SlideShare une entreprise Scribd logo

Matrices 2

1  sur  18
Printemps 2010              Chap. I.   Calcul Matriciel   1




                 Chap. I.   Calcul Matriciel

                       Printemps 2010
Printemps 2010                    Chap. I.   Calcul Matriciel                 2




      Dans tout ce qui suit, K désigne R ou C.


      1 Dénitions et propriétés
      Un tableau rectangulaire, de nombres ( ∈ K ), de la forme

                                                      
                          a       a12   ...      a1n
                         11                           
                         a21     a22   ...      a2n
                                                      
                                                                        (1)
                                                       
                         .                       .
                         .                       .
                                                      
                         .                       .
                                                       
                                                       
                                                       
                          am1     am2   ...     amn

      est appelé matrice. Les nombres aij sont appelés coecients de la
      matrice. Les lignes horizontales sont appelées rangées ou vecteurs
      rangées, et les lignes verticales sont appelées colonnes ou vecteurs
Printemps 2010                      Chap. I.   Calcul Matriciel                      3




      colonnes de la matrice. Une matrice à m rangées et n colonnes est
      appelée matrice de type (m, n). On note la matrice ( ??) par (aij ).
      Exemple 1.    :
                                                        
                                0 0            ...   0
                                                      
                               0 0            ...   0 
                                                      
      1) La matrice nulle   O= .
                               .                    .      a tous ses coecients
                               .                    . 
                                                     . 
                                                      
                                0 0            ...   0
      nuls.
      2) Une matrice (a1 , ..., an ) ayant une seule rangée est appelée
      matrice uniligne.
Printemps 2010                     Chap. I.   Calcul Matriciel                   4



                             
                         b
                        1    
                        b2
                             
      3) Une matrice              ayant une seule colonne est appelée
                              
                        .
                        .
                             
                        .
                              
                              
                              
                         bm
      matrice unicolonne.
      1) Une matrice ayant le même nombre de rangées et de colonnes est
      appelées matrice carrée, et le nombre de rangées est appelé son
      ordre.
      2) La matrice carrée (aij ) telle que aij = 0 si i = j et aii = 1 ∀i est
      appelée matrice unité, notée par I , elle vérie AI = IA = A, ∀A
      matrice carrée du même ordre que I .
      3) Deux matrices (aij ) et (bij ) sont égales si et seulement si elles
      ont même nombre de rangées et le même nombre de colonnes et les
      éléments correspondants sont égaux ; c'est à dire aij = bij ∀i, j .
Printemps 2010                      Chap. I.   Calcul Matriciel                   5




      2 Opérations sur les matrices
      2.1        Addition


      La somme de deux matrices de type (m, n) (aij ) et (bij ) est la
      matrice (cij ) de type (m, n) ayant pour éléments cij = aij + bij
      pour i = 1, ..., m et j = ..., n.
                               1,                                  
                                    −4 6 3                        5 −1   0
      Exemple 2.     : Si   A=                     et   B=                ,
                                    0 1 2                         3   1 0
                                   
                            1 5 3
      alors   A+B =                
                            3 2 2
      L'addition des matrices satisfait les propriétés suivantes :
      Pour A, B et C des matrices de type (m, n) on a :
      1) A + B = B + A
Printemps 2010                       Chap. I.   Calcul Matriciel   6




      2) (A + B) + C = A + (B + C)
      3) A + O = O + A = A où O est la matrice nulle
      4) A + (−A) = O où −A = (−aij ).

      2.2        Multiplication par un scalaire


      Soit A (aij ) et λ ∈ K, on dénit 
            =
             λa11       λa12   ...     λa1n
                                               
            λa21       λa22   ...     λa2n
                                               
                                                 = (λaij ).
                                                
      λA =  .
            .                           .
            .                           .
                                         .
                                                
                                                
                                               
             λam1       λam2   ...    λamn
      Exemple 3.    :
      Si A = (2 7 8), alors 3A = (6 21 24)
      Cette multiplication vérie :
Publicité

Recommandé

Matrices
MatricesMatrices
Matricesbades12
 
Devoir Math bac 2012 _la correction
Devoir Math bac 2012 _la correctionDevoir Math bac 2012 _la correction
Devoir Math bac 2012 _la correctionAchraf Frouja
 
Devoir Math de session controle la correction
Devoir Math de session controle la correctionDevoir Math de session controle la correction
Devoir Math de session controle la correctionAchraf Frouja
 
Devoir Math Bac 2011_La Correction
Devoir Math Bac 2011_La CorrectionDevoir Math Bac 2011_La Correction
Devoir Math Bac 2011_La CorrectionAchraf Frouja
 
Math BAC 2010_Correction
Math BAC 2010_CorrectionMath BAC 2010_Correction
Math BAC 2010_CorrectionAchraf Frouja
 

Contenu connexe

Tendances

Math Bac 2009_Correction Session principale
Math Bac 2009_Correction Session principaleMath Bac 2009_Correction Session principale
Math Bac 2009_Correction Session principaleAchraf Frouja
 
Serie+d'exercices+ +math+-+translation+-+2ème+sciences
Serie+d'exercices+ +math+-+translation+-+2ème+sciencesSerie+d'exercices+ +math+-+translation+-+2ème+sciences
Serie+d'exercices+ +math+-+translation+-+2ème+sciencesArbi Grami
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexesYessin Abdelhedi
 
analyse numerique
analyse numeriqueanalyse numerique
analyse numeriquehomme00
 
Chap nombres complexes
Chap nombres complexesChap nombres complexes
Chap nombres complexesKarim Amane
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1Dany-Jack Mercier
 
CAPES maths 2019 composition 1 (option informatique)
CAPES maths 2019 composition 1 (option informatique)CAPES maths 2019 composition 1 (option informatique)
CAPES maths 2019 composition 1 (option informatique)Dany-Jack Mercier
 
Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.
Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.
Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.bilal001
 
Exercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamelExercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamelKamel Djeddi
 
Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017
Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017
Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017Ahmed Ammar Rebai PhD
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiaresbilal001
 
Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexesOmar Ramzaoui
 
Exercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeExercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeKamel Djeddi
 
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012Ahmed Ammar Rebai PhD
 

Tendances (20)

Math Bac 2009_Correction Session principale
Math Bac 2009_Correction Session principaleMath Bac 2009_Correction Session principale
Math Bac 2009_Correction Session principale
 
Statistiques
StatistiquesStatistiques
Statistiques
 
Serie+d'exercices+ +math+-+translation+-+2ème+sciences
Serie+d'exercices+ +math+-+translation+-+2ème+sciencesSerie+d'exercices+ +math+-+translation+-+2ème+sciences
Serie+d'exercices+ +math+-+translation+-+2ème+sciences
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexes
 
Matrices 2
Matrices 2 Matrices 2
Matrices 2
 
Cour+coniques+
Cour+coniques+Cour+coniques+
Cour+coniques+
 
analyse numerique
analyse numeriqueanalyse numerique
analyse numerique
 
Chap nombres complexes
Chap nombres complexesChap nombres complexes
Chap nombres complexes
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1
 
CAPES maths 2019 composition 1 (option informatique)
CAPES maths 2019 composition 1 (option informatique)CAPES maths 2019 composition 1 (option informatique)
CAPES maths 2019 composition 1 (option informatique)
 
Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.
Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.
Analyse Numérique Chapitre 2: Systèmes d'Équations Linéaires.
 
Exercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamelExercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamel
 
Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017
Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017
Epreuve de mathématiques informatique (modélisation) Agro/Véto BCPST 2017
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiares
 
Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexes
 
Exercice arithmétiques
Exercice arithmétiquesExercice arithmétiques
Exercice arithmétiques
 
Exercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeExercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexe
 
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
Sujet et Correction épreuve de mathématiques ESSEC ECE 2012
 
Fiche complexes
Fiche complexesFiche complexes
Fiche complexes
 
Exercice suites réelles
Exercice suites réellesExercice suites réelles
Exercice suites réelles
 

Similaire à Matrices 2

Similaire à Matrices 2 (20)

Matrices
MatricesMatrices
Matrices
 
Chapitre2 Calcul matriciel.pdf
Chapitre2 Calcul matriciel.pdfChapitre2 Calcul matriciel.pdf
Chapitre2 Calcul matriciel.pdf
 
Cours
CoursCours
Cours
 
Algébre(2)
Algébre(2)Algébre(2)
Algébre(2)
 
Algebre
AlgebreAlgebre
Algebre
 
Chap 3 matrice
Chap 3 matriceChap 3 matrice
Chap 3 matrice
 
Polycopié-algèbre
Polycopié-algèbrePolycopié-algèbre
Polycopié-algèbre
 
GEII - Ma3 - Matrices
GEII - Ma3 - MatricesGEII - Ma3 - Matrices
GEII - Ma3 - Matrices
 
Determinanant
Determinanant Determinanant
Determinanant
 
Determinanant
DeterminanantDeterminanant
Determinanant
 
Calcul matriciel-systemes-lineaires
Calcul matriciel-systemes-lineairesCalcul matriciel-systemes-lineaires
Calcul matriciel-systemes-lineaires
 
Chap 4 déterminant
Chap 4 déterminantChap 4 déterminant
Chap 4 déterminant
 
Cours analyse-num source1
Cours analyse-num source1Cours analyse-num source1
Cours analyse-num source1
 
Euclidien12octobre
Euclidien12octobreEuclidien12octobre
Euclidien12octobre
 
Math: matrices (French)
Math: matrices (French)Math: matrices (French)
Math: matrices (French)
 
Les vecteurs seconde2020.pdf
Les vecteurs seconde2020.pdfLes vecteurs seconde2020.pdf
Les vecteurs seconde2020.pdf
 
Ensa t09 m
Ensa t09 mEnsa t09 m
Ensa t09 m
 
Matlab Travaux Pratique
Matlab Travaux Pratique Matlab Travaux Pratique
Matlab Travaux Pratique
 
Recursiviteeeeeeeeee
RecursiviteeeeeeeeeeRecursiviteeeeeeeeee
Recursiviteeeeeeeeee
 
Msm1 corr algebre
Msm1 corr algebreMsm1 corr algebre
Msm1 corr algebre
 

Plus de hassan1488

Economie internationale
Economie internationaleEconomie internationale
Economie internationalehassan1488
 
Organisation entreprises madame jalal
Organisation entreprises madame jalalOrganisation entreprises madame jalal
Organisation entreprises madame jalalhassan1488
 
management_tifawt.com
management_tifawt.commanagement_tifawt.com
management_tifawt.comhassan1488
 
Suite exercice
Suite exerciceSuite exercice
Suite exercicehassan1488
 
Compta25 no restriction
Compta25 no restrictionCompta25 no restriction
Compta25 no restrictionhassan1488
 
Compta24 no restriction
Compta24 no restrictionCompta24 no restriction
Compta24 no restrictionhassan1488
 
Compta23 no restriction
Compta23 no restrictionCompta23 no restriction
Compta23 no restrictionhassan1488
 
Compta22 no restriction
Compta22 no restrictionCompta22 no restriction
Compta22 no restrictionhassan1488
 
Compta21 no restriction
Compta21 no restrictionCompta21 no restriction
Compta21 no restrictionhassan1488
 
Compta20 no restriction
Compta20 no restrictionCompta20 no restriction
Compta20 no restrictionhassan1488
 
Compta19 no restriction
Compta19 no restrictionCompta19 no restriction
Compta19 no restrictionhassan1488
 
Compta18 no restriction
Compta18 no restrictionCompta18 no restriction
Compta18 no restrictionhassan1488
 
Compta17 no restriction
Compta17 no restrictionCompta17 no restriction
Compta17 no restrictionhassan1488
 
Compta16 no restriction
Compta16 no restrictionCompta16 no restriction
Compta16 no restrictionhassan1488
 
Compta15 no restriction
Compta15 no restrictionCompta15 no restriction
Compta15 no restrictionhassan1488
 
Compta14 no restriction
Compta14 no restrictionCompta14 no restriction
Compta14 no restrictionhassan1488
 
Compta13 no restriction
Compta13 no restrictionCompta13 no restriction
Compta13 no restrictionhassan1488
 

Plus de hassan1488 (20)

Cg cpc
Cg cpc Cg cpc
Cg cpc
 
Les pneus
Les pneusLes pneus
Les pneus
 
Economie internationale
Economie internationaleEconomie internationale
Economie internationale
 
Organisation entreprises madame jalal
Organisation entreprises madame jalalOrganisation entreprises madame jalal
Organisation entreprises madame jalal
 
management_tifawt.com
management_tifawt.commanagement_tifawt.com
management_tifawt.com
 
Cours suite
Cours suiteCours suite
Cours suite
 
Suite exercice
Suite exerciceSuite exercice
Suite exercice
 
Compta25 no restriction
Compta25 no restrictionCompta25 no restriction
Compta25 no restriction
 
Compta24 no restriction
Compta24 no restrictionCompta24 no restriction
Compta24 no restriction
 
Compta23 no restriction
Compta23 no restrictionCompta23 no restriction
Compta23 no restriction
 
Compta22 no restriction
Compta22 no restrictionCompta22 no restriction
Compta22 no restriction
 
Compta21 no restriction
Compta21 no restrictionCompta21 no restriction
Compta21 no restriction
 
Compta20 no restriction
Compta20 no restrictionCompta20 no restriction
Compta20 no restriction
 
Compta19 no restriction
Compta19 no restrictionCompta19 no restriction
Compta19 no restriction
 
Compta18 no restriction
Compta18 no restrictionCompta18 no restriction
Compta18 no restriction
 
Compta17 no restriction
Compta17 no restrictionCompta17 no restriction
Compta17 no restriction
 
Compta16 no restriction
Compta16 no restrictionCompta16 no restriction
Compta16 no restriction
 
Compta15 no restriction
Compta15 no restrictionCompta15 no restriction
Compta15 no restriction
 
Compta14 no restriction
Compta14 no restrictionCompta14 no restriction
Compta14 no restriction
 
Compta13 no restriction
Compta13 no restrictionCompta13 no restriction
Compta13 no restriction
 

Matrices 2

  • 1. Printemps 2010 Chap. I. Calcul Matriciel 1 Chap. I. Calcul Matriciel Printemps 2010
  • 2. Printemps 2010 Chap. I. Calcul Matriciel 2 Dans tout ce qui suit, K désigne R ou C. 1 Dénitions et propriétés Un tableau rectangulaire, de nombres ( ∈ K ), de la forme   a a12 ... a1n  11   a21 a22 ... a2n   (1)   . .  . .    . .    am1 am2 ... amn est appelé matrice. Les nombres aij sont appelés coecients de la matrice. Les lignes horizontales sont appelées rangées ou vecteurs rangées, et les lignes verticales sont appelées colonnes ou vecteurs
  • 3. Printemps 2010 Chap. I. Calcul Matriciel 3 colonnes de la matrice. Une matrice à m rangées et n colonnes est appelée matrice de type (m, n). On note la matrice ( ??) par (aij ). Exemple 1. :   0 0 ... 0    0 0 ... 0    1) La matrice nulle O= .  . .  a tous ses coecients  . .  .    0 0 ... 0 nuls. 2) Une matrice (a1 , ..., an ) ayant une seule rangée est appelée matrice uniligne.
  • 4. Printemps 2010 Chap. I. Calcul Matriciel 4   b  1   b2   3) Une matrice ayant une seule colonne est appelée   .  .    .    bm matrice unicolonne. 1) Une matrice ayant le même nombre de rangées et de colonnes est appelées matrice carrée, et le nombre de rangées est appelé son ordre. 2) La matrice carrée (aij ) telle que aij = 0 si i = j et aii = 1 ∀i est appelée matrice unité, notée par I , elle vérie AI = IA = A, ∀A matrice carrée du même ordre que I . 3) Deux matrices (aij ) et (bij ) sont égales si et seulement si elles ont même nombre de rangées et le même nombre de colonnes et les éléments correspondants sont égaux ; c'est à dire aij = bij ∀i, j .
  • 5. Printemps 2010 Chap. I. Calcul Matriciel 5 2 Opérations sur les matrices 2.1 Addition La somme de deux matrices de type (m, n) (aij ) et (bij ) est la matrice (cij ) de type (m, n) ayant pour éléments cij = aij + bij pour i = 1, ..., m et j = ..., n. 1,    −4 6 3 5 −1 0 Exemple 2. : Si A=  et B= , 0 1 2 3 1 0   1 5 3 alors A+B =  3 2 2 L'addition des matrices satisfait les propriétés suivantes : Pour A, B et C des matrices de type (m, n) on a : 1) A + B = B + A
  • 6. Printemps 2010 Chap. I. Calcul Matriciel 6 2) (A + B) + C = A + (B + C) 3) A + O = O + A = A où O est la matrice nulle 4) A + (−A) = O où −A = (−aij ). 2.2 Multiplication par un scalaire Soit A (aij ) et λ ∈ K, on dénit  = λa11 λa12 ... λa1n    λa21 λa22 ... λa2n    = (λaij ).  λA =  .  . .  . . .     λam1 λam2 ... λamn Exemple 3. : Si A = (2 7 8), alors 3A = (6 21 24) Cette multiplication vérie :
  • 7. Printemps 2010 Chap. I. Calcul Matriciel 7 Pour A, B des matrices de type (m, n) 1) λ(A + B) = λA + λB 2) (λ + µ)A = λA + µA 3) λ(µA) = (λµ)A 4) 1A = A 2.3 Multiplication des matrices Soit A = (aij ) une matrice de type (m, n) et B = (bkl ) une matrice de type (r, p), alors le produit AB ( dans cet ordre ) n'est déni que si n = r, et est la matrice C = (cil ) de type (m, p) dont les j=n éléments cil = aij bjl . j=1 Exemple 4. :
  • 8. Printemps 2010 Chap. I. Calcul Matriciel 8     1 0 2 3 2 −1 et  5 3 1 , alors   A=  B= 0 4 6  6 4 2 AB =   3(1) + 2(5) + (−1)(6) 3(0) + 2(3) + (−1)(4) 3(2) + 2(1) + (−1)(2)   0(1) + 4(5) + 6(6) 0(0) + 4(3) + 6(4) 0(2) + 4(1) + 6(2)   7 2 6 =   56 36 16 Le produit matriciel vérie les propriétés suivantes : 1) λ(AB) = (λA)B , λ ∈ K 2) A(BC) = (AB)C
  • 9. Printemps 2010 Chap. I. Calcul Matriciel 9 3) (A + B)C = AC + BC 4) C(A + B) = CA + CB Pour vu que les produits qui gurent dans les expressions soient dénis. Remarque 1. : 1) La multiplication matricielle n'est pas en général commutative, c.à.d AB = BA. 2) La simplication n'est pas vraie en général, c.à.d AB = O n'entraîne pas, nécessairement A = O ou B = O. 3) Une matrice carrée A est inversible s'il existe B telle que AB = BA = I . Exemple 5. :       1 0 0 1 0 1 1) A= , B =  , alors AB =   et 0 0 1 0 0 0
  • 10. Printemps 2010 Chap. I. Calcul Matriciel 10   0 0 BA =   1 0     1 1 −1 1 2) A=  = O, B =  =O et pourtant 2 2 1 −1   0 0 AB =  =O 0 0   a11 0 ... 0  .  .  .    0 a22 0 . . . 1) Une matrice du type  .  c'est à dire ..   . .  .  0   0 ... 0 ann aij = 0 pour i = j est appelée matrice diagonale.
  • 11. Printemps 2010 Chap. I. Calcul Matriciel 11   a  11   0 a22   2) Une matrice du type  .  ou   . .. ..  . . .     0 ... 0 ann   a11 0 . . . 0  .. .  .  . .   a22  est appelée matrice triangulaire.  ..  . 0       ann La première vérie aij = 0 pour i j et la seconde aij = 0 pour i j. 3) Au lieu de AA on écrit tout simplement A2 , de même A3 = A2 A .... 4) Si les lignes et les colonnes d'une matrice sont échangées, la
  • 12. Printemps 2010 Chap. I. Calcul Matriciel 12 matrice obtenue est appelée transposée de la matrice d'origine ; la transposée de A est notée t A. 5) Si A = (aij ), alors t A = (bij ) avec bij = aji , on a t (t A) = A. Exemple 6. :   1 4   1 2 3 Si 5 ; alors   t A= 2 A=  4 5 6   3 6 3 Matrices élémentaires 3.1 Opérations élémentaires sur une matrice Soit A une matrice, on appelle opération élémentaire sur A l'une des transformations suivantes :
  • 13. Printemps 2010 Chap. I. Calcul Matriciel 13 1) Ajouter à une ligne ( resp à une colonne ) de A une autre ligne ( resp colonne ) multipliée par un scalaire. (Rj ←− Rj + kRi ) 2) Multiplier une ligne ( resp une colonne ) de A par un scalaire non nul. (Ri ←− kRi ) 3) Permuter les lignes ( resp les colonnes ) de A. (Ri ←→ Rj ) Soit e une opération élémentaire sur les lignes et e(A) désigne les résultats obtenus après l'application de l'opération e sur une matrice A. Soit E la matrice obtenue après l'application de e sur la matrice unité I , c'est à dire E = e(I). E est alors appelée la matrice élémentaire correspondant à l'opération élémentaire e. Exemple 7. : Considérons la matrice unité d'ordre 3. 1) Permuter les lignes L2 et L3 .
  • 14. Printemps 2010 Chap. I. Calcul Matriciel 14 2) Remplacer ligne L2 par −6L2 . 3) Remplacer ligne L3 par −4L1 + L3 .     1 0 0 1 0 0  0 0 1 , E2 =  0 −6 0  et     E1 =     0 1 0 0 0 1   1 0 0  0 1 0  sont les matrices élémentaires   E3 =   −4 0 1 correspondantes. Théorème 1. : Soit e une opération élémentaire sur les lignes et E la matrice élémentaire correspondante d'ordre m, alors e(A) = EA pour toute matrice A de type (m, n). Les opérations élémentaires ont des opérations inverses du même
  • 15. Printemps 2010 Chap. I. Calcul Matriciel 15 type 1) Permuter Ri et Rj est son propre inverse. 2) Remplacer Ri par kRi et remplacer Ri par k Ri sont inverses 1 3) Remplacer Rj par kRi + Rj et remplacer Rj par −kRi + Rj sont inverses. Supposons que e est l'inverse d'une opération élémentaire sur les lignes e, et soit E et E les matrices correspondantes. Alors E est inversible et son inverse est E . En particulier un produit de matrices élémentaires est inversible. Théorème 2. : Soit A une matrice carrée, alors A est inversible si et seulement si A est un produit de matrices élémentaires.
  • 16. Printemps 2010 Chap. I. Calcul Matriciel 16 3.2 Application pour déterminer l'inverse d'une matrice carrée Exemple 8. :   1 0 2 Trouver l'inverse de la matrice si elle existe.   A= 2  −1 3   4 1 8 Pour ce faire nous écrivons la matrice unité à la droite de A et nous appliquons les mêmes opérations à cette matrice que celles eectuées sur A.   1 0 2 1 0 0 L −2L1  −2 − −  −− −→  L3 − 4L1   2 −1 3 0 1 0  4 1 8 0 0 1
  • 17. Printemps 2010 Chap. I. Calcul Matriciel 17   1 0 2 1 0 0     0 −1 −1 −2 1 0   0 1 0 −4 0 1   1 0 2 1 0 0  − 1 +2L3 L L3 +L2  L2− − 3 − −→  −− − − −  − − − −→  0 −1 −1 −2 1 0  −L 0 0 −1 −6 1 1   1 0 0 −11 2 2 −L2   −→ −  0 −1 0 4 0 −1  −L3   0 0 −1 −6 1 1   1 0 0 −11 2 2     0 1 0 −4 0 1   0 0 1 6 −1 −1
  • 18. Printemps 2010 Chap. I. Calcul Matriciel 18   −11 2 2 d'où A −1   =  −4 0 1   6 −1 −1 Ecrivons cette inverse sous forme de produit de matrices élémentaires : A−1 = BC avec      1 0 0 1 0 0 1 0 2 et     B= 0  −1 0   0 1  0  0 1  0   0 0 1 0 0 −1 0 0 1 C=      1 0 0 1 0 0 1 0 0 1 0 0       0 1  −1     0 1 0   −2 1 0   0 1   0   0 0 0 0 1 1 0 0 1 −4 0 1