (2.21) en utilisant la dérivée particulaire, (2.21) s’écrit    dK ∂k   = ∫∫Σ(t )   + divv k + ∇ k v − ∇v k  ⋅ nd Σ dt  ∂t        dK dt ∂k = ∫∫Σ(t )    ∂t   ( )  + rot k ∧ v + v div k  ⋅ nd Σ      car ( ) rot k ∧ v = k divv − vdiv k + ∇ k v − ∇ v k Golay - Bonelli - 34 -
  • 35.
    Cinématique 4 A retenir On appelle Variables de Lagrange le temps et la position initiale : X et t On appelle Variables d’Euler le temps et la position courante : x et t Dérivée particulaire dA ∂A dt = ∂t + V ⋅∇ A ( ) Application linéaire tangente ∂x i F= ei ⊗ e j ∂X j Tenseur des déformations 1 T  F (X , t ) F (X , t ) − 1  ε=    2     Tenseur des déformations sous l’hypothèse des petites perturbations ε= 2 ( 1 T ∇ u + ∇u ) Transport d’un volume d = Det(F ) d 0 Transport d’une surface −T ds n = det(F )F dS N Dérivée d’une intégrale de volume   dK  ∂k + div kv  d = ∫∫∫    ( )   ∂t (t ) dt  Dérivée d’une intégrale de surface    dK  dk  = ∫∫Σ(t )  + divv k − ∇v   k  ⋅ nd Σ dt  dt      - 35 - Golay - Bonelli
  • 36.
  • 37.
    Equilibre EFFORTS DANS LESMILIEUX CONTINUS 1 Définitions 1.1 Forces Elles résument les effets mécaniques, autres que cinématiques, exercés sur le milieu continu considéré par le reste du domaine physique. Leur schématisation à chaque instant repose sur la définition d’un champ de vecteur Φ(x , t ) et d’une mesure positive ω , définis sur la configuration actuelle (t ) . Φ(x , t ) est une densité de force pour la mesure ω . * Si ω est une mesure de volume, alors Φ(x , t ) est une force volumique (densité volumique de force) définie dans (t) de la configuration actuelle, par la fonction f : x ∈ (t ) → f (x , t ) ∈ ℝ 3 * Si ω est une mesure de surface, alors Φ(x , t ) est une force surfacique (densité surfacique de force) définie sur ∂ F (t ) de la configuration actuelle, par la fonction F: x ∈∂ F (t ) → F (x , t ) ∈ ℝ 3 * ... etc ... Remarques: * Les forces sont définies sur la configuration actuelle. * A un instant donné et en un point donné x de ∂ (t ) , on ne peut imposer à la fois le déplacement et la force!. Mais l’un des deux doit être imposé. On note ∂ F (t ) la frontière où la force est imposée, et ∂ U (t ) la frontière où le déplacement est imposé. Dans le cas des appuis mobiles, les composantes non imposées cinématiquement le sont pour les forces * Le monde extérieur au milieu considéré doit, pour imposer le déplacement U (t ) au bord ∂ U (t ) , exercer des forces que nous noterons R(x , t ) . Comme elles sont à priori inconnues, nous les appellerons réactions pour éviter de les confondre avec les autres forces qui, elles, sont données. 1.2 Vecteur-contrainte et tenseur des contraintes 1.2.1 Contrainte de Cauchy dF C Soit un corps (C) en équilibre par application d’un système d’actions mécaniques (2) extérieures. Imaginons qu’une surface Σ divise (C) en deux parties (1) et (2). La Σ n partie(1) est en équilibre sous les actions mécaniques extérieures qui lui sont M dΣ appliquées et les actions mécaniques exercées par la partie (2). Nous admettrons que (1) sur chaque élément de surface dΣ de Σ , (2) exerce sur (1) une force dF (x , t, n )1/2 de densité superficielle T (x , t , n ) . dF (x , t, n )1/2 = T (x , t, n ) d Σ (3.1) - 37 - Golay - Bonelli
  • 38.
    MMC T (x ,t , n ) est le vecteur contrainte au point x , relativement à la facette dΣ définie par son vecteur normal n . La densité surfacique de forces exercées en x dépend de x, t et aussi de l’orientation de la surface Σ au voisinage de x. Elle est linéairement dépendante de n . On introduit alors l’application σ telle que: T (x , t, n ) = σ(x , t ) n (3.2) L’application σ(x , t ) s’appelle le tenseur des contraintes de Cauchy en x à l’instant t ; il caractérise, dans la configuration actuelle, les efforts intérieurs de cohésion exercés sur une partie du solide à travers l’élément de surface n d Σ 1.2.2 Autre écriture du tenseur des contraintes En utilisant (2.17), (3.1) devient: ( ) dF x (X , t ), t, n(N , t ) = Π N (X ) dS où Π est le tenseur Π(X , t ) : N ∈ R 3 → Π(X , t, N ) = Π(X , t )N ∈ ℝ3 défini par −T Π(X , t ) = (det F ) σ F (3.3) Cette application linéaire Π(X , t ) , définie pour X ∈ 0 , s’appelle le premier tenseur des contraintes de Piola- Kirchoff en X à l’instant t; la composante Πij est la i ème composante du vecteur contrainte exercée sur la déformée d’une surface unité, normale à e j , de la configuration de référence. On prendra garde au fait que le tenseur Π n’est pas symétrique. Si maintenant on cherche le vecteur "force de cohésion" dans la configuration de référence ( ) ( ) −1 dF 0 X , t, N = F (X , t ) dF x (X , t ), t, n(N , t ) = S N (X ) dS où S est le tenseur défini par −1 S =F Π (3.4) Cette application linéaire S (X , t ) , définie pour X ∈ 0 , s’appelle le second tenseur des contraintes de Piola- Kirchoff en X à l’instant t. Attention, sa composante Sij n’est pas la i ème composante du vecteur contrainte exercée sur la déformée d’une surface unité, normale à e j , de la configuration de référence, mais seulement la i eme composante de son transporté dans la configuration de référence. Selon le jeu d’écriture adopté, on a donc trois descriptions des contraintes: −1 −1   T   T σ = det F  Π F = det F  F S F             (3.5) Golay - Bonelli - 38 -
  • 39.
    Equilibre 2 Equilibre 2.1 Le Principe des Puissances Virtuelles (Germain 1972) Pour schématiser les efforts mis en jeu, il est commode d’imaginer des mouvements fictifs (ou virtuels) et d’analyser le travail ou la puissance qui en résulte. Par exemple, pour évaluer les forces de gravité agissant sur un objet, on peut imaginer de le soulever (mouvement virtuel de bas en haut). Un milieu matériel étant isolé, on peut distinguer les actions extérieures qui agissent sur le milieu, des actions intérieures qui représentent les liaisons existant entre toutes les parties du milieu. Axiome d’objectivité La puissance virtuelle des efforts intérieurs associée à tout mouvement rigidifiant est nulle. Axiome d’équilibre Pour tout milieu matériel repéré dans un référentiel absolu, à chaque instant et pour tout mouvement virtuel, la puissance virtuelle des quantités d’accélération ∏a est égale à la somme des puissances virtuelles des efforts intérieurs ∏i et des efforts extérieurs ∏e . 2.2 Puissance virtuelle des efforts intérieurs F e3 e2 n Σ(t ) e1 O f (t ) Soit un milieu continu (t ) d’intérieur (t ) et de frontière ∂ (t). Isolons maintenant un domaine Σ(t ) de frontière ∂Σ (t) intérieur à (t), et soit n la normale en un point de ∂Σ(t ) . A un instant t fixé, un mouvement virtuel défini par une vitesse virtuelle δv est appliqué à Σ(t ) . Cette vitesse est supposée continue et continûment dérivable sur Σ(t ) . Pour déterminer la puissance virtuelle des efforts intérieurs nous ferons les hypothèses suivantes: * Πi admet une densité volumique p i : Πi = ∫∫∫Σ pi dx * Πi est en chaque point une forme linéaire des valeurs en ce point de dv et de ses dérivées premières: En décomposant le gradient des vitesses virtuelles en une partie symétrique δD et une partie antisymétrique δW , ∂δv = δD + δW ∂x  T    1   ∂δv − ∂δv  1  ∂δvi ∂δv j  δW =    δWij =  −    ∂x  2   ∂x    2   ∂x j  ∂x i     - 39 - Golay - Bonelli
  • 40.
    MMC  T     ∂δv  ∂δvi ∂δv j  δD = 1   ∂δv   1    ∂x +    δDij =   + ∂x i    2   ∂x   2  ∂x j   la densité volumique des efforts intérieurs devient: pi = Ai δVi + Bij δWji − σij δDji Le premier axiome du principe des puissances virtuelles impose que pour tout mouvement de solide rigide la puissance des efforts intérieurs soit nulle. D’où: - Soit un mouvement de translation: δv ≠ 0 , δW = 0 et δD = 0 alors Πi = ∫∫∫Σ pi dx = ∫∫∫Σ A ⋅ δv dx = 0 ∀Σ dans soit A ⋅ δv = 0 ∀ δv , ou encore A = 0 - Soit un mouvement de rotation: δv = 0 , δW ≠ 0 et δD = 0 alors Πi = ∫∫∫Σ pi dx = ∫∫∫Σ B : δW dx = 0 ∀Σ dans soit B : δW = 0 ∀ δW , ou encore B = 0 . Donc en définitive: Πi = − ∫∫∫Σ σ : δD dx (3.6) On peut montrer que le tenseur σ introduit ici correspond bien au tenseur des contraintes de Cauchy. 2.3 Puissance virtuelle des efforts extérieurs Les efforts extérieurs comprennent - des efforts exercés à distance par des systèmes extérieurs à , supposés définis par une densité volumique de forces f , - des efforts de cohésion schématisés par une densité surfacique de force T sur ∂Σ Πe = ∫∫∫Σ f ⋅ δv dx + ∫∫∂ΣT ⋅ δv dx (3.7) 2.4 Application du Principe des Puissances Virtuelles Si γ est l’accélération et ρ la masse volumique de chacun des points de ∑ , alors    d  ∂ρv   Πa = ∫∫∫Σ ρ v ⋅ δv dx = ∫∫∫Σ   + div(ρv ⊗ v ) ⋅ δv dx dt  ∂t          ∂v  ∂ρ  Πa = ∫∫∫Σ ρ +v  + ρ∇v ⋅ v + div(ρv )v  ⋅ δv dx  ∂t  ∂t     et en utilisant la conservation de la masse (2.20) et la définition de l'accélération (2.10) Πa = ∫∫∫Σ ρ γ ⋅ δv dx (3.8) Golay - Bonelli - 40 -
  • 41.
    Equilibre En application duPrincipe des Puissances Virtuelles on obtient: −∫∫∫Σ σ : δD dx + ∫∫∫Σ f ⋅ δv dx + ∫∫∂ΣT ⋅ δv dx = ∫∫∫Σ ρ γ ⋅ δv dx (3.9) Pour exploiter le fait que (3.9) est vérifié pour tout mouvement virtuel, nous allons faire apparaître δv dans chacun des termes. En appliquant le théorème de la divergence, le premier terme devient: ∂δv −∫∫∫Σ σ : δD dx = −∫∫∫Σ σ : dx = − ∫∫∂Σ σ ⋅ δv ⋅ n dx + ∫∫∫Σ divx σ ⋅ δv dx ∂x Soit:     ∫∫∂Σ T − σ ⋅ n  ⋅δv dx + ∫∫∫Σ  f + divx σ − ργ  ⋅ δv dx         ∀ δv     Ou encore    f + divx σ = ργ dans Σ    T = σ ⋅n  sur ∂Σ (3.10)    2.5 Equilibre En considérant les développements du paragraphe précédent et en se ramenant au domaine (t ) , nous pouvons donc écrire les équations d’équilibre d’un solide soumis à un champ de forces extérieures f dans (t ) , à un champ de forces extérieures F e sur ∂ F (t ) et à un déplacement imposé U i sur ∂ U (t ) . Dans la configuration actuelle: f (x , t ) + divx σ(x , t ) = 0 ∀ x ∈ (t ) (3.11)   F e (x , t ) ∀ x ∈∂ (t ) σ(x , t ) ⋅ n(x , t ) =   F R(x , t )  ∀x ∈∂ (t ) (3.12)   U Dans la configuration de référence: De même, si on note f 0 , R 0 et F 0 les densités volumiques et surfaciques de forces mesurées dans la configuration de référence: f 0(X , t ) + divX Π(X , t ) = 0 ∀x∈ 0 (3.13)  F 0 (x , t )  ∀ x ∈ x −1 (∂ (t ), t ) Π(X , t ) ⋅ N (X , t ) =   F  (x , t ) R 0 ∀ x ∈ ∂ 0U   (3.14) Cas des petites perturbations Reprenons (3.10), en l’exprimant en fonction de X ∂σij fi (x (X , t ), t ) + (x (X , t ), t ) = 0 ∀ x (X , t ) ∈ (t ) ∂x j ∂σij ∂Xk fi (x (X , t ), t ) + (X , t ) (X , t ) = 0 ∀X∈ ∂Xk ∂x j 0 - 41 - Golay - Bonelli
  • 42.
    MMC Or x (X, t ) = X + u(X , t ) soit ∂x (X , t ) = 1 + ∂u (X , t ) ∂X ∂X On peut donc écrire l’équation d’équilibre sous la forme −1 ∂σij    ∂u  fi (x (X , t ), t ) + (X , t ) 1 + (X , t ) = 0 ∀X∈ ∂X k  ∂X  0   kj Sous l’hypothèse des petites perturbations, on peut alors écrire: −1    ∂u  ∂u 1 + (X , t ) =1− (X , t )  ∂X  ∂X   soit ∂σij  ∂ uk  fi (x (X , t ), t ) + (X , t ) δjk − (X , t ) = 0 ∀X ∈ ∂X k  ∂X j  0 Enfin, en ne retenant que les termes d’ordre 0, et après avoir effectué un développement de fi au voisinage de X, on obtient: ∂σij fi (X , t ) + (X , t ) = 0 ∀X∈ ∂X j 0 soit f (X , t ) + divX σ(X , t ) = 0 ∀x∈ 0 (3.15) Le raisonnement qui a permis de remplacer f (x (X , t )) par f (X , t ) , permet aussi de remplacer F e (x (X , t )) par F e (X, t ) et R(x (X , t )) par R(X , t ) . Donc, comme condition sur la frontière on obtient:        F e (X , t ) ∀ X ∈∂ σ(X , t ) ⋅ N (X , t ) =    0F    R(X ,t ) ∀ X ∈∂ (3.16)   0U   2.6 Autre présentation: Principe fondamental de la dynamique (3.10) revient à écrire le Principe Fondamental de la dynamique. Dans un repère galiléen, pour tout système Σ , le torseur dynamique (dérivée par rapport au temps du torseur cinématique) est égal à la somme des torseurs des actions intérieures. Soit: d d ∫ v dm = ∫ v ρd Σ dt Σ dt Σ     dv ρ   =∫  d Σ + v ρdivv   Σ  dt          dv dρ = ∫ ρ  +v + v ρdivv d Σ   Σ  dt dt      d ρ     = ∫ ργ + v  + ρdivv d Σ  Σ  dt      donc avec la conservation de la masse Golay - Bonelli - 42 -
  • 43.
    Equilibre d ∫ v dm = ∫ ργd Σ dt Σ Σ = ∫ fd Σ + ∫ σnd ∂Σ Σ ∂Σ et le théorème de la divergence ∫ ργd Σ = ∫ fd Σ + ∫ div σd Σ Σ Σ Σ on retrouve le bilan de la quantité de mouvement div σ + f = ργ L’équation de bilan sur les moments du principe fondamental de la dynamique s’écrit: dv ∫∫∫Σ OM ∧ dm = ∫∫∂Σ OM ∧ σ ⋅ n dx + ∫∫∫Σ OM ∧ f dx (3.17) dt 3 Quelques propriétés du tenseur des contraintes Dans tous les développements à venir, nous nous placerons dans le cas des petites perturbations pour un solide en équilibre. En conséquence, nous omettrons les variables x et t. 3.1 Symétrie du tenseur des contraintes On sait que ( ) ∫∫∫ OM ∧ ργ − f dx = ∫∫∂ OM ∧ σn dx soit en notation indicielle ∫∫∫ εijk x j (ργk − fk ) e i dx = ∫∫∂ εijk x j σkl nl e i dx puis, par application du théorème de la divergence  ∂  ∫∫∫ εijk x j (ργk − fk ) − (εijk x j σkl ) e i dx = 0  ∂x l  ε x (ργ − f − σ ) − ε σ  dx = 0 ∫∫∫  ijk j k k kl ,l ijk kj  e i  et par application de l’équation du mouvement ∫∫∫ εijk σkjei dx = 0 ∀ (t ) c’est à dire εijk σkj = 0 ∀i ce qui implique ε123 σ23 + ε132 σ32 = 0 ε213 σ13 + ε231σ31 = 0 ε312 σ12 + ε321σ21 = 0 +σ23 − σ32 = 0 − σ13 + σ31 = 0 + σ12 − σ21 = 0 donc en définitive σpq = σqp Le tenseur des contraintes est symétrique - 43 - Golay - Bonelli
  • 44.
    MMC 3.2 Contrainte normaleet contrainte tangentielle T (n ) Considérons une facette de normale n . Tout naturellement, le vecteur contrainte σn T (n ) peut être décomposé en une composante normale σn et une composante tangentielle τ . τ n σn = T (n ) ⋅ n = n ⋅ σ ⋅ n (3.18) et     2 2 τ = σ ⋅ n  − n ⋅ σ ⋅ n              (3.19) On dira que σn est positive en traction et négative en compression. 3.3 Directions principales, contraintes principales La matrice représentant le tenseur des contraintes est symétrique, elle est donc diagonalisable. Les valeurs propres sont réelles et appelées contraintes principales (σI , σII , σIII ) . Les vecteurs propres, orthogonaux deux à deux, sont les directions principales (n I, n II , n III ) . On a donc: σI = T (nI ) ⋅ nI , σII = T (nII ) ⋅ nII , σIII = T (nIII ) ⋅ nIII 3.4 Invariants Le tenseur des contraintes possède trois invariants définis mathématiquement comme les coefficients de   l’équation caractéristique det σ − α 1 . C’est à dire les quantité scalaires:       ΣI = Tr (σ) (3.20) 1   ΣII = Tr (σ)2 − Tr (σ 2 ) 2   (3.21) ΣIII = Det(σ) (3.22) Exprimés en fonction des contraintes principales, on obtient ΣI = σI + σII + σIII ΣII = σI σII + σII σIII + σIII σI ΣIII = σI σII σIII 3.5 Cercles de Mohr Connaissant le tenseur des contraintes σ , on se propose de déterminer le domaine engendré par l’extrémité du vecteur contrainte quand n varie. Par commodité, nous nous plaçons dans une base orthonormée dirigée suivant les directions principales de σ . Soit Golay - Bonelli - 44 -
  • 45.
    Equilibre              n     1  σI    0 0  n σI     1                  n= n       2  , σ= 0    σII 0  et T = n σII      2                 n   3    0   0 σIII  n σIII    3               avec n1 + n2 + n 3 = 1 2 2 2 on trouve aisément σn = σI n1 + σII n2 + σIII n 3 2 2 2 et τ 2 + σn = σI2 n1 + σII n2 + σIII n 3 2 2 2 2 2 2 Dans l’hypothèse où les contraintes principales sont distinctes, on obtient alors après résolution du système: τ 2 + (σn − σII )(σn − σIII ) 2 n1 = (σI − σII )(σI − σIII ) τ 2 + (σn − σI )(σn − σIII ) 2 n2 = (σII − σI )(σII − σIII ) τ 2 + (σn − σI )(σn − σII ) n 2 = 3 (σIII − σI )(σIII − σII ) Si on ordonne les contraintes principales de telle sorte que σI ≥ σII ≥ σIII , alors τ 2 + (σn − σII )(σn − σIII ) ≥ 0 τ 2 + (σn − σI )(σn − σIII ) ≤ 0 τ 2 + (σn − σI )(σn − σII ) ≥ 0 ou encore     2 2  σII + σIII   σII − σIII   τ + σn − 2   ≥           2      2    (3.23)     2 2  σI + σIII   σI − σIII   τ + σn − 2   ≤           2      2    (3.24)     2 2  σI + σII   σI − σII   τ + σn − 2   ≥           2      2    (3.25) τ Dans le plan de Mohr, l’extrémité du vecteur contrainte, d’après (3.24), est donc intérieure au cercle centré sur Oσn d’abscisse (σI + σIII ) / 2 et de rayon T (σI − σIII ) / 2 . Par contre, d’après (3.23) (res. (3.25)), l’extrémité du vecteur σIII σI contrainte est extérieure au cercle centré sur Oσn d’abscisses (σII + σIII ) / 2 σII σn (resp.( (σI + σII ) / 2 ) et de rayon (σII − σIII ) / 2 (resp. (σI + σII ) / 2 ). - 45 - Golay - Bonelli
  • 46.
    MMC Description des Cerclesprincipaux: Nous allons étudier la description du grand Cercle de Mohr. Les facettes concernées III sont parallèles à la direction associée à la contrainte principale σII . n t On constitue avec les directions I,III,II un trièdre direct (O , eI , eIII , eII ) , la normale n θ de la facette évoluant dans le plan I III. I Et on définit l’angle θ = (I , n ) , et le vecteur t tel que (n, t , II ) soit direct. On a alors n = Cosθ eI + Sinθ eIII et T = σI Cosθ eI + σIII Sinθ eIII En utilisant les formules de changement de base de (O , e I , eIII , eII ) à (n, t , II ) , on a donc σI + σIII σI − σIII σn = + Cos 2θ 2 2 σI − σIII τ =− Sin 2θ 2 τ Lorsque la facette tourne autour de la direction de la contrainte principale σII d’un angle donné, l’extrémité du vecteur-contrainte σI + σIII tourne sur le cercle de Mohr d’un angle double dans le sens opposé σIII 2 σI (autour du centre du cercle). −2θ σn T Golay - Bonelli - 46 -
  • 47.
    Equilibre 4 Exemples de tenseur des contraintes 4.1 Tenseur uniaxial  σ 0 0   σ = σ e1 ⊗ e1 =  0 0 0    0 0 0 L’équilibre des forces sur la frontière du domaine nous donne: Sur Σ0 : n = −e1 donc σn = F 0 et F 0 = −σe1 Sur Σ1 : n = e1 donc σn = F 1 et F 1 = σe1 Sur la frontière latérale les pressions sont nulles. On se trouve en présence d’un chargement uniaxial de traction/compression. Si σ > 0 c’est un état de tension uniaxiale Si σ < 0 c’est un état de compression uniaxiale La direction principale est e1 4.2 Tenseur sphérique −p 0 0   σ = −pI =  0 −p 0     0 0 −p   Dans ce cas, toute direction est direction principale. La contrainte normale principale est -p. p est appelé la pression. Si p > 0 on a un état de compression, et si p < 0 on a un état de tension. Par exemple pour un fluide au repos: D’après l’équation d’équilibre div σ + ρg = 0 −divpI + ρg = 0 −gradp + ρg = 0 ∂p ∂p ∂p soit = = 0 et = −ρg ∂x 1 ∂x 2 ∂x 3 et p = p0 − ρgx 3 Donc, pour un fluide au repos p + ρgx 3 = Cste . - 47 - Golay - Bonelli
  • 48.
    MMC 5 A retenir Vecteur contrainte et tenseur des contraintes de Cauchy T (x , t, n ) = σ(x , t ) n Le tenseur des contraintes est symétrique ! Equilibre f (x , t ) + divx σ(x , t ) = 0 ∀ x ∈ (t )   F e (x , t ) ∀ x ∈∂ (t ) σ(x , t ) ⋅ n(x , t ) =   F R(x , t )  ∀x ∈∂ (t )   U Contrainte normale σn = T (n ) ⋅ n = n ⋅ σ ⋅ n Contrainte tangentielle     2 2 τ = σ ⋅ n  − n ⋅ σ ⋅ n              Golay - Bonelli - 48 -
  • 49.
    Elasticité ELASTICITE 1 Approche expérimentale: essai de traction Pour déterminer l’évolution d’un système déformable, nous avons déjà déterminé les équations de la cinématique et de la sthénique. A ces équations, il est maintenant nécessaire d’adjoindre une relation supplémentaire reliant les efforts internes et les grandeurs cinématiques. Cette relation, appelée Loi de Comportement, dépend du matériau considéré. La construction d’une loi de comportement est basée sur des observations expérimentales. Dans ce chapitre nous exposerons le modèle de comportement des matériaux élastiques, sous l’hypothèse des petites perturbations. Pour effectuer un essai de traction simple sur un métal, on utilise une F éprouvette cylindrique caractérisée par: - des extrémités surdimensionnées - des congés de raccordement (pour éviter les concentrations de contrainte) S0 L L +△L - une partie médiane cylindrique dans laquelle le champ de contrainte est supposé homogène, de traction simple parallèlement à l’axe de l’éprouvette. L’essai de traction consiste à enregistrer l’évolution de l’allongement relatif de la longueur initiale L0 en fonction de la force de traction F , ou du rapport F / S 0 F , où S 0 représente l’aire initiale de la section de l’éprouvette. La figure ci-contre représente un tel enregistrement pour un acier Plasticité inox. On remarque alors les propriétés suivantes: irréversible - Le diagramme est indépendant de la vitesse de chargement F Élasticité σ11 = S réversible - La partie OA du diagramme est réversible. Si on charge jusqu’à un σe A niveau inférieur à σ 0 , alors la décharge décrit la même courbe OA. - La partie réversible est linéaire - Si on effectue un chargement au delà du seuil σ 0 , puis une décharge, l’éprouvette présente une déformation permanente. O La partie réversible du diagramme de traction est, par définition, ∆L représentative du comportement élastique du matériau. σ 0 est la ε11 = Déformation L permanente limite initiale d’élasticité du matériau. La linéarité du segment OA A caractérise le comportement élastique linéaire du matériau. - 49 - Golay - Bonelli
  • 50.
    MMC 2 Loi de comportement élastique linéaire (en HPP) 2.1 Forme générale A partir des observations expérimentales on peut écrire que les contraintes dépendent linéairement des déformations. En l’absence d’effets thermique et de contraintes initiales on a: σ(x, t ) = C (x ) : ε(x , t ) (4.1) C est un tenseur du quatrième ordre, dont les composantes sont les coefficients d’élasticité du matériau. σij (x, t ) = C ijkl εkl (x , t ) En utilisant les propriétés des tenseurs de contrainte et de déformation, on peut montrer que: C ijkl = C jikl = C ijlk = C jilk Le tenseur C , dont la matrice représentative comporte 81 composantes, ne dépend donc plus que de 21 paramètres indépendants. 2.2 Matériau élastique homogène isotrope Toutes les directions sont équivalentes, de telle sorte que la loi de comportement est invariante dans toute rotation de la configuration de référence. Ce modèle s’applique à la plupart des matériaux: acier, béton, ... Si la configuration est libre de contraintes, alors la loi de comportement s’écrit: σ = λ Tr (ε) 1 + 2 µ ε (4.2) ou encore en notation indicielle σij = λεkk δij + 2µεij Les coefficients matériel λ et µ , qui dépendent de la particule considérée, sont appelés les coefficients de Lamé. Leur expression en fonction du module d’Young E et du coefficient de Poisson ν , est E νE µ= et λ= 2 (1 + ν ) (1 + ν ) (1 − 2ν ) ou µ(3λ + 2µ) λ E= et ν= λ+µ 2(λ + µ) avec, en inversant (4.2) ν 1+ν ε= − Tr (σ) 1 + σ E E (4.3) 2.3 Matériau élastique homogène orthotrope Le matériau possède trois directions privilégiées deux à deux orthogonales. La loi de comportement est invariante par les symétries par rapport aux plans orthogonaux construits à partir de ces directions. Dans ces matériaux, on peut classer les tôles laminées, les composites tissés, le bois, certains bétons structurés, ... Dans ce cas on montre que la matrice de comportement est définie par 9 paramètres indépendants. Dans le repère principal d’orthotropie, la loi se met sous la forme: Golay - Bonelli - 50 -
  • 51.
    Elasticité  −ν12 −ν13   1 0 0 0   E E1 E1  1   −ν 1 −ν 23       21 0 0 0         ε11        σ11           E2 E2 E2           ε22     −ν −ν 32     σ22           31 1           ε      0 0 0       σ33      33  =  E3 E3 E3         2ε          σ12   (4.4)     12    0 0 0 1 0 0           2ε             σ23       23    G12                      0 σ13  0  2ε      13  1              0 0 0        G23     0 0 0 0 0 1     G13  Avec les conditions de symétrie ν12 ν21 ν13 ν 31 ν 32 ν23 = = = E1 E2 E1 E3 E3 E2 2.4 Matériau élastique homogène isotrope transverse Un matériau homogène isotrope transverse est tel que la matrice de comportement est invariante par toute rotation autour d’un axe privilégié. En utilisant cette invariance, on montre que seuls 5 paramètres indépendants caractérisent le comportement. Si l’axe est porté par la direction 3, on a alors:  −ν12 −ν13   1 0 0 0   E E1 E1  1   −ν 1 −ν13       21 0 0 0         ε11        σ11           E1 E1 E1           ε22     −ν −ν 31     σ22           31 1           ε      0 0 0       σ33      33  =  E3 E3 E3         2ε          σ12   (4.5)     12    0 0 0 1 0 0           2ε             σ23       23    G12                      0 σ13  0  2ε      13  1              0 0 0        G13     0 0 0 0 0 1     G13  2.5 Caractéristiques de quelques matériaux Matériaux isotropes usuels: Matériau E en Gpa ν ρ en kg/l acier 210 0.285 7.8 fonte grise 90 à 120 0.29 7.1 aluminium 71 0.34 2.6 béton 10 0.15 2.4 fibre de verre E 73 0.15 2.54 Graphite HM 350 0.4 1.92 résine époxy 3.8 0.31 1.15 - 51 - Golay - Bonelli
  • 52.
    MMC Matériaux composites: Unidirectionnel Tissu Unidirectionnel Unidirectionnel Verre/Epoxy Verre/Epoxy CarboneHT/Epoxy Kevlar/Epoxy 50% 50% 50% 50% ρ en g/cm 3 1,87 1,87 1,49 1,32 E 1 en Mpa 38000 21000 116000 65000 E 2 en Mpa 11500 21000 7500 4900 ν12 0,28 0,26 0,32 0,34 2.6 Critères de limite d’élasticité Les critères de résistance que nous allons définir représentent des valeurs limites pour les contraintes maximales, et permettent de ce fait de garder un caractère élastique aux déformations. 2.6.1 Critère de Tresca Il consiste à considérer de manière indépendante les trois contraintes de cisaillement maximal du tricercle de Mohr. Soit en fonction des contraintes principales     Sup  σI − σII , σI − σIII , σII − σIII        ≤ 2σ0       (4.6) 2.6.2 Critère de Von-Mises 1   (σ − σ )2 + (σ − σ )2 + (σ    − σIII )2      ≤ σ0 2  I II I III II  (4.7) ou encore 1 2 ( (σ11 − σ22 )2 + (σ11 − σ33 )2 + (σ22 − σ33 )2 + 6(σ12 + σ13 + σ23 ) 2 2 2 ) ≤ σ0 2.6.3 Critère de Hill le critère de Hill s’applique dans le cas de matériaux élastique orthotropes F (σ11 − σ22 )2 + H (σ11 − σ 33 )2 + G (σ22 − σ 33 )2 + 2L σ23 + 2M σ13 + 2N σ12 = 1 2 2 2 (4.8) où F , H ,G , L, M , N sont des constantes fonctions des contraintes à ruptures. Golay - Bonelli - 52 -
  • 53.
    Elasticité 3 Le problème d’élasticité 3.1 Ecriture générale Cinématique : + Equations de compatibilité ε= 1 2 ( ∇ u + ∇T u ) u = U 0 (X ) sur ∂ U Equilibre : div σ + f = 0 dans    F sur ∂     σn =     F     R sur ∂ U   Loi de comportement : σ = λTr (ε)I + 2µε 3.2 Formulation en déplacement div σ + f = 0 div (λTr (ε)I + 2µε) + f = 0 λ∇(Tr (ε)) + 2µdiv(ε) + f = 0 λ∇(div u ) + µdiv(∇ u ) + µdiv(∇T u ) + f = 0 soit l’équation de Navier (λ + µ)∇(div u ) + µdiv(∇ u ) + f = 0 (4.9) Remarque: Si on prend la divergence de l’équation de Navier (λ + 2µ)∆(div u ) + div( f ) = 0 Donc, si le champ de forces volumiques est tel que div f = 0 alors div u est une fonction harmonique. 3.3 Formulation en contrainte En partant de l’écriture des équations de compatibilité, on peut démontrer les équations de Michell 1 ν div(∇ σ) + ∇(∇Tr (σ)) + div f I + ∇ f + ∇T f = 0 1+ν 1−ν (4.10) Soit, si le champ de force est uniforme, on obtient les équations de Beltrami. (1 + ν )div(∇ σ) + ∇(∇Tr (σ)) = 0 (4.11) 3.4 Théorème de superposition - 53 - Golay - Bonelli
  • 54.
    MMC Si ( ,f , F ) et ( , g,G ) sont deux jeux de données engendrant respectivement des solutions u et v , alors U V αu + β v est solution du problème de données (αU + βV , α f + βg, αF + βG ) (Le problème est évidemment linéaire). 3.5 Elasticité plane 3.5.1 Contraintes planes Dans le cas où le chargement est dans le plan 12, la structure mince dans la direction 3, on peut faire l’hypothèse que le problème est plan et libre de contraintes dans la direction 3. Dans ce cas σ (x , x ) σ (x , x ) 0  11 1 2 12 1 2  σ = σ21 (x 1, x 2 ) σ22 (x 1, x 2 ) 0    0 0 0  et d’après la loi de comportement  ε (x , x ) ε (x , x ) 0   11 1 2 11 1 2  ε = ε21 (x 1, x 2 ) ε22 (x 1, x 2 ) 0      0 0 ε33 (x 1, x 2 )  On remarquera que la déformation suivant 3 est non nulle. 3.5.2 Déformations planes Dans le cas où le chargement est dans le plan 12, la structure très élancée dans la direction 3, sans possibilités de déplacement suivant 3, on peut faire l’hypothèse que le problème est plan sous l’hypothèse des déformations planes. Dans ce cas  ε (x , x ) ε (x , x ) 0  11 1 2 12 1 2  ε = ε21 (x 1, x 2 ) ε22 (x 1 , x 2 ) 0    0 0 0  et d’après la loi de comportement σ (x , x ) σ (x , x ) 0   11 1 2 12 1 2  σ = σ21 (x 1, x 2 ) σ22 (x 1, x 2 ) 0      0 0 σ33 (x 1, x 2 )  On remarquera que la contrainte suivant 3 est non nulle. D’après (4.3) 1+ν ν   ε33 = σ33 − σ11 + σ22 + σ33  = 0         E E donc   σ33 = ν σ11 + σ22          Nous allons prouver que les contraintes peuvent être déterminées par une seule fonction scalaire. En appliquant l’équation d’équilibre (3.11) on a : Golay - Bonelli - 54 -
  • 55.
    Elasticité σ + σ = 0  11,1  12,2  σ21,1 + σ22,2 = 0    donc       ∃φ(x 1, x 2 ) / σ11 = φ,2 et σ12 = −φ,1       ∃ψ(x1,x2 ) / σ21 =ψ,2 et σ22 =−ψ,1   comme le tenseur des contraintes est symétrique, on a ψ,2 + φ,1 = 0 , donc ∃χ(x 1, x 2 ) / φ = χ,2 et ψ = −χ,1 en définitive on a prouvé     σ = χ,22  11    ∃χ(x 1 , x 2 ) / σ =χ,11     22     σ =−χ,12  12   χ est appelée la fonction d’Airy. Le tenseur des contraintes devant vérifier l’équation de Beltrami (4.11), on a (1 + ν )σij ,kk + σkk ,ij = 0 d’où ∆∆ χ = 0 χ est donc une fonction biharmonique. 3.6 Thermoélasticité 3.6.1 Thermodynamique : équations de bilan Jusqu’à présent nous avons utilisé les équations de bilan suivantes: Conservation de la masse dρ + ρ divv = 0 dt Conservation de la quantité de mouvement div σ + f = ργ dans Conservation du moment cinétique (3.17) Nous introduisons maintenant l’équation de bilan de conservation d’énergie, ou encore le premier principe de la thermodynamique: d dt (E + K ) = Pext + Q où E représente l’énergie interne E = ∫ ρe d (e densité d’ énergie interne) K représente l’énergie cinétique K = ∫ 2 ρv ⋅ v d 1 ( v la vitesse) - 55 - Golay - Bonelli
  • 56.
    MMC Pext représente lapuissance des efforts extérieurs Pext = ∫ f ⋅ v d + ∫ F ⋅ v d ∂ Q représente le taux de chaleur reçu Q = ∫ r d − ∫ q ⋅ n d (q vecteur de chaleur et r source de chaleur) ∂ Par application du premier principe, en utilisant (5.7) on a: de ∫ρ d + ∫ ρv ⋅ γ d = ∫ f ⋅ v d + ∫ F ⋅ v d + ∫ r d − ∫ q ⋅ n d dt ∂ ∂ en utilisant la conservation de la quantité de mouvement (3.9) de ∫ρ d = ∫ σ : ε d + ∫ r d − ∫ q ⋅n d dt ∂ Soit, par application du théorème de la divergence, la forme locale du premier principe ρe = σ : ε + r − divq ɺ (4.12) Nous présentons également, sans plus de discussion le second principe de la thermodynamique: dS r q ⋅n ≥∫ d −∫ d dt T ∂ T où T est la température et S l’entropie. Ce second principe s’écrit sous sa forme locale q r ρs + div ɺ − ≥0 T T (4.13) où s représente l’entropie massique 3.6.2 Equation de la chaleur On peut exprimer l’énergie interne massique e en fonction de l’entropie massique s , de la température T et l’énergie libre ψ . e = ψ + Ts (4.14) En thermoélasticité, sous l’hypothèse des petites perturbations, pour un écart de température par rapport à la température au repos T − T0 petit, on a: ψ = ψ(ε,T ) Grace au second principe on peut montrer que ∂ψ ∂ψ σ=ρ et s =− ∂ε ∂T donc, le premier principe peut s’écrire ɺ ɺ ρe = ρψ + ρTs + ρTs ɺ ɺ et comme ɺ ∂ψ ∂ψ ɺ σ ɺ ψ= :ε+ ɺ T = : ε − sT ɺ ∂ε ∂T ρ on a ɺ ɺ ɺ ɺ σ : ε − ρsT + ρsT + ρsT = σ : ε + r − divq ɺ or Golay - Bonelli - 56 -
  • 57.
    Elasticité  ∂ψ   ∂2 ψ ∂2 ψ ɺ 1 ∂σ ∂s ɺ  s = −  ɺ  =−   ∂T  :ε− ɺ T =− :ε+ ɺ T  ∂ ε∂T ∂T 2 ρ ∂T ∂T c’est à dire que le premier principe s’écrit ∂σ ∂s ɺ −T : ε + ρT ɺ T = r − divq ∂T ∂T En introduisant la chaleur spécifique C = T ∂s ∂T ∂σ ɺ −T : ε + ρCT = r − divq ɺ ∂T puis la loi de Fourier q = −k∇T , où k représente la conductivité thermique, ∂σ ɺ −T : ε + ρCT = r + divk∇T ɺ ∂T En général la contribution mécanique est négligeable par rapport aux autres contributions, si bien que l’équation de bilan de l’énergie conduit à l’équation de la chaleur :  ∂T  ρCT = ρC  ɺ   + v ⋅ ∇T  = r + divk∇T    ∂t    (4.15) Dans le cas où le problème à traiter est stationnaire, sans source de chaleur, avec une conductivité constante, on retrouve l’équation habituelle : ∆T = 0 3.6.3 Loi de comportement thermo-élastique Dans le cadre de la thermoélasticité , l’énergie libre spécifique s’écrit comme un développement limité au second ordre en déformation et température, ou plutôt en déformation et écart de température τ = T − T0 (supposés “ petits ”) : 1 1 ρψ(ε,T ) = ε : C : ε − ρs τ − ρbτ − β : ε τ 2 2 Par définition ∂ψ   σ=ρ (ε,T ) = C : ε − βτ = C : ε − ατ        ∂ε où α représente le tenseur des dilatations thermiques Dans le cas isotrope la loi de comportement thermo-élastique s’écrit : σ = λTr (ε)1 + 2µε − (3λ + 2µ)ατ - 57 - Golay - Bonelli
  • 58.
    MMC 4 A retenir Loi de comportement élastique linéaire isotrope σ = λ Tr (ε) 1 + 2 µ ε ν 1+ν ε= − Tr (σ) 1 + σ E E Critère de Tresca     Sup  σI − σII , σI − σIII , σII − σIII          ≤ 2σ0     Le problème d’élasticité         2 ( ε = 1 ∇ u + ∇T u )  u = U 0 (X ) sur ∂   U  div σ + f = 0  dans       σ n = F sur ∂ F             R   sur ∂ U      σ = λTr (ε)I + 2µε    Equation de Navier (λ + µ)∇(div u ) + µdiv(∇ u ) + f = 0 En élasticité plane sous l’hypothèse des deformations planes :   σ33 = ν σ11 + σ22  et ε33 = 0         Conservation de l’énergie d dt (E + K ) = Pext + Q Forme locale de la conservation de l’énergie ρe = σ : ε + r − divq ɺ Equation de la chaleur  ∂T      ∂t + v ⋅ ∇T  = r + divk∇T ρC      Loi de comportement thermoélastique isotrope σ = λTr (ε)1 + 2µε − (3λ + 2µ)ατ Golay - Bonelli - 58 -
  • 59.
    Mécanique des fluides INTRODUCTIONA LA MECANIQUE DES FLUIDES 1 Loi de comportement En mécanique des fluides, nous travaillerons toujours en variables d’Euler Comme pour les matériaux solides (qui sont des fluides qui s’ignorent ..) les lois de comportement fluide sont élaborées à partir de l’expérience. Fluide viscoplastique Fluide à seuil τ Fluide fluidifiant Newton Fluide épaississant dU dy 1.1 Fluide Newtonien Pour un fluide Newtonien, les contraintes sont une fonction affine des vitesses de déformation. Soit, σ = −pI + λTr (D)I + 2µD (5.1) où D= 1 2 ( T grad v + grad v ) (5.2) soit, en notation indicielle 1  ∂vi    ∂v j   Dij =  +  2  ∂x j   ∂x i    µ est la viscosité dynamique (dimension Poiseuille ≡ M ) LT λ est le second coefficient de viscosité µ 2 On introduit également la viscosité cinématique ν = (dimension Stokes ≡ L ) ρ T - 59 - Golay - Bonelli
  • 60.
    MMC 1.2 Fluide incompressible Sile fluide est incompressible, alors on a vu que divv = 0 ou TrD = 0 Donc, (5.1) devient σ = −pI + 2µD (5.3) 1.3 Fluide non-visqueux Si le fluide est parfait, alors on a ne tient pas compte de la viscosité, donc (5.1) devient σ = −pI (5.4) Le tenseur des contraintes est alors sphérique. En particulier, l’action d’un fluide non visqueux sur une paroi est normale à la paroi (d’après l’équation d’équilibre). 1.4 Fluide au repos Si le fluide est au repos, alors v = 0 , donc (5.1) devient σ = −pI (5.5) 2 Conservation de la masse La masse d’un système matériel qu’on suit dans son mouvement reste constante. dM M = ∫∫∫ (t ) ρ(x, t ) d et =0 dt où ρ est la masse volumique. On a alors (2.20) dρ dt + ρ divv = 0 ou ∂ρ ∂t ( ) + div ρv = 0 (5.6) Si on considère une grandeur différentiable Ψ quelconque, on a alors pour un fluide incompressible d dψ ∫∫∫ ψ dm = ∫∫∫ dm dt (t ) (t ) dt (5.7) Démonstration: d d ∫∫∫ (t ) ψ dm = ∫∫∫ (t ) ψ ρd dt dt d ψρ  = ∫∫∫    + ψρdiv v  d   (t )  dt     dψ dρ   = ∫∫∫ ρ  +ψ  + ψρdiv v  d (t )    dt  dt    = ∫∫∫ ρ d ψ + ψ  d ρ + ρdiv v  d    dt  dt    (t )      dψ  = ∫∫∫ (t ) ρ  d  dt      dψ = ∫∫∫ (t ) dm dt Soit Σ un domaine géométrique fixe traversé par le fluide, Golay - Bonelli - 60 -
  • 61.
    Mécanique des fluides ∫∫∂Σ ρv ⋅ n d ∂Σ = ∫∫∫Σ div(ρv ) d Σ (d ′aprés le théorème de la divergence) ∂ρ = ∫∫∫Σ − dΣ (d ′après la conservation de la masse) ∂t ∂ = − ∫∫∫Σ ρ d Σ (car Σ est fixé ) ∂t ∂ = − ∫∫∫Σ dm ∂t Si le fluide est incompressible, alors la masse volumique est constante et ∂ρ d ρ = =0 ∂t dt Si on note qm le débit massique à travers une surface S et q v le débit volumique, alors qm = ∫ ∫S ρv ⋅ n d ∂Σ = ρ ∫ ∫S v ⋅ n d ∂Σ = ρqv Donc, en définitive: Pour un domaine Σ fixe traversé par un fluide incompressible ∫∫∂Σ v ⋅ n d ∂Σ = 0 : le débit volumique à travers la frontière ∂Σ est nul. 3 Equation du mouvement D’après l’équation du mouvement(3.10), dv f + div σ = ρ dt D’où, pour un fluide newtonien dv   ρ = f + div −pI + λTr (D )I + 2µD     dt          = f − div pI  + λdiv Tr (D )I  + 2µdiv D                    ( ) ( = f − ∇p + λ∇ divv + µdiv ∇v + ∇T v ) Soit l’équation de Navier-Stokes compressible ρ dv dt ( ) = f − ∇p + (λ + µ)∇ divv + µ∆v (5.8) * Pour un fluide incompressible, divv = 0 , donc (5.8) devient:    dv ∂v   ρ = ρ  + v ⋅ ∇v  = f − ∇p + µ∆v dt  ∂t      (5.9) * Pour un fluide non visqueux, (5.8) devient:    dv ∂v   ρ = ρ  + v ⋅ ∇v  = f − ∇p dt  ∂t      (5.10) - 61 - Golay - Bonelli
  • 62.
    MMC 4 A retenir Loi de comportement pour un fluide newtonien σ = −pI + λTr (D)I + 2µD Conservation de la masse pour un fluide incompressible divv = 0 Grace à la conservation de la masse pour un fluide incompressible d dψ ∫∫∫ (t ) ψ dm = ∫∫∫ (t ) dm dt dt Equation de Navier Stokes compressible ρ dv dt = f − ∇p + (λ + µ)∇ divv + µ∆v ( ) Golay - Bonelli - 62 -
  • 63.
    Bibliographie BIBLIOGRAPHIE [1] Mécanique des Milieux Continus, Cours ESIM 1984, Equipe IMST Marseille. [2] G. Duvaut, Mécanique des Milieux Continus, ed. Masson 1990. [3] P. Germain - P. Muller, Introduction à la Mécanique des Milieux Continus, ed. Masson 1995. [4] J. Salençon, Mécanique des Milieux Continus, ed. ellipse 1988. [5] P. Germain, Mécanique, ed. ellipse, ecole polytechnique, tomes I et II. [6] G. Dhatt, J.L. Batoz, Modélisation des structures par éléments finis: Solides élastiques, ed. Hermes, tome I. [7] A. Bazergui, T. Bui-Quoc,A. Biron, G. McIntyre, C. Laberge, Résistance des matériaux, ed. de l’école polytechnique de Montréal 1993. [8] J. Coirier, Mécanique des Milieux Continus, ed. Dunos 1997. [9] J. Lemaitre, J.L. Chaboche, Mécanique des matériaux solides, ed. Dunos 1996. [10] O. Débordes, Thermodynamique des milieux continus, ESM2, Cours du DEA de Mécanique 2001. - 63 - Golay - Bonelli
  • 64.
  • 65.
    Annexes ANNEXES: RAPPELS DEMECANIQUES DES SOLIDES RIGIDES 1 Cinématiques du solide Avertissement: L’objectif de ce chapitre, est de familiariser les étudiants avec les notations tensorielles. Afin d’en simplifier le contenu, nous ne considérerons que des bases orthonormées. 1.1 Description du mouvement Soit S un ensemble de particules tel que la distances entre deux particules quelconques reste pratiquement constante au cours du mouvement. On étudie l'ensemble S en le considérant indéformable: solide rigide. 1.1.1 Système de référence Dans un espace euclidien ξ à trois dimensions, soit e1, e2 , e3 une base orthonormée. On définit un référentiel d'observation par cet espace euclidien et le temps: ℜ (ξ,t ) . On définit la dérivée d'un vecteur U par rapport au temps dans ce référentiel par: dU dU i = ei dt dt ℜ 1.1.2 Mouvement d'un solide Soit S un solide rigide en mouvement par rapport à ℜ . Soit ξS (O, e1 , e2 , e3 ) un espace euclidien lié à S. Considérons un vecteur lié à S, dont les composantes sont représentées par X dans ξ et X S dans ξS . On note Q l'opérateur linéaire définissant le passage de ξ à ξS . X S = Q X et X = Q T X S Comme X S est indépendant du temps puisque lié à S, on a: dX dQ T dQ T = XS = Q X = LX dt dt ℜ dt ℜ ℜ or Q TQ = I C'est à dire dQ T dQ Q + QT =0 dt dt L + LT = 0 L est un opérateur linéaire antisymétrique, on peut donc définir un vecteur (d'après (1.10)) tel que: dX = LX = ∧X dt ℜ (6.1) avec - 65 - Golay - Bonelli
  • 66.
    MMC 1 = ε L e 2 ijk ji k 1.1.3 Torseur cinématique Soient A et P deux particules du solide S. OP = OA + AP donc par dérivation dOP dOA d AP dOA = + = + ∧ AP dt dt dt dt ℜ ℜ ℜ ℜ soit V (P ) = V (A ) + ∧ AP (6.2) On définit le torseur cinématique par le vecteur vitesse de A par rapport à ℜ , V (A ) et le vecteur de rotation  V (A )    instantanée :V =    ℜ         1.1.4 Accélération V (P ) = V (A ) + ∧ AP dV (P ) dV (A ) d d AP = + ∧ AP + ∧ dt dt dt dt ℜ ℜ ℜ ℜ Soit γ (P ) = γ (A ) + d dt ∧ AP + ∧ ( ) ∧ AP = γ (A ) + d dt ∧ AP + ( ⋅ AP ) − 2 AP ℜ ℜ (6.3) 1.2 Composition des mouvements L'espace temps est commun à tous les référentiels d'observation. on considère deux référentiels ℜa ξ a , t et ( ) ( ) ℜb ξ , t . 1.2.1 Dérivation composée ( ) Soit U un vecteur dans la base ξ a O, e1a , e2a , e3a , U = U ieia par dérivation: . dU dU i = eia dt dt ℜa ( ) Soit U un vecteur dans la base ξ b O, e1b , e2b , e3b , U = U ieib par dérivation: . dU dU i deib = eib + U i dt dt dt ℜa Golay - Bonelli - 66 -
  • 67.
    Annexes Car ξ best en mouvement par rapport à ξ a , et d'après (6.1) deib = ξq /ξb ∧ eib dt d'où, avec ξq / ξb représentant le vecteur rotation de ξ b par rapport à ξ a : dU dU = + ξq / ξb ∧U dt a dt b ℜ ℜ (6.4) 1.2.2 Composition des vitesses Soit P ∈ S : O a P = O aO b + O b P dO a P dO aO b dO b P = + dt dt dt ℜa ℜa ℜa Et donc d’après (6.4) dO a P dO aO b dO b P = + + ξq / ξb ∧ ObP dt dt dt ℜa ℜa ℜb soit V a (P ) = V b (P ) + V e (P ) (6.5) a b Vitesse d ' entrainement Vitesse / ℜ Vitesse / ℜ 1.2.3 Composition des accélérations On dérive (6.5) par rapport à ℜa : d 2O a P d 2O aO b d 2O b P dO b P d ξ q / ξb dO b P 2 = 2 + 2 + ξq / ξb ∧ + ∧ Ob P + ξ q / ξb ∧ dt dt dt dt dt dt ℜa ℜa ℜb ℜb ℜa ℜa γ a (P ) = γ a (O b ) + γ b (P ) + ξq / ξb ∧ V b (P ) +    b    d ξq / ξb    dO P     dt q b q b  + ξ /ξ ∧ ξ /ξ  ∧ O b P + + q b ∧   dt + q b ∧O P   b  ξ /ξ ξ /ξ         ℜb   b ℜ  d ξ q / ξb    γ a (P ) = γ b (P ) + γ a (O b ) + ∧ ObP + ξq / ξb  ∧ ξ q / ξb ∧ ObP  + 2 ξ q / ξb ∧ V b (P ) dt   ℜ b Accélération de Coriolis Accélération d ' entrainement γ a (P ) = γ b (P ) + γ e (P ) + γ c (P ) (6.6) - 67 - Golay - Bonelli
  • 68.
    MMC 2 Cinétique La cinématique ne s'intéresse au mouvement des corps que du point de vue de l'espace et du temps: durée, vitesse, distance, etc …; tandis qu'en cinétique on introduit, en plus, le concept de masse, c'est à dire qu'on tient compte aussi de la masse 2.1 Définitions On définit la masse d’un solide S par : m = ∫∫∫S dm(P ) = ∫∫∫S ρ(P , t )dv (6.7) Où ρ représente la densité volumique de masse. On définit G le centre de masse (ou d’inertie) du solide S par : ∀O ∈ξ ∫∫∫S OPdm(P ) = mOG (6.8) 2.2 Eléments de cinétique 2.2.1 Torseur cinétique On définit le Torseur Cinétique ou Torseur des quantités de mouvement par :   R=  ∫∫∫S V (P )dm (P ) Résultante cinétique de S /ℜ κ =  ℜ k A = ∫∫∫ AP ∧ V (P )dm (P ) Moment cinétique en A /ℜ  (6.9)   S On peut remarquer que si le repère ℜ est fixe, alors : d R= ∫∫∫S OP (P )dm(P ) = mV (G ) dt 2.2.2 Torseur dynamique On définit le Torseur dynamique par :    d = ∫∫∫S γ(P )dm (P ) Résultante dynamique de S /ℜ A =  ℜ δ A = ∫∫∫ AP ∧ γ(P )dm (P ) Moment dynamique en A /ℜ  (6.10)   S 2.2.3 Relation entre torseur cinématique et torseur dynamique En dérivant par rapport au temps dans ℜ on obtient : dR d= dt (6.11) dk A dAP = ∫∫∫S ∧V (P )dm(P ) + ∫∫∫S AP ∧ γ(P )dm(P ) dt dt dAO dOP = ∫∫∫S ∧ V (P )dm(P ) + ∫∫∫S ∧V (P )dm(P ) + ∫∫∫S AP ∧ γ(P )dm(P ) dt dt = − (A) ∧ ∫∫∫S V (P )dm(P ) + δ A V dk A δA = +V (A) ∧ mV (G ) dt (6.12) Golay - Bonelli - 68 -
  • 69.
    Annexes δ A = ∫∫∫S AP ∧ γ(P )dm(P ) = ∫∫∫S AG ∧ γ(P )dm(P ) + ∫∫∫S GP ∧ γ(P )dm(P ) δ A = AG ∧ d + δG dk G δA = + AG ∧ m γ(G ) dt (6.13) 2.2.4 Energie cinétique On définit l’énergie cinétique du solide S par : 1 2 T (S ) = ∫∫∫S V (P )dm(P ) 2 (6.14) 2.2.5 Théorème de Koenig Soit ξ (O, e1, e2 , e3 ) un espace euclidien et ξG (G, e1 , e2 , e3 ) un espace euclidien barycentrique lié au solide S. k A = k G + AG ∧ mV (G ) (6.15) δ A = δG + AG ∧ m γ(G ) (6.16) dOP dOP T (S ) = ∫∫∫S ⋅ dm dt dt 1 dOG dOG 1 dGP dGP dGP dOG T (S ) = ∫∫∫S ⋅ dm + ∫∫∫S ⋅ dm + ∫∫∫S ⋅ dm 2 dt dt 2 dt dt dt dt 1 T (S ) = Tℜ (S ) + mV 2 (G ) G 2 (6.17) 2.3 Cinétique du solide rigide 2.3.1 Opérateur d’inertie On définit l’opérateur d’inertie par J A tel que : JA : ( u ∈ ξ → J A (u ) = ∫∫∫ AP ∧ u ∧ AP dm ) Si AP = x iei alors ( ) AP ∧ u ∧ AP = εijk x j εkpq u p x qei = δpi δqj x j u p x qei − δqi δpj x j u p xqei = x j ui x jei − x j u j x iei ( ) ( ) ( ) ( AP ∧ u ∧ AP = x j2ek ⊗ ek ⋅ (uiei ) − (x k x iek ⊗ ei ) ⋅ u je j = x j2ek ⊗ ek − x k x jek ⊗ e j ⋅ (uiei ) ) Et l’opérateur d’inertie est représenté par la matrice :  I −I 12 −I 13   1 I A = −I 12 I2 −I 23    −I 13 −I 23 I3   Où - 69 - Golay - Bonelli
  • 70.
    MMC ( I 1 = ∫∫∫ x 2 + x 3 dm 2 2 ) I 12 = ∫∫∫ x 1x 2dm I2 = ∫∫∫ (x 2 1 + x )dm2 3 I 13 = ∫∫∫ x 1x 3dm I3 = ∫∫∫ (x 2 1 + x )dm2 2 I 23 = ∫∫∫ x 2x 3dm 2.3.2 Influence des symétries matérielles • Si le solide S possède un plan de symétrie (A, e1, e2 ) , alors ∫∫∫ x 1x 3dm = ∫∫∫ x 1x 3dm + ∫∫∫ x 1x 3dm = ∫∫∫ x 1x 3dm − ∫∫∫ x 1x 3dm = 0 x 3 ≥0 x 3 <0 x 3 ≥0 x 3 ≥0 Soit  I −I 12 0   1 I A = −I 12 I2 0     0 0 I3   • Si le solide S possède un axe de symétrie (A, e3 ) , alors ∫∫∫ ⋯ ρdx 1dx 2dx 3 = ∫∫∫ ⋯ ρrdrd θdx 3 Et comme ∫∫∫ x 1x 3 ρdx 1dx 2dx 3 = ∫∫∫ r cos θx 3 ρrdrd θdx 3 = 0 ∫∫∫ x 1x 2 ρdx 1dx 2dx 3 = ∫∫∫ r sin θ cos θx 3 ρrdrd θdx 3 = 0 2 on a finalement I 0 0   1 I A =  0 I2 0     0 0 I3   • Moment d’inertie par rapport à une droite ∆ (de vecteur unitaire δ ) passant par A Soit H le projeté orthogonal d’un point P du solide S, on a alors :  2  2 ( ) 2 2 2 2       I ∆ = ∫∫∫ PH dm = ∫∫∫  AP − AH dm = ∫∫∫  δ   AP − AP .δ dm S S    S      ( )( ) ( ) dm = ∫∫∫ δ.δ (AP.AP ) − AP (AP.δ)dm 2  I ∆ = ∫∫∫  δ.δ AP .AP − AP .δ  S  S S   ( I ∆ = δ.∫∫∫ δ AP .AP − AP AP .δ  ) ( )dm ( ) Et comme a ∧ b ∧ c = (a ⋅ c )b − a ⋅ b c , ( ) ( ) I ∆ = δ.∫∫∫ AP ∧ δ ∧ AP dm = δ ⋅ J A (δ) = δ ⋅ I A ⋅ δ S Golay - Bonelli - 70 -
  • 71.
    Annexes • Théorème de Huyggens généralisé ( J A (u ) = ∫∫∫ AP ∧ u ∧ AP dm ) ( ) ( = ∫∫∫ AG ∧ u ∧ AP dm + ∫∫∫ GP ∧ u ∧ AP dm ) = AG ∧ (u ∧ ∫∫∫ APdm ) + ∫∫∫ GP ∧ (u ∧ AG )dm + ∫∫∫ GP ∧ (u ∧ GP )dm = AG ∧ (u ∧ mAG ) + ( ∫∫∫ GPdm ) ∧ (u ∧ AG ) + ∫∫∫ GP ∧ (u ∧ GP )dm Soit ( ) J A (u ) = AG ∧ u ∧ mAG + J G (u ) • Théorème de Huyggens appliqué au moment d’inertie par rapport à une droite ∆ (de vecteur unitaire δ ) passant par A (tel que AG ⊥ δ ) et ∆’ (de vecteur unitaire δ )passant par G.    (  ) ( ) 2 I ∆ = δ ⋅ J A (δ) = δI A δ = δ ⋅ AG ∧ δ ∧ mAG + J G (δ) = δ ⋅ mAG δ − m δ ⋅ AG AG + IG δ              soit  2   2   I ∆ = δI A δ = δ ⋅ mAG + IG  δ = mAG + IG     2.3.3 Moment cinétique du solide k A = ∫∫∫S AP ∧V (P )dm(P ) Soit Q un point quelconque du solide ( k A = ∫∫∫S AP ∧ V (Q ) + ∧ QP dm(P ) ) ( k A = mAG ∧V (Q ) + ∫∫∫S AQ + QP ∧ ) ( ) ∧ QP dm(P ) k A = mAG ∧V (Q ) + AQ ∧ ( ) ∧ ∫∫∫S QPdm(P ) + ∫∫∫S QP ∧ ( ) ∧ QP dm(P ) D’où k A = mAG ∧ V (Q ) + mAQ ∧ ( ) ∧ QG + J G ( ) Dans le cas particulier où Q=G, on obtient : k A = mAG ∧V (G ) + J G ( ) C'est-à-dire kG = JG ( ) 2.3.4 Energie cinétique du solide 1 2 T (S ) = ∫∫∫S V (P )dm(P ) 2 Soit Q un point quelconque du solide - 71 - Golay - Bonelli
  • 72.
    MMC ( ) 2 1 T (S ) = ∫∫∫S V (Q ) + ∧ QP dm(P ) 2 ( ) ( ) ( ) 2 2 1 1 T (S ) = ∫∫∫S V (Q ) dm(P ) + ∫∫∫S V (Q ) ⋅ ∧ QP dm(P ) + ∫∫∫S ∧ QP dm(P ) 2 2 T (S ) = m 2 2 V (Q ) + mV (Q ) ⋅ ( ∧ QG +) 1 2 ∫∫∫S  ⋅ QP ∧   ( )  ∧ QP dm(P )   Soit T (S ) = m 2 2 V (Q ) + mV (Q ) ⋅ ( ∧ QG +) 1 2 ⋅ JQ ( ) Dans le cas particulier où Q=G, on obtient : m 2 1 T (S ) = V (G ) + ⋅ JG ( ) 2 2 3 Equations fondamentales de la mécanique des solides 3.1 Torseur associé aux efforts externes Soit f (P ) une densité volumique de force exercée sur le solide S . Soit F (P ) une densité surfacique de force exercée sur la frontière du solide ∂S . Soit F(P ) une densité linéique de force exercée sur une courbe Γ . Soit F i une force ponctuelle exercée en un point Pi de S . Le torseur des efforts extérieurs est défini par :   R = ∫∫∫ f (P ) + ∫∫ F (P ) + ∫ F(P ) + ∑ F i   Fe (S ) =  S ∂S Γ i C A = ∫∫∫ AP ∧ f (P ) + ∫∫ AP ∧ F (P ) + ∫ AP ∧ F(P ) + ∑ AP ∧ F i     S ∂S Γ i 3.2 Loi fondamentale de la dynamique Il existe au moins un référentiel Galiléen associé à une chronologie, tel que : ∀S , ∀ t Torseur dynamique =Torseur des forces extérieures Ou encore ∀S , ∀ t ( ) A d, δ A = Fe (R,C A ) En conséquence, on peut énoncer : Théorème de la résultante dynamique : dans un référentiel galiléen R = m γ(G ) Théorème du moment dynamique : dans un référentiel galiléen, soit A un point fixe dk A δA = =CA dt Golay - Bonelli - 72 -