SlideShare une entreprise Scribd logo
UNIVERSITE DE POITIERS 
INSTITUT D’ADMINISTRATION DES ENTREPRISES 
MEMOIRE 
Identification de leaders d’opinion sur le Web 
& analyse de réseaux 
Maître d’apprentissage : Fanny Forgeau 
Professeur référent : Camille Alloing 
Responsable de filière : Nicolas Moinet 
Année universitaire 2013 – 2014 
Jean Baptiste Mac Luckie 
Master 2 Intelligence Economique et 
Communication Stratégique 
Note obtenue : 18,5/20
2
3 
Résumé 
Dans quelle mesure l'analyse & la visualisation de réseaux appliquées au web peuvent-elles permettre 
d'identifier de potentiels leaders d’opinions sur le Web ? C’est à cette question que ce mémoire a cherché à 
répondre. Le présent mémoire s’inscrit dans une volonté double : interroger le concept d’influence sur le 
Web, et plus précisément le concept de leader d’opinion, et proposer un cas d’étude portant sur 
l’identification de potentiels leaders d’opinions dans le domaine des droits LGBT afin de développer la 
notoriété d’Equaldex.com. 
Ce travail de recherche a été réalisé dans le cadre du Master 2 Intelligence Economique & 
Communication Stratégique de l’IAE de Poitiers et d’une année d’apprentissage au sein de l’entreprise 
Linkfluence, spécialiste du social media intelligence en France. A travers une revue de littérature sur les concepts 
d’influence, la réalisation & l’analyse d’un graphe de sites web afin d’identifier de potentiels leaders d’opinion 
au sein du réseau cartographié, nous avons souhaité déconstruire certains mythes rattachés à la notion 
d’influence. En effet, les discours des praticiens semblent parfois surévaluer le rôle des leaders d’opinion dans 
le déclenchement de dynamiques virales. A cela s’ajoute notre volonté de discuter des méthodes généralement 
utilisées pour identifier les influenceurs sur le Web et de proposer des nuances quant aux applications de 
celles-ci. 
Mots-clés : 
Influence | Leader d’opinion | Analyse de réseaux | Incertitude
4 
Remerciements 
Je souhaite vivement remercier Camille Alloing, maître de conférences en Sciences de 
l’Information et de la Communication pour la qualité de son suivi et les remarques pertinentes qu’il 
aura su me faire au long de ces deux années de Master Intelligence Economique & Communication 
Stratégique. 
Puisque ce mémoire a été réalisé dans le cadre d’une année en apprentissage, je remercie 
l’entreprise Linkfluence qui m’a accueillie le 2 octobre 2013 en tant que social media analyst. Je n’aurais 
pu rêver mieux comme lieu d’apprentissage. Merci donc à Guilhem Fouetillou, co-fondateur, à 
Fanny Forgeau, directrice du pôle Research, à Matthieu Vion, Matthieu Ponzio, Hélène Girault, 
Antoine Vaguet et tous mes collègues du pôle Research pour leur accueil, leur gentillesse et pour la 
qualité de leurs conseils. Mes remerciements vont également à Hervé Simonin, CEO, Camille 
Maussang, co-fondateur, Romain Pedron et au reste de la grande équipe Linkfluence. 
Merci également à Mariannig Le Béchec pour ses retours très instructifs sur l’analyse de 
réseau et la visualisation de graphes lors du COSSI 2014, à Caitriona Noonan de The University of 
South Wales qui a su me donner goût à la recherche, à Christian Marcon et Nicolas Moinet. 
Je souhaite également remercier Antoine H. pour son aide & sa relecture attentive, Antoine 
D., Quentin G., Ludovic C., Raphaël B. & tous les amis qui ont pu m’aider pour la rédaction de ce 
mémoire. 
Merci à Dan Leveille pour avoir accepté que je réalise ce cas d’étude sur Equaldex & pour 
avoir suscité mon intérêt pour les droits des personnes LGBT. 
Enfin, j’adresse un dernier remerciement à l’ensemble de ma famille.
5 
Afin de visualiser le graphe de site réalisé pour notre cas d’étude en 
haute qualité, merci de vous rendre à l’adresse suivante : 
http://www.jbmacluckie.net/blog/lgbt-map-642
6 
Glossaire & sigles 
Agrégat : sur le Web, ensemble de sites web connectés traitant d’une même thématique. 
Amateurisation de masse : selon Shirky (2008) il s’agit du phénomène découlant de la possibilité 
pour tout internaute d’exprimer ses opinions sur le Web 
Analyse de réseaux (ou analyse structurale) : étude des réseaux & des relations sociales, 
principalement en sociologie. 
Arc : lien entre deux noeuds dans un graphe orienté. 
Arête : lien entre deux noeuds dans un graphe non-orienté. 
Autorité : en analyse de réseaux, une autorité désigne un noeud ayant un nombre important de liens 
entrants (Kleinberg 1999). 
Cartographie du web (ou graphe de site web) : visualisation de réseau de sites web & des liens 
hypertextes qu’ils entretiennent entre eux. 
Cascade d’informations (ou cascade d’influence, dynamique virale) : lorsqu’un individu 
adopte un comportement en conformité avec le comportement des membres de son réseau (Easley 
et Kleinberg 2010). 
Centralité de degré (degree) : détermine la position d’un noeud au sein d’un réseau. La centralité de 
degré désigne le nombre de liens entrants et sortants d’un noeud. 
Centralité d’intermédiarité (betweeness centrality) : nombre de plus courts chemins du réseau 
passant par chaque noeud (Drevelle 2013). 
Centralité de proximité (closeness centrality) : degré auquel un noeud est proche des autres 
noeuds d'un réseau. 
Centralité eigenvector (eigenvector centrality) : mesure la façon dont un noeud est connecté aux 
autres noeuds très connectés du graphe (Drevelle 2013) 
Complexité : dans le cadre de notre mémoire, ensemble d’éléments entretenant une forte 
interdépendance entre eux. 
Crawl : indexation réalisée par un robot. 
Crowdsourcing : approvisionnement par la foule. Dans le cadre de notre mémoire, Equaldex.com, 
le site faisant l’objet du cas d’étude, fonctionne grâce à l’approvisionnement par la foule 
d’informations sur les droits LGBT dans le monde 
Degré : nombre de liens entrants et sortants d’un noeud au sein d’un graphe non-orienté (où les 
liens n’ont pas de sens). Dans un graphe orienté, le degré peut être entrant (liens entrants vers un 
noeud) ou sortant (liens sortants d’un noeud). 
Droits LGBT : droits des personnes lesbiennes, gaies, bisexuelles et transgenres. 
EdgeRank : plgorithme de Facebook visant à gérer la mise en visibilité des informations sur le flux 
d’information des utilisateurs – Pour aller plus loin : www.whatisedgerank.com 
Equaldex : plateforme d’information sur les droits LGBT dans le monde créée par Dan Leveille. 
Elle fonctionne grâce au crowdsourcing.
7 
Expertise : savoir acquis grâce à l’expérience. Dans le cadre de notre mémoire, l’expertise sur le 
Web est comprise comme la capacité d’un individu à produire du contenu expert et à mettre en 
visibilité celui-ci (Alloing et Haikel-Elsabeh 2012). 
Gay : Utilisé, dans le cadre de ce mémoire, en tant que synonyme d’homosexuel 
Gephi : Outil d’analyse et de visualisation de graphes 
Graphe : ensemble de sommets (noeuds) et d’arcs / arêtes (liens) liant certains sommets. Dans notre 
mémoire, le terme graphe sera utilisé en tant que synonyme de réseau. 
Hexis numérique : sculpture agissante de soi dans les mondes virtuelles (Georges 2007) 
Hub : noeuds d’un graphe possédant un degré important 
Identité numérique : ensemble des traces numériques laissées par un internaute sur le Web 
(Ertzscheid 2011) 
Influence : pour Massé, Marcon et Moinet Massé, exercer une influence c’est « obtenir d’autrui qu’il 
fasse librement quelque chose qu’il n’aurait pas fait spontanément sans votre intervention » (2006, p. 
86) 
Influenceur : terme marketing utilisé comme synonyme de leader d’opinion. 
Internet : réseau informatique mondial reliant des ordinateurs entre eux. 
Loi de puissance (power law) : dans le cadre de notre mémoire, la loi de puissance s’applique 
concernant les degrés d’un graphe. Quelques noeuds concentrent la majorité des liens. 
Klout : outil en ligne permettant de computer l’activité des profils sociaux d’un internaute. Klout 
prétend pouvoir fournir un score d’influence. 
Leader d’opinion : pour Alloing et Haikel-Elsabeh, « le leader d’opinion, pris au sens de « diffuseur 
» est un amplificateur potentiel de la transmission de ce message. » Il s’agit dès lors d’une « source de 
diffusion et médiatisation sur le web plus que d’influence » (2012, p.10) 
LGBT : Lesbien, gay, bisexuel & transgenre 
Maven : utilisé comme synonyme de leader d’opinion 
Nouvelle science des réseaux (& Web science) : étude des réseaux ayant notamment émergé 
grâce aux travaux de Duncan Watts & Albert-László Barabási. 
Médias sociaux : « macro-concept » (Stenger et Coutant 2010) englobant réseaux socionumériques 
et plateformes de partage de contenu 
MOOC : Massive Online Open Course 
Mouvement LGBT : mouvement social ayant émergé depuis les années 60 visant à lutter contre 
l’homophobie, les discriminations et pour les droits LGBT (Beynon 2010). 
Netnographie : étude des communautés en ligne (Kozinets 2002). 
Noeud : sommet d’un réseau. Dans notre mémoire : site web sur le graphe. 
PageRank : algorithme de classement des pages web de Google, dérivé de l’algorithme de calcul de 
centralité eigenvector. 
Réseau : ensemble de noeuds interconnectés (Castells 1998, p. 526)
8 
Réseaux socionumériques : services web permettant de 
1. « Construire un profil public ou semi-public au sein d’un système, 
2. De gérer une liste des utilisateurs avec lesquels il partage un lien, 
3. De voir et naviguer sur leur liste de liens et ceux établis par les autres au sein du système, 
4. Fondent leur attractivité essentiellement sur les trois premiers points et non sur une activité 
particulière ». (Stenger et Coutant, p. 221) 
STEPPS : cadre d’analyse développé par Jonah Berger permettant d’identifier les facteurs clés de la 
viralité (potentielle ou avérée) d’un contenu ou d’un produit 
Two-step flow of communication (flux communicationnel en deux temps) : modèle de l’influence 
interpersonnelle selon Katz et Lazarsfeld (1955). De manière schématique : les médias de masses 
diffusent du contenu qui sera filtré puis partagé par des leaders d’opinion aux membres de leurs 
réseaux. Ce modèle est encore utilisé dans le cadre de stratégies de relations publiques & de 
communication par exemple. 
Viralité (ou contagion) : idée selon laquelle un produit, une idée, une information peuvent se 
propager telles des épidémies sociales (Gladwell 2008) 
Web (World Wide Web) : application d’Internet basée sur l’hypertextualité.
9 
Table des figures 
Figure 1 - Modèle du two-step flow of communication ________________________________________________________ 20 
Figure 2 - Le modèle du two-step flow of communication comparé au modèle du réseau d'influence de Watts et Dodds (2007) ________ 27 
Figure 3 - Le modèle STEPPS de Jonah Berger (2013) _____________________________________________________ 28 
Figure 4 - Exemple de profil sur Klout.com ______________________________________________________________ 35 
Figure 5 - Les trois couches du Web selon Ghitalla et Jacomy (2007) _____________________________________________ 37 
Figure 6 - Représentation schématique de la méthodologie d'écologie du Web par Linkfluence ______________________________ 38 
Figure 8 - Capture d'écran d'Equaldex - Frise chronologique des droits LGBT à travers le temps __________________________ 48 
Figure 9 - Capture d'écran d'Equaldex - Un lieu réticulaire de synchorisation _______________________________________ 50 
Figure 10 - Processus de réalisation de notre graphe de sites web sur les droits LGBT __________________________________ 57 
Figure 11 - Etapes de spatialisation du graphe de sites web ____________________________________________________ 58 
Figure 12 - Visualisation du graphe de sites web __________________________________________________________ 60 
Figure 14 – Répartition des sites du graphe selon leurs catégories ________________________________________________ 61 
Figure 16 - Le graphe des droits LGBT, un réseau invariant d'échelle ____________________________________________ 64 
Table des tableaux 
Tableau 1 - Typologie des émotions selon leurs potentiels de viralité selon Jonah Berger (2013) _____________________________ 29 
Tableau 2 - Comparaison entre l'approche de Linkfluence et celle des outils d'identification d'influenceurs sur le web _______________ 42 
Tableau 3 - Principaux indicateurs pour l'identification de potentiels leaders d'opinion pour Equaldex _______________________ 53 
Tableau 4 - Principaux critères retenus pour la création du graphe de sites web _______________________________________ 54 
Tableau 5 - Comparaison des sources ayant les scores les plus importants selon 3 métriques structurales _______________________ 62 
Tableau 6 - Sélection des potentiels leaders d'opinion pour Equaldex _____________________________________________ 63
10 
Table des matières 
Résumé ...................................................................................................................................... 3 
Remerciements .......................................................................................................................... 4 
Glossaire & sigles ...................................................................................................................... 6 
Table des figures ....................................................................................................................... 9 
Table des tableaux ..................................................................................................................... 9 
Introduction ............................................................................................................................. 12 
Positionnement théorique ................................................................................................................. 14 
Problématique ................................................................................................................................... 15 
Démarche méthodologique .............................................................................................................. 15 
Cadrage de l’environnement : un mémoire portant également sur les droits LGBT ....................... 16 
Présentation du plan ......................................................................................................................... 16 
Chapitre 1 - Revue de littérature sur l’influence sur le web .................................................... 18 
Introduction au chapitre 1 ....................................................................................................... 19 
I. Influence : déconstruction d’un concept .......................................................................... 19 
a. Qu’est-ce que l’influence ? ......................................................................................................... 19 
b. La métaphore de la contagion ................................................................................................... 21 
c. Le web : entre amateurisme, expertise & influence .................................................................. 22 
II. L’influence sur le web : un processus complexe ............................................................. 24 
a. Le rôle des individus et des réseaux sur le Web dans les dynamiques d’adoption virales : les 
apports de l’analyse de réseaux ......................................................................................................... 24 
b. Le rôle du contenu et le modèle STEPPS ................................................................................. 27 
c. La dépendance aux plateformes sociales & aux algorithmes ................................................... 30 
d. L’influence sur le web : complexité et biais de rétrospection ................................................... 31 
III. De l’identification à la construction des leaders d’opinion ........................................... 34 
a. Les outils d’identification de leaders d’opinion sur le Web ...................................................... 34 
b. L’identification de leaders d’opinions chez Linkfluence .......................................................... 36 
c. La construction des leaders d’opinion ....................................................................................... 42 
Chapitre 2 - Cas d’étude : identification de potentiels leaders d’opinion en ligne dans le 
domaine des droits LGBT ....................................................................................................... 44 
Introduction au chapitre 2 ....................................................................................................... 45 
I. Présentation d’Equaldex en trois points ........................................................................... 47 
a. Equaldex : un site d’information sur les droits LGBT .............................................................. 47 
b. Equaldex : Un lieu réticulaire de synchorisation ...................................................................... 49 
c. Equaldex : Un site en quête de notoriété ? ................................................................................ 50 
II. Structuration de l’écosystème informationnel d’Equaldex ............................................. 51 
a. Définition des besoins d’Equaldex & leur déclinaison en indicateurs ..................................... 52
11 
b. Constitution du corpus de sites web ......................................................................................... 53 
c. Quel statut donner aux liens hypertextes ? ................................................................................ 54 
d. La cartographie comme processus itératif ................................................................................ 56 
III. Visualisation de l’écosystème informationnel d’Equaldex ........................................... 57 
a. Spatialisation .............................................................................................................................. 57 
b. Choix des signes : de la nécessité d’un travail sémiologique ................................................... 58 
c. Visualisation & analyse de l’écosystème informationnel d’Equaldex ....................................... 59 
IV. Résultats & discussion ................................................................................................... 61 
a. Identification de potentiels leaders d’opinion ........................................................................... 61 
b. Le graphe de sites web et nos hypothèses de recherche ........................................................... 64 
c. Réflexions sur la cartographie & limites de l’approche ............................................................ 65 
Conclusion ............................................................................................................................... 67 
Bibliographie ........................................................................................................................... 71 
Articles & monographies .................................................................................................................. 71 
Articles de blogs ................................................................................................................................ 76 
Vidéo ................................................................................................................................................. 76 
Cours ayant inspiré nos travaux ........................................................................................................ 76 
Annexes ................................................................................................................................... 77 
Correspondance avec Dan Leveille (anglais) – Juillet 2014 .............................................................. 77 
Visualisation du graphe de sites web realisé (sans étiquette des noeuds) ........................................ 79
12 
Introduction 
« Le désastre de l’ère de l’information réside dans le fait que la toxicité des données augmente plus 
rapidement que leurs avantages »1 (Taleb 2010a, p. 57). 
Cette citation de Nassim Nicholas Taleb, économiste, philosophe et spécialiste de 
l’épistémologie des probabilités, semble refléter la fascination que les individus entretiennent avec les 
technologies de l’information et de la communication (TIC). Aujourd’hui, Internet, le « réseau des 
réseaux », et le World Wide Web, l’application la plus connue d’Internet, jouent un rôle important 
dans le quotidien de nos sociétés. Ainsi, en 2013 le monde comptait plus de 2,8 milliards 
d’internautes, dont plus de 55 millions en France2. En ce sens, Internet et le Web sont « ubiquitaires – 
ils sont partout – et pervasifs – ils ne peuvent être éteints »3 (Deuze 2012, p. xi). Comme le souligne 
Mark Deuze, nous vivons « dans » les TIC plutôt qu’« avec » elles. Les vies des individus connectés 
seraient ainsi dissoutes dans l’ubiquité du numérique. 
L’omniprésence de ces technologies de l’information et de la communication semble avoir 
des impacts sur nos vies et ce à plusieurs échelles. Le World Wide Web, inventé par Tim Berners- 
Lee et Robert Cailliau en 1991 (Castells 2001), est une application d’Internet basée sur un système 
d’hypertextualité permettant de naviguer d’une page web à un autre de manière non-linéaire. Le 
début des années 2000 marque l’émergence d’un nouveau stade du développement du Web : le Web 
2.0, parfois appelé Web social ou Web participatif. Popularisé par Tim O’Reilly en 2005, le Web 2.0 
désigne un ensemble de techniques, fonctionnalités et plateformes qui met les usagers « au centre du 
dispositif médiatique » (Breton et Proulx 2012, p. 314). Il est couramment admis que grâce au Web 
social « les modes de création et de distribution des contenus médiatiques connaissent des 
transformations significatives, bouleversant les modèles traditionnels des industries culturelles » 
(ibid. p. 314). Le Web 2.0 favoriserait ainsi l’émergence d’une « culture participative » (Jenkins 2006), 
de « communautés virtuelles » (Rheingold 2002) et permettrait à tout individu de devenir un medium 
(Shirky 2008). 
L’émergence du Web 2.0 semble avoir nourrit un certain nombres d’utopies liées à 
l’information et la communication. En effet, en permettant aux internautes de produire du contenu, 
d’interagir avec leurs pairs, de collaborer par l’intermédiaire de plateformes à dimension « sociales », 
1 « The calamity of the information age is that the toxicity of data increases much faster than its benefits » (Taleb 2010, p. 57) 
2 Voir www.internetworldstats.com 
3 « Media are ubiquitous – they are everwhere – and pervasive – they cannot be switched off » (Deuze 2012, p. xi)
13 
de financer des projets de manière participative grâce à des sites de crowdfunding4 ou encore de 
participer à changer la société par le biais de plateformes de pétitions en ligne5, le Web social semble 
être au coeur d’une utopie grandissante : celle d’une communication universelle permettant une 
collaboration pour le bien de la société. Il est important de noter que cette utopie est portée par 
différents profils d’individus : consultants spécialisés en technologies de l’information et de la 
communication, professionnels de la communication, mais également par des universitaires tels que 
Clay Shirky (2008) ou encore David Gauntlett (2011). 
Lorsque le Web social est évoqué, il est souvent lié aux notions de médias sociaux et de 
réseaux sociaux. Ces expressions sont d’ailleurs fréquemment utilisées dans le domaine de la 
communication et du marketing. Frédéric Cavazza, consultant dans le domaine de la communication 
et blogueur, définissait en 2009 les médias sociaux comme « un ensemble de services permettant de 
développer des conversations et des interactions sociales sur internet ou en situation de mobilité »6. 
Pour ce consultant en communication, des plateformes telles que Facebook, Twitter, Youtube, ou 
encore Tumblr sont des médias sociaux. Stenger et Coutant (2010) soulignent néanmoins que le 
concept de médias sociaux est avant tout un « macro-concept ». Il s’agirait selon les auteurs d’un 
terme englobant différentes notions, différents types de plateformes & différentes pratiques 
numériques. Pour Alloing (2013), parler de médias sociaux est un pléonasme car cela supposerait 
qu’il existe des médias non sociaux. 
Depuis l’émergence du Web 2.0 il est important de noter qu’il existe de réels discours de 
promotion des médias sociaux à destination des entreprises (Stenger et Coutant 2010). Agences de 
communication, praticiens & blogueurs en communication et en marketing font fréquemment 
l’éloge de la présence en ligne des organisations et de leurs dirigeants. A titre d’exemple, en août 
2014 Nicolas Bordas, vice président de l’agence de communication TBWAEurope, publiait sur le 
média LesEchos.fr une tribune intitulée « Pourquoi les patrons français doivent être présents sur 
Twitter »7. 
Dans cette logique de présence en ligne, organisations et marques sont encouragées à 
amplifier leur présence en ligne grâce au marketing d’influence ou marketing viral. La recherche de la 
4 Un exemple de plateforme de crowdfunding est kickstarter.com 
5 Change.org s’inscrit directement dans ce créneau : change.org 
6 Cavazza, F., 2009, « Une définition des médias sociaux », MediasSociaux.fr [En ligne] 
http://www.mediassociaux.fr/2009/06/29/une-definition-des-medias-sociaux/ 
7 Tribune en ligne : http://www.lesechos.fr/idees-debats/editos-analyses/0203718074566-pourquoi-les-patrons-francais- 
doivent-etre-presents-sur-twitter-1035897.php
14 
viralité et du buzz sont caractéristiques de ces discours. De nombreux acteurs se sont positionnés sur 
ce marché et proposent leurs services pour identifier, recruter et activer des influenceurs, ou leaders 
d’opinion, qui seraient capables de diffuser à de larges audiences des informations. Si ces pratiques 
se sont peut être répandues de manière corrélée avec le Web social et les médias sociaux, elles 
prennent néanmoins leurs sources dans les recherches effectuées en media studies sur l’influence des 
médias. Par influence, nous retiendrons l’acception suivante de Massé, Marcon et Moinet (2006, p. 
86) : exercer une influence c’est « obtenir d’autrui qu’il fasse librement quelque chose qu’il n’aurait 
pas fait spontanément sans votre intervention ». 
En cherchant à évaluer l’influence des médias dans la communication de masse, des 
chercheurs américains ont décrit celle-ci en utilisant la métaphore de la « « seringue hypodermique » : 
les médias injecteraient des modèles de comportement et attitudes dans la conscience d’individus 
passifs et atomisés constituant une masse amorphe » (Breton et Proulx 2012, p. 159). Katz et 
Lazarsfeld (1955), chercheurs de l’école de Columbia, ont formulé l’hypothèse du two-step flow of 
communication (flux communicationnel en deux temps) : les messages des médias seraient filtrés par 
des leaders d’opinions et diffusés par ces derniers auprès d’audiences plus importantes. Le leader 
d’opinion, notion sur laquelle nous reviendrons plus tard, est encore aujourd’hui vu par de 
nombreux praticiens et agences de communication comme un moyen d’amplifier la communication 
des organisations sur le Web. 
Positionnement théorique 
Les travaux de recherche sur l’influence sociale, l’influence des médias et l’influence sur le 
Web sont nombreux. Notre revue de littérature sur ces différents sujets ne pourra donc être 
exhaustive. 
Le présent mémoire n’est pas, en soi, un mémoire de recherche, dans la mesure où le Master 
en Intelligence Economique & Communication Stratégique de l’IAE de Poitiers a avant tout une 
finalité professionnelle. Pourtant, celui-ci ainsi que les travaux de recherches qui ont été effectués 
pour sa réalisation s’inscrivent dans une démarche en sciences de l’information et de la 
communication (SIC). Cette discipline est caractérisée par sa relative jeunesse comparée aux autres 
disciplines des sciences humaines et sociales (SHS), mais surtout par sa complexité et son 
interdisciplinarité, à savoir sa capacité à confronter échanger des méthodes (Bourdeloie 2014). En ce 
sens, l’objet de recherche, les notions mobilisées ainsi que les méthodes utilisées dans le cadre de nos
15 
recherches proviennent de différentes disciplines que sont : les SIC, la sociologie des réseaux, la 
sémiologie, l’informatique, le marketing & la gestion, la géographie, les gender studies ainsi que la Web 
science aussi appelée la nouvelle science des réseaux. 
Problématique 
Notre mémoire cherchera à répondre à cette problématique : dans quelle mesure l'analyse & la 
visualisation de réseaux appliquées au web peuvent-elles permettre d'identifier de potentiels leaders 
d’opinions sur le Web dans le domaine des droits LGBT, ce afin de faire connaître le site 
Equaldex.com auprès d’une large audience ? Afin de répondre à cette problématique nous avons 
émis trois hypothèses que nous chercherons à vérifier grâce à l’utilisation conjointe de notre revue 
de littérature et de notre travail de recherche : 
Dans un premier temps, nous supposons que la diffusion virale d’un contenu sur le Web dépend 
de nombreux facteurs souvent non contrôlés par l’organisation. En ce sens, nous émettons 
l’hypothèse que l’identification de potentiels leaders d’opinion dans le cadre d’une stratégie de 
communication numérique ne permet pas de garantir la diffusion virale d’un contenu. 
Les hypothèses suivantes chercheront à être vérifiées à travers la réalisation d’un graphe de sites 
Web (Chapitre 2) : nous faisons ainsi l’hypothèse que le graphe de sites Web que nous réaliserons 
dans le cadre de nos recherche sera un réseau invariant d’échelle8. 
Enfin, nous supposons qu’Equaldex, en tant que site récent, s’inscrit dans un processus 
d’attachement préférentiel au sein de ce réseau9. 
Démarche méthodologique 
Afin de répondre à notre problématique et de vérifier nos hypothèses, nous allons réaliser un 
graphe de sites web traitant des droits des personnes lesbiennes, gaies, bisexuelles et transgenres en 
France et aux Etats-Unis. Dans le domaine des sciences humaines et sociales, et plus 
particulièrement des SIC, nous retiendrons que l’analyse du web revient à « vouloir saisir une réalité 
techniquement complexe et socialement construite » (Monnoyer-Smith 2013, p. 13). 
8 Un réseau invariant d’échelle (scale-free network) désigne un réseau où les liens sont répartis selon une loi de 
puissance : quelques noeuds du réseau (acteurs ou sites web) concentrent la majorité des liens (liens sociaux ou liens 
hypertextes) 
9 L’attachement préférentiel désigne le principe selon lequel un nouvel acteur au sein d’un réseau va chercher à tisser des 
liens avec les acteurs les plus connectés de celui-ci.
16 
Par graphe de sites web nous entendons un ensemble de noeuds reliés entre eux par des liens 
dirigés ou non-dirigés. Dans le cadre de notre recherche, le graphe sera composé de sites web 
(noeuds) et de liens hypertextes (liens dirigés). Pour cela, nous allons nous appuyer sur plusieurs 
socles théoriques et méthodologiques : l’analyse de réseaux sociaux (Mercklé 2011, Lazega 2014, 
Scott 2000), la théorie des graphes, la nouvelle science des réseaux (Rieder 2009), la sémiologie ainsi 
que les sciences de l’information et de la communication. 
L’idée de réaliser un graphe de sites web pour notre mémoire est le résultat d’une triple 
influence : premièrement, notre année d’alternance au sein de Linkfluence, cabinet d’études & 
éditeur de logiciel de veille e-réputation connu pour ses travaux pionniers dans le domaine de la 
cartographie du Web. Puis, les enseignements du Master Intelligence Economique et 
Communication Stratégie, dispensés par Christian Marcon & Camille Alloing sur le management de 
réseau (2013-2014), par Camille Alloing sur l’e-réputation et la communication de crise (2012-2013 
et 2013-2014) et par Mariannig Le Béchec sur l’intelligence territoriale (2013-2014) et la gestion des 
connaissances (2012-2013). Et enfin, le suivi des MOOCs (cours en lignes ouverts et massifs) « Social 
Network Analysis » dispensé par Lada Adamic sur la plateforme Coursera10 et « Web science: how the web 
is changing the world » dispensé par Leslie Carr et Susan Halford sur FutureLearn.com11. 
Cadrage de l’environnement : un mémoire portant également sur les droits 
LGBT 
Notre cas d’étude portera sur les sites web traitant des droits des personnes lesbiennes, gaies, 
bisexuelles et transgenres (LGBT). Nous souhaitons, par le biais de la réalisation d’un graphe de sites 
web portant sur cette thématique, analyser et visualiser l’écosystème informationnel d’Equaldex.com, 
plateforme d’information sur les droits LGBT créée par Dan Leveille. Notre objectif est, in fine, 
d’identifier de potentiels leaders d’opinion dans ce domaine afin d’accroître la notoriété 
d’Equaldex.com auprès des publics intéressés par la question des droits LGBT. 
Présentation du plan 
Ce mémoire est divisé en deux chapitres distincts mais complémentaires : 
Le premier chapitre cherchera à présenter une revue de littérature non-exhaustive sur 
l’influence et plus particulièrement sur l’influence sur le Web. Pour ce faire nous nous baserons sur 
10 https://www.coursera.org/course/sna 
11 https://www.futurelearn.com/courses/web-science
17 
différents travaux de recherche en sciences de l’information et de la communication, en économie, 
en sociologie, en psychologie sociale, en informatique et en marketing. 
Le second chapitre portera sur notre cas d’études, à savoir la réalisation et l’analyse d’un 
graphe de sites web sur les droits LGBT afin d’identifier de potentiels leaders d’opinion pour 
accroître la notoriété d’Equaldex. Le graphe réalisé est également accessible en ligne en image haute 
définition : http://www.jbmacluckie.net/blog/lgbt-map-642
18 
Chapitre 1 - Revue de littérature sur l’influence sur le 
web
19 
Introduction au chapitre 1 
Ce chapitre vise tout d’abord à présenter la notion centrale de ce mémoire qu’est l’influence, 
ainsi que les termes qui lui sont rattachés, à savoir : le leadership d’opinion, le relai d’opinion, la 
viralité, le buzz, le Word of Mouth (trad : bouche à oreille), l’autorité ou encore l’expertise. Dans un 
second temps, ce chapitre cherche à rendre intelligible le processus d’influence sur le web grâce à 
une revue de littérature. Enfin, ce chapitre vise également à comprendre comment un relai d’opinion 
peut être identifié, voire construit, selon les besoins d’une organisation. 
I. Influence : déconstruction d’un concept 
a. Qu’est-ce que l’influence ? 
Nous allons tenter, dans un premier temps, de définir la notion d’influence. La principale 
difficulté réside dans l’équivocité de cette dernière, dans la mesure où l’influence a fait l’objet de 
nombreuses recherches en sciences humaines et sociales. Provenant du latin influentia, l’influence 
désignait alors le « pouvoir occulte attribué aux astres de modifier le destin des hommes » (Dortier 
2008, p. 343). Aujourd’hui, l’influence ne désigne plus un pouvoir occulte et céleste, la notion a fait 
son apparition dans le langage courant et n’est plus connotée à quelque chose de mystique. Ainsi, le 
Centre National de Ressources Textuelles et Lexicales (CNRTL) la définit comme une « action 
(généralement lente et continue) d'un agent physique (sur quelqu'un, quelque chose), suscitant des 
modifications d'ordre matériel »12. Les deux définitions ci-dessus présentent, malgré leurs 
différences, une similarité : l’influence permettrait de modifier le comportement de quelqu’un ou de 
quelque chose. C’est d’ailleurs ce que défendent Massé, Marcon et Moinet (2006, p. 86) pour qui 
exercer une influence c’est avant tout « obtenir d’autrui qu’il fasse librement quelque chose qu’il 
n’aurait pas fait spontanément sans votre intervention ». 
L’influence a fait l’objet de nombreuses recherches en sciences humaines et sociales. La 
psychologie sociale, par exemple, s’intéresse à l’influence sociale, à savoir la « façon dont les attitudes 
et les comportements des personnes changent sous l’effet d’une pression réelle ou imaginaire de la 
part d’autres personnes » (Levine et Zdaniuk 2008, p. 25). Parmi les études les plus connues sur 
12 CNRTL - http://www.cnrtl.fr/definition/influence
20 
l’influence sociale, celle de Solomon E. Ash datant de 195213 a permis de démontrer qu’un individu 
peut changer d’avis grâce à l’influence exercée par un groupe sur lui. Les travaux de Stanley Milgram 
sur la soumission à l’autorité (1963) montrent l’influence que peut avoir une personne ayant une 
autorité particulière, chez Milgram il s’agissait d’une autorité médicale, sur un autre individu. Des 
travaux plus récents de psychologie sociale mettent en avant les influences quotidiennes, ainsi que les 
techniques de manipulation et de persuasion auxquelles nous sommes exposés tous les jours 
(Cialdini 2004, Beauvois et Joule 1987, Beauvois 2011). 
Dans le domaine de la communication et des media studies, l’un des types d’influences le plus 
souvent étudié est celui de l’influence des médias sur les audiences. Cette dernière a longtemps été 
expliquée grâce à la métaphore de la « seringue hypodermique », c’est à dire que « les médias 
injecteraient modèles de comportement et attitudes dans la conscience d’individus passifs et atomisés 
constituant une masse amorphe » (Breton et Proulx 2012, p. 159). Les travaux de Katz et Lazarsfeld 
(1955) viennent remettre en question l’influence des médias sur les prises de décisions des individus, 
notamment dans un contexte d’élections, et mettent en avant le rôle de l’influence interpersonnelle. 
Katz et Lazarsfeld (ibid.) formulent ainsi l’hypothèse du « flux communicationnel en deux temps »14 
(two-step flow of communication) : 
Figure 1 - Modèle du two-step flow of communication 
L’hypothèse du two-step flow of communication s’articule comme suit : 
1. Les médias de masse délivrent un message qui est réceptionné et filtré par des leaders 
d’opinion 
2. Ces mêmes leaders d’opinion jouent le rôle de médiateurs : ils font les intermédiaires entre 
les médias de masse et les audiences qui sont en contact avec eux. 
13 Asch, S.E. (1952b). "Social psychology". Englewood Cliffs,NJ:Prentice Hall. 
14 Traduction de Breton et Proulx (2012) L’explosion de la communication
21 
Les leaders d’opinions sont définis par Katz et Lazarsfeld comme des personnes « ayant été 
influentes dans leurs environnements immédiats (2008, p. 27). L’hypothèse du two-step flow of 
communication est encore aujourd’hui utilisée, notamment dans les domaines du marketing d’influence 
et du marketing viral, comme le souligne Mellet (2009), ainsi que de la communication d’influence. 
La définition de l’influence que nous retiendrons est celle de Massé, Marcon et Moinet (2006, p. 
86) pour qui exercer une influence c’est « obtenir d’autrui qu’il fasse librement quelque chose 
qu’il n’aurait pas fait spontanément sans votre intervention ». 
b. La métaphore de la contagion 
Influence, leaders d’opinion ou encore influenceurs sont des notions utilisées par de nombreux 
acteurs (prestataires de services, éditeurs de logiciels et praticiens) de la communication, du 
marketing, des relations publiques, du lobbying ou encore de l’intelligence économique. L’une des 
métaphores les plus utilisées pour expliquer le phénomène d’influence est celle de la contagion, de la 
viralité, surtout depuis l’émergence d’Internet et des réseaux socionumériques. Cette métaphore 
prend directement ses sources dans l’hypothèse du « flux communicationnel en deux temps » de 
Katz et Lazarsfeld (1955), notamment avec la valorisation du rôle des leaders d’opinion. Elle reprend 
en effet le postulat qu’un groupe de personnes restreint, les leaders d’opinion, sera à même de 
disséminer des informations, de propager une mode ou de diffuser une innovation, auprès d’une 
audience plus large. 
La métaphore de la viralité a été principalement popularisée par Malcolm Gladwell, journaliste et 
auteur du best-seller Le Point de Bascule (The Tipping Point) paru dans sa version originale en 2000. 
Selon l’auteur, pour comprendre l’émergence des modes, leurs succès et leurs échecs, il convient de 
percevoir celles-ci comme des épidémies sociales qui se propagent notamment grâce à trois types 
d’acteurs : les connecteurs, les mavens et les vendeurs (Gladwell 2008) : 
- Les connecteurs (connectors) sont, selon l’auteur, des personnes « sociables » pour qui le 
bouche-à-oreille est l’« apanage » (ibid. p. 57 et p. 59). Ils permettent de « dissémin[er] la 
tendance » (ibid. p.59) ; 
- Les mavens (mavens), de l’hébreu mevin, désignent ceux qui « possèdent l’information 
inédite » (ibid. p. 59). Le maven a d’abord été théorisé par Feick et Price (1987) qui le 
considèrent comme un individu ayant des informations inédites sur des produits du marché 
et qui est en mesure de répondre aux demandes de son entourage. Selon Gladwell (2008, p.
22 
66), les mavens « jouent un rôle important dans le déclenchement des épidémies sociales 
puisqu’ils connaissent plus de choses que la majorité des gens » ; 
- Les vendeurs (salesmen) sont primordiaux pour le déclenchement d’une épidémie sociale. 
Un vendeur, au sens de Gladwell, « possède les compétences nécessaires pour persuader 
ceux qui hésitent encore à croire au message » (2008, p.69) ; 
Ces trois acteurs sont, selon Gladwell, des éléments clés de la propagation d’une épidémie 
sociale. Cependant, l’approche du Point de Bascule a été critiquée par plusieurs chercheurs dont Watts 
et Dodds (2007) et Berger (2013) notamment pour sa dimension réductrice manquant de preuve 
empirique. 
L’idée que des leaders d’opinion puissent exercer une influence sur une audience plus ou 
moins grande a, depuis Katz et Lazarsfeld en 1955, été réutilisée dans les domaines de la 
communication et du marketing (Mellet 2009). Les années 2000 marquent en effet le « retour en 
force dans la littérature professionnelle et académique » du leader d’opinion (Vernette 2006). Dès 
lors, quelles sont les caractéristiques propres aux leaders d’opinion qui pourraient faciliter leur 
identification ? Outre l’expertise, qui peut être définie comme l’acquisition de savoir par l’expérience, 
Vernette et Florès (2004) décrivent le leader d’opinion comme « une personne qui exerce une force 
d’attraction (physique, psychologique et/ou sociale) sur son entourage et qui dispose d’une forte 
crédibilité dans une catégorie de produit. Ses jugements et comportements influencent les attitudes 
et les choix de marques de son entourage dans ce domaine ». Cependant, comme le soulignent 
Alloing et Haikel-Elsabeh (2012) cette définition ne permet pas de distinguer les leaders d’opinion 
en ligne des leaders d’opinion hors-ligne. 
c. Le web : entre amateurisme, expertise & influence 
L’émergence du Web 2.0, conceptualisé dès 2005 par Tim O’Reilly dans l’article « What Is 
Web 2.0 »15, a favorisé l’idée que le Web est devenu social. L’apparition des fora, plateformes de 
blogging (Over-Blog, Wordpress, Ghost, Medium), de vlogging (Youtube, Vine, Vimeo), de 
microblogging (Twitter & Tumblr) ou encore les réseaux socionumériques (Facebook) a permis aux 
internautes de partager des informations, de créer des contenus et d’exprimer leurs opinions. Cette 
production d’opinions est liée à ce que Shirky (2008) appelle le phénomène d’amateurisation de 
15 O'Reilly, T., 2005, « What Is Web 2.0. Design Patterns and Business Models for the Next Generation of Software », 
O’Reilly.com [En ligne] http://oreilly.com/web2/archive/what-is-web-20.html
23 
masse (mass amateurization). Tout internaute devient ainsi un medium (« everyone is a media outlet », ibid., 
p.55) et s’adresse à une audience plus ou moins « invisible » (boyd, 2007.). Patrice Flichy (2010) va 
plus loin en établissant le postulat que le web favorise l’émergence d’un nouveau règne : celui du 
pro-am, à savoir le professionnel-amateur qui, grâce à ses passions et à ses échanges avec d’autres 
passionnés, peut frôler l’expertise sur un ou plusieurs domaines particuliers. Or, cette notion 
d’expertise est souvent considérée comme l’une des caractéristiques principales du leader d’opinion 
(Vernette et Flores 2004). Néanmoins nous retiendrons l’idée selon laquelle la notion d’expertise sur 
le Web est avant tout liée à la capacité à un individu à mettre en visibilité le contenu qu’il publie sous 
l’autorité des moteurs de recherche (Alloing et Haikel-Elsabeh 2012). 
L’identification de leaders d’opinion pour nourrir des stratégies de communication et de 
marketing sur le web apparaît souvent comme une étape importante pour les professionnels de ces 
secteurs. Ainsi, l’existence de véritables « discours de promotion » des réseaux socionumériques à 
destination des entreprises (Stenger et Coutant 2010) promeuvent l’idée que les entreprises doivent 
avoir une présence en ligne et engager le dialogue avec leurs communautés virtuelles. En outre, 
celles-ci cherchent parfois à amplifier leurs campagnes de communication numérique, notamment 
par le biais du marketing viral (Vernette 2006.), à savoir l’ensemble des « techniques incitant les 
clients d’un produit ou d’une marque à les promouvoir dans leur entourage » (Lendrévie, Lévy 2014, 
p. 414, 619). 
Afin d’accroître leurs audiences, les campagnes de marketing viral (viral marketing) tendent 
souvent à cibler les influenceurs pour augmenter le phénomène de bouche-à-oreille (Word of Mouth). 
Smith et al. (2007) expliquent le marketing viral comme l’identification « des individus influents au 
sein d’un réseau social et engager avec eux de manières à encourager le bouche-à-oreille »16 (trad., 
p.387). Selon Beauvisage et al. (2011), cette focalisation des organisations et agences de 
communication sur le marketing viral et sur la métaphore de la contagion découle d’une « figure 
idéale de la diffusion sur le Web, où les individus s’enthousiasment pour un contenu inconnu reçu 
de leurs proches et le retransmettent ensuite à leurs (autres) amis : de quelques individus passionnés, 
le contenu se diffuse de proche en proche au plus grand nombre » (p.151). Cette association entre 
diffusion et influence sur le Web est également faite par Alloing et Haikel-Elsabeh (2012) qui voient 
dans le leader d’opinion avant tout une capacité à diffuser et à amplifier la transmission d’un 
message. 
16 « identifying influential individuals in social networks and connecting with them in ways that encourage WOM 
message movement » p. 387
24 
La définition de leader d’opinion sur le Web que nous retiendrons est celle d’Alloing et Haikel- 
Elsabeh (2012), à savoir : « le leader d’opinion, pris au sens de « diffuseur » est un 
amplificateur potentiel de la transmission de ce message. » Il s’agit dès lors d’une « source de 
diffusion et médiatisation sur le web plus que d’influence » (p. 10) 
II. L’influence sur le web : un processus complexe 
La problématique de l’influence sur le web a été largement traitée dans la littérature 
professionnelle et académique depuis le début des années 2000. L’émergence de la « new science of 
networks » (Watts 2004), aussi appelée « Web science » (Hendler et al., 2008), qui s’appuie principalement 
sur la théorie des graphes17 et l’analyse de réseaux sociaux, ainsi que de nombreuses recherches 
effectuées en informatique (computer science), en sociologie, en sciences de gestion et en marketing ont 
cherché à isoler les paramètres clés de l’influence sur le Web. 
Nous ne pouvons prétendre à présenter, ici, de manière exhaustive les recherches effectuées sur 
concernant la problématique de l’influence sur le web et surtout de l’amplification de la transmission 
de contenus. C’est pourquoi nous nous focaliserons sur trois orientations de recherches que nous 
considérons comme primordiales, à savoir : l’importance des individus et des réseaux, le rôle joué 
par le contenu, ainsi que la dépendance de la diffusion de l’information aux plateformes sociales et 
aux algorithmes. 
a. Le rôle des individus et des réseaux sur le Web dans les 
dynamiques d’adoption virales : les apports de l’analyse de 
réseaux 
Quels sont les facteurs clés de transmission d’une information sur le Web ? Le rôle des 
individus et des réseaux dans le processus de diffusion et d’amplification de la transmission de 
contenus sur le Web connaît un succès particulier au sein des mondes de la communication et du 
marketing (Beauvisage et al. 2011). De nombreux travaux académiques se sont ainsi focalisés sur la 
compréhension de la « contagiosité des individus » sur le Web (ibid.), c’est à dire comment les 
17 Théorie des graphes : théorie mathématique et informatique visant à étudier les graphes, à savoir l’« [e]nsemble de 
sommets (ou points) et d'arcs (ou lignes orientées) ou d'arêtes (ou lignes non orientées) liant certains couples de points » 
- http://www.cnrtl.fr/lexicographie/graphe
25 
caractéristiques de ces derniers ainsi que leurs places au sein de réseaux peuvent être des leviers de 
diffusion d’informations. 
Une première série de travaux visant à analyser la répartition des liens sociaux sur le Web a 
permis de montrer qu’un petit groupe d’individus concentrait la majorité des liens. Ces travaux 
marquaient les prémices de ce que certains chercheurs nomment « nouvelle science des réseaux » 
(Watts 2004, Rieder 2009) ou encore la « web science » (Hendler et al. 2008). Comme le souligne Rieder 
(2009) et Plantin (2013), ces travaux de recherches s’inscrivent dans la tradition de la sociologie des 
réseaux datant des travaux de Georg Simmel pour qui « la forme sociologique la plus simple du 
point de vue méthodologique est la relation entre deux éléments » (1999, p. 116), de Moreno sur le 
sociogramme ou en encore de Barnes (1954). Les concepts de réseau et de réseau social peuvent être 
respectivement définis comme un « ensemble de noeuds interconnectés » (Castells 1998, p. 526) et 
comme « constitué d’un ensemble d’unités sociales et des relations que ces unités sociales 
entretiennent les unes avec les autres, directement, ou indirectement à travers des chaînes de 
longueurs variables » (Mercklé 2011, p. 4). Mercklé poursuit : « ces unités sociales peuvent être des 
individus, des groupes informels d’individus ou bien des organisations plus formelles, comme des 
associations, des entreprises, voire des pays » (ibid., p.4). Il souligne également que les relations 
entretenues par ces unités sociales entre elles peuvent être diverses : amitié, diffusion d’informations, 
interactions verbales ou non verbales, échanges de bien ou de services ou encore la participation à 
un même événement (ibid.). 
L’analyse de réseaux peut dès lors être perçue comme une méthode quantitative (Mercklé 
2011) qui se base notamment sur la théorie des graphes. Comme le développe Mercklé : 
« L’apport méthodologique de la théorie des graphes est double : d’une part les 
graphes donnent une représentation graphique des réseaux de relations, qui 
facilite leur visualisation, permet la mise en lumière d’un certain nombre de 
leurs propriétés structurales ; d’autre part, la théorie des graphes développe un 
corpus extrêmement riche de concepts formels permettant de mesurer un 
certain nombre de propriétés des relations entre éléments » (2011, p. 22). 
Parmi les différentes mesures structurelles évoquées par Mercklé (ibid.), Lazega (2014) et Rieder 
(2009), retenons : 
- La densité : la densité d’un graphe désigne le rapport entre le nombre d’arcs (liens orientés) 
ou d’arêtes (liens non-orientés) existants et le nombre maximum d’arcs ou d’arêtes possibles ;
26 
- La connexité : la connexité d’un graphe désigne l’absence de sommets (noeuds) isolés des 
autres ; 
- Le degré : pour un graphe non-orienté (où les arêtes, ou liens, n’ont pas de sens), il s’agit du 
nombre de liens rattachés à un noeud X. Pour un graphe orienté (où les arcs, ou liens, ont un 
sens), on parle de degré entrant pour le nombre d’arcs pointant vers un noeud Y ou de degré 
sortant pour le nombre d’arcs sortant d’un noeud Y ; 
- La centralité : la centralité permet de mesurer la « position relative des acteurs au sein d’un 
système » (Lazega 2014, p. 41). Les trois principales mesures de centralité sont : la centralité 
de degré, de proximité et d’intermédiarité (Freeman 1979). Christian Marcon résume le 
concept de centralité d’un acteur au sein d’un réseau comme celui qui « opère l’interface 
rare » (Marcon 2013-2014). 
Appliquée à l’analyse des relations sur le Web, l’analyse de réseaux a permis à Albert-László 
Barabási et Reka Albert (1999) d’identifier une propriété particulière de la toile : il s’agit d’un réseau 
sans échelle (scale free network). Cela signifie que la distribution des degrés (nombre de liens d’un 
noeud) suit une loi de puissance (power law). Bernhard Rieder résume cette propriété de la manière 
suivante : « la majorité des noeuds affichent un degré relativement bas tandis qu’un nombre restreint 
de noeuds assemble un nombre très élevé de connexions. » (2009, p. 6). Albert-László Barabási, dans 
son ouvrage Linked: The New Science of Networks paru en 2003, affirme que la structure du Web est 
dominée par ces noeuds hyper-connectés, ces hubs, et cite en exemple Yahoo! et Amazon.com. Pour 
lui, « comparé à ces hubs, le reste du Web est invisible »18 (Barabási 2009, p. 58). Les recherches de 
Barabási et Albert de 1999 ont été extrapolées par l’auteur de pop-science (ou vulgarisation scientifique) 
Malcolm Gladwell dans son ouvrage Le Point de Bascule. Celui-ci parle alors de « super-échangeurs » 
(2008, p. 187) voire de super-influentials, littéralement « super-influenceurs » (Gladwell 2002, 
Beauvisage et al. 2011) pour désigner ces hubs. 
Dès lors, suffit-il qu’un noeud au sein d’un réseau soit hyper-connecté pour faire de lui un 
influenceur ? En 2007, Watts et Dodds publient un article remettant en question le rôle des 
influenceurs, ou super-influenceurs, dans la formation de l’opinion public. Les auteurs ont utilisés les 
modèles de seuil de comportement collectif (threshold model of collective behavior), conceptualisé 
notamment par Granovetter (1978) qui stipule que l’adoption ou non d’un comportement par des 
individus au sein d’un collectif dépend du nombre d’autres individus ayant déjà adopté ce 
comportement, afin de modéliser mathématiquement la capacité des individus à provoquer des 
18 « Compared to these hubs, the rest of the Web is invisible » - p. 58
27 
« cascades d’influence » (cascades of influence), que l’on peut concevoir comme une « dynamique 
d’adoption virale » (Beauvisage et al. 2011, p. 158). Watts et Dodds (ibid.) représentent leur modèle 
de l’influence comme suit : 
Figure 2 - Le modèle du two-step flow of communication comparé au modèle du réseau d'influence de Watts et Dodds (2007) 
La partie gauche de la figure est une représentation schématique de l’hypothèse du two-step 
flow of communication de Katz et Lazarsfeld (1955). La partie droite de la figure représente le réseau 
d’influence tel que modélisé par Watts et Dodds en 2007 où l’influence est co-construite entre les 
différents membres du réseau. La modélisation mathématique effectuée par Watts et Dodds (2007) a 
donc permis de remettre en question l’hypothèse des influenceurs (« the influential hypothesis »). Pour 
les auteurs, le déclenchement d’une dynamique virale d’adoption ne peut se produire que si une 
masse critique d’individus influence un nombre important d’individus influençables (ibid., p. 445, 
Beauvisage et al. 2011, p. 158), ce qui remet en question le postulat selon lequel un petit groupe 
d’influenceurs serait à la source d’une dynamique virale d’adoption tel que le soutien Gladwell 
(2008). 
D’autres recherches visent, quant à elles, à comprendre le rôle du contenu, du message ou 
encore du produit, dans les dynamiques virales. 
b. Le rôle du contenu et le modèle STEPPS 
En parallèle des recherches effectuées sur les réseaux d’influence évoquées ci-dessus, 
plusieurs scientifiques ont cherchés à identifier les caractéristiques des contenus et des informations 
qui se diffusent de manière virale, notamment sur le Web.
28 
Plusieurs travaux se sont intéressés à la viralité en tant que focalisation de l’attention des 
internautes sur un contenu en ligne. Beauvisage et al. (2011) soulignent que ces recherches, 
notamment celles de Szabo et Huberman (2010) et Leskovec et al. (2009) ont permis de mettre en 
avant deux « effets contradictoires du temps sur l’audience » à savoir : 
- L’audience totale augmente avec le temps, ce qui a pour effet d’attirer l’attention des 
internautes car ces derniers prêtent attention à des contenus qui ont déjà reçus de 
l’attention ; 
- L’attention des internautes est également portée sur la nouveauté. 
Bien que d’autres travaux de recherches portant sur la focalisation de l’attention des internautes 
existent, tout comme sur les trajectoires virales d’audiences (Crane et Sornette 2008), notre attention 
se portera principalement sur les travaux de Jonah Berger. 
Jonah Berger est professeur de marketing à l’université de Wharton et l’auteur de plusieurs 
recherches sur la viralité et le bouche-à-oreille. Dans son ouvrage Contagious: Why Things Catch On 
(2013), Berger affirme que l’hypothèse des influenceurs telle que formulée par Malcolm Gladwell 
(2008) est non-valide et que les facteurs clés de la viralité se trouvent ailleurs. Pour lui, ce qui rend un 
message, un produit, une information ou tout autre type de contenu viral, que ce soit en ligne ou 
hors-ligne, c’est avant tout les caractéristiques intrinsèques de ces derniers. 
Les caractéristiques des contenus ou des produits capables de susciter une dynamique 
d’adoption ou de diffusion virale sont, selon Berger au nombre de six. Il s’agit du cadre d’analyse 
STEPPS (Berger 2013) : 
Social 
Currency Triggers Emotion Public Practical 
Value Stories 
Figure 3 - Le modèle STEPPS de Jonah Berger (2013) 
- Social currency (monnaie social) : selon Jonah Berger, les gens se soucient des 
représentations qu’ont leur environnement d’eux. Pour cela, un produit ou une information 
doit permettre à ces derniers de se différencier, de « trouver leur remarquabilité intérieure »
29 
(inner remarkability, p. 22), de « paraître intelligent plutôt qu’idiot, riche plutôt que pauvre, 
cool plutôt que geek »19 (ibid., p. 22) ; 
- Triggers (amorces) : afin de rappeler aux gens de parler d’un produit, d’une idée ou d’une 
information, ceux-ci doivent être conçus pour que l’environnement puisse constamment 
rappeler leur existence. Un des exemples cités par l’auteur est celui de la chanson « Friday » 
de l’artiste américaine Rebecca Black20 dont la popularité serait due au fait qu’elle renvoie à 
un contexte récurrent à savoir l’arrivée du week-end ; 
- Emotion : Berger utilise la maxime « when we care, we share » (ibid. p. 23) à savoir « quand cela 
nous importe, nous le partageons ». Selon l’auteur, les contenus et produits à forte 
contagiosité font appel aux émotions. En s’appuyant sur ses propres recherches (2011) 
Berger propose une typologie des émotions selon leurs potentiels de viralité (2013, p. 109) : 
Potentiel élevé Potentiel faible 
Emotion positive 
Emerveillement (awe) 
Excitation (excitement) 
Amusement / humour (humor) 
Satisfaction (contentment) 
Emotion négative 
Colère (anger) 
Anxiété (anxiety) 
Tristesse (sadness) 
Tableau 1 - Typologie des émotions selon leurs potentiels de viralité selon Jonah Berger (2013) 
- Public : la publicité, au sens de la mise en visibilité, la dimension publique d’un produit ou 
un contenu apparaît comme l’un des facteurs clés de viralité selon Jonah Berger ; 
- Practical value (valeur pratique) : plus des produits ou des informations seront pratiques et 
utiles, plus les individus auront tendance à les partager à leurs entourages respectifs. 
Cependant, l’auteur souligne également que face à la masse importante d’informations 
auxquels ceux-ci sont soumis, les produits et informations doivent se différencier afin 
d’attirer l’attention ; 
- Stories (narration) : selon Berger, les individus ne partagent pas juste des informations, ils 
racontent des histoires. Dès lors, les produits et informations doivent être compris au sein 
d’une véritable stratégie de storytelling ; 
Les six facteurs clés de viralité présentés par Jonah Berger sous la forme du cadre d’analyse 
STEPPS ont la particularité de ne pas être interdépendants. En effet, l’auteur signale qu’un produit 
ne peut réunir que l’une des six caractéristiques et pourtant être adopté de manière virale, idem pour 
19 « Most people would rather look smart than dumb, rich than poor and cool than geeky » - Berger 2013, p. 22 
20 En ligne : http://www.youtube.com/watch?v=kfVsfOSbJY0
30 
la diffusion d’un contenu. Cependant, existe t-il d’autres facteurs pouvant provoquer la diffusion 
virale d’un contenu sur le Web ? Et quelles sont les limites du modèle STEPPS ? 
c. La dépendance aux plateformes sociales & aux algorithmes 
Les recherches menées sur l’influence sur le Web ont permis de mieux comprendre, dans 
une certaine mesure, les éléments clés permettant le déclenchement de cascades d’influence 
(Barabási et Albert 1999, Watts et Dodds 2007, Berger 2013). Mais ces résultats peuvent-ils être 
généralisés aux médias sociaux présents sur le Web ? 
Tout d’abord il convient de définir ce que nous entendons par médias sociaux. Ce terme 
regroupe selon nous deux sous-ensembles, à savoir les réseaux socionumériques et les plateformes 
de « computation sociale »21. Bien qu’il existe de nombreuses définitions des réseaux 
socionumériques (Kaplan et Haenlein 2010, Kietzmann et al. 2011), nous retiendrons la définition 
de Stenger et Coutant (2010 p. 221) qui se base sur celle donnée par boyd et Ellison (2007), à savoir : 
les réseaux socionumériques sont des services Web permettant aux individus de : 
5. « Construire un profil public ou semi-public au sein d’un système, 
6. De gérer une liste des utilisateurs avec lesquels il partage un lien, 
7. De voir et naviguer sur leur liste de liens et ceux établis par les autres au sein du système, 
8. Fondent leur attractivité essentiellement sur les trois premiers points et non sur une activité 
particulière ». 
Par exemple, sont considérés comme des réseaux socionumériques : Facebook, LinkedIn, 
Viadeo. Dans une autre mesure, les plateformes de computation sociales telles que définies par 
Pierre Lévy participent à la construction et au partage « de manière collaborative des mémoires 
numériques collectives à l'échelle mondiale, qu'il s'agisse de photos (Flickr), de video (YouTube, 
DailyMotion), de musique (Bittorrent), de pointeurs web (Delicious, Furl, Diigo) ou bien de 
connaissances encyclopédiques (Wikipedia, Freebase) »22. Réseaux socionumériques et plateformes 
de computation sociales font ainsi partie du « macro-concept » des médias sociaux, c’est à dire une 
« notion centrale qui en utilise d’autres pour être expliquée et précisée » (Stenger et Coutant 2010, p. 
210). 
Plusieurs recherches tendent à montrer que l’influence, ou plus précisément les cascades 
d’influence, à savoir les dynamiques de diffusion virale de l’information, varient en fonction des 
21 http://entretiens-du-futur.blogspirit.com/archive/2008/10/02/la-mutation-inachevee-de-la-sphere-publique.html 
22 ibid.
31 
médias sociaux étudiés. Sur Twitter, par exemple, Cha et al. (2010) ont montré à travers leurs travaux 
que le nombre de followers d’un compte (nombre de personnes abonnées) est décorrélé de la capacité 
de ce même compte à être retweeté. Ce qui va à l’encontre de l’intuition suivante : plus un compte 
aura d’abonnés, plus ses tweets seront repris par d’autres comptes Twitter. De même sur Flickr, 
puisque Beuscart et al. (2009) ont montré que le « le nombre de favoris reçus par une photo est 
décorrélé du nombre d’amis de son auteur : le succès social de certains individus ne se traduit pas 
par celui de leurs oeuvres » (Beauvisage et al. 2011, p. 159). Plus récemment, des recherches menées 
par Chang et al. (2014) du Yahoo! Labs ont permis de mieux comprendre les dynamiques d’influence 
sur la plateforme de microblogging Tumblr. Selon les auteurs, les liens sociaux sur Tumblr (matérialisés 
par un abonnement, ou follow) sont répartis selon une loi de puissance et les cascades d’influence 
sont restreintes, dans la mesure 36,05% d’entre elles se déroulent uniquement entre deux comptes 
Tumblr. 
Dès lors, il conviendrait de ne pas généraliser les différents modèles de diffusion virale 
d’informations sur le Web aux différents médias sociaux existants. 
d. L’influence sur le web : complexité et biais de rétrospection 
L’influence sur le Web apparaît comme une notion complexe, même si plusieurs travaux de 
recherches ont tentées d’isoler les facteurs clés permettant de déclencher des dynamiques virales de 
diffusion de l’information (cascades of influence) comme nous avons pu le voir précédemment. 
Pour définir ce que nous entendons par complexité, nous allons nous appuyer sur les travaux 
d’Edgar Morin et de Nassim Nicholas Taleb. La complexité peut être caractérisée comme la variété 
des constituants d’un système et par les relations d’interactions entre ceux-ci. Reprenant la 
métaphore du tissu, Edgar Morin définit la complexité comme « un tissu de constituants hétérogènes 
inséparablement associés » qui « coïncide avec une part d’incertitude », incertitude due à des 
phénomènes particuliers ou aux limites de l’entendement humain (Morin 2005). 
Pour Nassim Nicholas Taleb (2010b), un système complexe est caractérisé par une grande 
interdépendance entre les composants de ce système d’un point de vue : temporel (un composant A 
est influencé par ses propres changements internes, qui sont survenus dans le passé), horizontal (il y 
a une interdépendance entre un composant A et un composant B d’un même système complexe) et 
diagonal (un composant A est influencé par les changements subis par un composant B, et vice-versa). 
Dès lors, toujours selon Taleb, s’installe une non-linéarité qui affecte les relations de cause à
32 
effet, en les rendant plus complexes. Cette non-linéarité affecte aussi les changements d’un système, 
en les rendant imprédictibles (Taleb 2012). 
Les recherches effectuées jusqu’à présent tendent en effet à montrer que les dynamiques de 
diffusion de l’information dépendent de nombreux facteurs : les caractéristiques intrinsèques des 
contenus & leurs contextes de diffusion (Berger 2013), la contagiosité des individus et leurs places au 
sein des réseaux (Barabási et Albert 1999, Watts et Dodds 2007), les plateformes elles-mêmes 
(Beauvisage et al. 2011, Chang et al. 2014), les dispositifs attentionnels mis en place (Beauvisage et al. 
2011) et les algorithmes qui servent à la fois de filtres et mettent en visibilité certaines informations 
ou comptes recommandés (Alloing et Haikel-Elsabeh 2012). 
La complexité du processus d’influence sur le Web est soulignée par Watts et Dodds (2007). 
Ces derniers font une analogie entre les dynamiques de diffusion d’informations en ligne et les 
systèmes complexes naturels, et plus précisément les feux de forêts : 
« Certains feux de forêts, par exemple, sont beaucoup plus importants que la 
moyenne ; pourtant personne ne peut affirmer que la taille d’un feu de forêt peut 
être attribuée aux propriétés exceptionnelles de l’étincelle qui l’a déclenchée ou 
de la taille de l’arbre qui a été le premier à brûler. Les grands feux de forêts 
nécessitent une conjuration de vent, température, faible humidité et de 
combustibles qui sont présents sur de larges étendues de terrain. Tout comme 
les cascades larges au sein de réseaux d’influence, quand la bonne combinaison 
de conditions existe, alors tout étincelle peut la déclencher ; quand ce n’est pas le 
cas, aucune étincelle ne suffira. »23 (Watts et Dodds 2007, p. 454). 
L’identification d’acteurs ou de facteurs ayant joué un rôle dans la diffusion virale 
d’information sur le Web semble donc plus aisée a posteriori qu’a priori. L’examen d’un phénomène 
après que celui-ci se soit déroulé peut être affecté par un biais important : le biais de rétrospection. 
Comme le souligne le sociologue Gérald Bronner dans l’ouvrage de Portal et Roux-Dufort (2013), le 
biais de rétrospection a été largement traité en sciences sociales et a été parfois appelé 
« « dépendance téléologique », « illusion a posteriori », « illusion rétrospective » » (ibid. p. 111). 
L’auteur l’explique comme suit : « lorsque l’on considère les événements présents, et que l’on sait 
23 Traduction de : « Some forest fires, for example, are many times larger than average; yet no one would claim that the size of a forest fire 
can be in any way attributed to the exceptional properties of the spark that ignited it or the size of the tree that was the first to burn. Major 
forest fires require a conspiracy of wind, temperature, low humidity, and combustible fuel that extends over large tracts of land. Just as for large 
cascades in social influence networks, when the right global combination of conditions exists, any spark will do; when it does not, none will 
suffice. » (Watts et Dodds 2007, p. 454)
33 
donc qu’ils sont survenus, nous avons trop facilement l’impression qu’ils étaient en fait prévisibles » 
(ibid, p. 111). 
La tendance à vouloir expliquer, voire justifier, des phénomènes passés se trouve également 
dans certains écrits sur l’influence et sur la viralité. Malcolm Gladwell (2012), par exemple, tente 
d’identifier a posteriori les facteurs de diffusion virale des chaussures Hush Puppies, le tabagisme 
chez les adolescents, la dépression ou encore le suicide dans son ouvrage Le Point de Bascule. Barabási 
dans son ouvrage Linked (2003) explique la propagation du virus du Sida au moment de son 
émergence aux Etats-Unis notamment par l’existence d’un « réseau sexuel complexe parmi les 
homosexuels » dont l’un de hubs était Gaëtan Dugas (2003, p. 123). Enfin, Berger (2013) décrit les 
mécanismes de diffusion de nombreux contenus tels que la chanson « Friday » de Rebecca Black, le 
succès des vidéos « Will it blend », des marques Abercrombie & Fitch et Victoria’s Secret à travers le 
prisme de son cadre d’analyse STEPPS. 
Pourtant, ces tentatives d’explications des phénomènes de modes et de contagions sociales 
ne sont-elles pas réductrices ou du moins simplificatrices ? Si l’influence est bien un processus 
complexe, comme souligné par Watts et Dodds (2007), quels rôles jouent la chance, le hasard, la 
volatilité et l’incertitude dans celui-ci ? La tendance des individus à vouloir simplifier les phénomènes 
complexes et à les justifier, notamment a posteriori, est ce que Nassim Nicholas Taleb nomme 
l’erreur de narration (narrative fallacy). Il s’agit du « besoin que nous avons de faire coller une histoire 
ou un modèle à une succession de faits ayant ou non un rapport entre eux » (2012, p. 390). 
Ce que nous retiendrons de cette revue de littérature est la complexité de phénomène d’influence 
sur le Web. Le déclenchement de cascades d’influence, ou de dynamiques virales de diffusion 
d’information, dépend de nombreux paramètres difficilement maîtrisables. En outre, nous 
retiendrons que le rôle des leaders d’opinion est parfois surévalué, notamment dans la littérature 
professionnelle, et que l’activité ces derniers semble n’être qu’un paramètre parmi d’autres.
34 
III. De l’identification à la construction des leaders d’opinion 
a. Les outils d’identification de leaders d’opinion sur le Web 
Bien que de nombreuses recherches aient montré les limites de l’hypothèse des influenceurs, 
celle-ci persiste au sein des communautés de professionnels de la communication, du marketing, de 
la veille ou encore des relations publiques. 
Plusieurs sociétés se sont ainsi positionnées sur ces problématiques d’identification 
d’influenceurs sur le web, à l’image d’Augure, éditeur de logiciel et prestataire de service français, qui 
a créé un moteur permettant d’identifier, selon eux, des influenceurs24, ou encore des éditeurs de 
plateformes permettant grâce à des algorithmes propriétaires et opaques de quantifier l’influence des 
individus sur le web social, à l’image de Klout.com, Kred.com, Followerwonk.com et 
PeerIndex.com. Klout.com, par exemple, définit l’influence comme « l’aptitude à conduire l’action 
»25 et prétend mesurer 400 indicateurs de réseaux socionumériques différents pour produire le Klout 
Score d’un individu ou d’une organisation. Le Klout Score est un indice exprimé sur 100 qui prend 
en compte les critères suivants : 
- Le « true reach » (portée réelle) : nombre d’abonnés, d’amis, de contacts ; 
- L ‘« amplification » : le nombre d’interactions provoquées (retweets, likes, commentaires) ; 
- Le network (réseau) : le ratio entre abonnements et abonnés (principalement sur Twitter) ; 
Klout.com, ainsi que la plupart des autres outils d’identification d’influenceurs sur le Web 
existants sur le marché, se basent ainsi sur des données quantitatives exploitées selon des 
algorithmes propriétaires. Ces données quantitatives recueillies par les outils proviennent de l’identité 
numérique, à savoir la « somme des traces numériques se rapportant à un individu ou à une 
collectivité » (Ertzscheid 2011, p. 16). Pour Olivier Ertzscheid, ces traces numériques peuvent être 
des « écrits, contenus audio ou vidéo, messages sur des forums, identifiants de connexion, etc. » 
(ibid., p. 16). 
Pour mieux comprendre la notion d’identité numérique et surtout pour comprendre d’où 
sont puisées les données quantitatives exploitées par les outils d’identification d’influenceurs tels que 
Klout.com, nous retiendrons la définition de Fanny Georges de l’hexis numérique qu’elle assimile au 
concept d’identité numérique (2007). Par hexis numérique, Fanny Georges entend « une sculpture 
agissante de soi dans le monde virtuel » (Georges 2008, p. 1). Citant Goffman, elle compare l’hexis 
24 http://www.augure.com/fr/software/influenceurs 
25 https://klout.com/corp/score
35 
numérique à une barbe-à-papa, « une substance poisseuse à laquelle se collent sans cesse de 
nouveaux détails biographiques » (ibid., p. 1). Selon Georges, l’identité numérique s’articule autour 
de trois identités (ibid.) : 
- l’identité déclarative : renseignée par l’utilisateur, il s’agit principalement des détails 
biographiques et des centres d’intérêts ; 
- l’identité agissante : activités, liens sociaux et comportements de l’utilisateur ; 
- l’identité calculée : la computation de l’identité agissante par le système ; 
Nombre des outils d’identification d’influenceurs, dont Klout.com, vont ainsi exploiter les 
données provenant de l’identité déclarative (pseudonyme, nom, prénom, activités, centres d’intérêts) 
ainsi que les données provenant de l’identité calculée (nombre d’amis, followers, followings, nombre 
d’interactions, fréquence de publication etc.) d’un ou plusieurs comptes sociaux d’un utilisateur. Sur 
Klout.com, par exemple, l’exploitation de ces données prend la forme suivante : 
Figure 4 - Exemple de profil sur Klout.com 
1) Photo de profil : identité déclarative 
2) Nom et prénom : identité déclarative 
3) Biographie (déclarée sur Twitter) : identité déclarative 
4) Score Klout : identité calculée (computation de l’identité agissante de l’utilisateur) 
5) Centres d’intérêts : identité calculée selon les sujets les plus abordés par l’utilisateur 
6) Réseaux socionumériques pris en compte par le système Klout.com pour la computation 
Bien que la mesure de l’influence d’un utilisateur sur le Web en fonction de son identité calculée, 
répartie entre un ou plusieurs réseaux socionumériques, puisse apparaître comme une solution 
pertinente pour l’identification d’influenceurs, quelles en sont les limites ? Tout d’abord, comme le 
souligne Dominique Cardon (2013), les métriques prises en compte par les systèmes que sont 
Facebook, Twitter et Google ne prennent pas en compte les mêmes éléments et chaque algorithme
36 
« impos[e] [son] ordre sur la forme du Web qu'[il] mesur[e] » (2013, p. 174), ce qui rend artificielle 
leur harmonisation. Aussi, comme le soulignent Beauvisage et al. (2011) à travers leur revue de 
littérature sur l’influence, les « métriques d’influence » ne sont pas toujours corrélées à la capacité 
d’un utilisateur à déclencher des cascades d’information sur le Web. Louise Merzeau (2013) signale 
par ailleurs que la métrique émise par Klout.com se base sur des actions déjà effectuées par 
l’utilisateur (interactions déjà provoquées, par exemple). Il s’agit donc d’une mesure a posteriori, or, si 
le déclenchement de dynamiques virales de diffusion est complexe, comme souligné par Watts et 
Dodds (2007), qu’est-ce qui permet d’affirmer qu’un individu « influent » selon Klout.com le sera 
encore à l’avenir ? Enfin, si l’influence sur le Web est phénomène complexe, à savoir résultant de la 
combinaison de multiples facteurs interdépendants, celle-ci peut elle être computable comme le font 
Klout.com, PeerIndex ou Kred ? 
b. L’identification de leaders d’opinions chez Linkfluence 
Linkfluence est l’organisation qui a permis d’orienter les réflexions de ce mémoire. Cette 
startup, créée en 2006, s’est très rapidement inscrite en tant qu’acteur de l’e-réputation et du social 
media intelligence en France puis en Europe. L’identification de leaders d’opinions pour des clients, 
annonceurs & agences de communication, est une mission récurrente effectuée par les chargés 
d’études et de veille, aussi appelés social media researchers, de l’entreprise. 
Les chargés d’études et de veille produisent, généralement, deux types de livrables. Tout d’abord, 
les rapports de veille e-réputation et/ou de social media performance. Ces derniers visent à évaluer les 
actions de communication sur le web social menées par les organisations dans le cadre de leurs 
stratégies de présence en ligne. Puis, les études, qui sont au nombre de quatre : 
- Le bilan d’image : vise à faire un audit de la présence en ligne d’une organisation, d’une 
marque ou d’un produit. Pour chaque client, ce type d’étude répond aux questions : Qui 
parle de moi ? Où, quand, comment & pourquoi parle-t-on de moi ? 
- L’engage (analyse d’écosystème) : Il s’agit d’une étude visant à analyser l’écosystème 
informationnel et réputationnel d’une organisation. Ce type d’étude a pour but d’identifier et 
de mieux comprendre les communautés en lignes qui se sont exprimées à propos d’une 
marque, d’un produit ou d’une organisation et celles auprès de qui il serait intéressant pour 
l’organisation de communiquer ; 
- L’impact : Ce type d’étude vise à évaluer les retombées d’une campagne de communication 
d’un client sur le Web. Elle s’appuie principalement sur des données quantitatives ;
37 
- Le trends (analyse de tendances) : Ce type d’études vise à comprendre la perception qu’une 
ou plusieurs communautés en ligne ont d’un type de produit, comme le parfum, le chocolat 
ou encore l’hôtellerie ; 
Au coeur de l’approche de Linkfluence se trouve une méthodologie centrale qui est celle de 
l’écologie du Web (Fouetillou 2007). Pour Linkfluence, le Web peut être perçu comme un 
écosystème (ibid.). Cette métaphore sert avant tout à appréhender la complexité de l’environnement 
numérique et des éléments qui le composent et qui sont en interaction : sites web, blogs, 
plateformes, réseaux sociaux numériques, liens hypertextes, internautes, algorithmes, données etc. La 
notion d’écologie du Web prend alors tout son sens : Linkfluence vise à étudier les relations entre 
ces éléments et de comprendre comment ils entrent en interaction entre eux et avec leur 
environnement numérique. Comme le souligne Jean-Christophe Plantin citant Franck Ghitalla 
(2002), le Web est en effet un « constitué de documents possédant une topologie qu’il est possible 
de visualiser et d’analyser » (Plantin 2013, p. 229). Les travaux de Jacomy et Ghitalla (2007) ont 
permis une représentation schématique de la structure du Web. Celle-ci serait articulée autour de 
trois couches interconnectées : 
Figure 5 - Les trois couches du Web selon Ghitalla et Jacomy (2007) 
- La « couche la plus visible » : composée de sites web et plateformes tels que Google, 
Amazon, Wikipedia, SNCF etc. ; 
- La « couche intermédiaire » : il s’agit de la couche explorée par Linkfluence dans le cadre 
de ses analyses d’écosystèmes. Elle est composée d’agrégats et de communautés en lignes. 
Comme le souligne Le Béchec (2011), la notion d’agrégats « qualifie les sites web connectés 
et traitant d’une même thématique », elle peut être résumée par l’aphorisme : « Qui se 
ressemble se connecte » (Ghitalla et Jacomy 2007, p. 4) ;
38 
- La « couche profonde » : parfois qualifiée de Web invisible, il s’agit principalement des 
bases de données ; 
Cette représentation, bien que schématique, est cohérente avec les travaux de Barabási et Albert 
(1999) concernant la répartition des liens hypertextes sur le Web selon une loi de puissance. 
Pour Guilhem Fouetillou, co-fondateur de Linkfluence, l’analyse d’un écosystème Web permet de : 
« révéler les propriétés morphologiques d’une localité du web (ensemble de 
sites en proximité tant hypertextuelle que thématique) c'est-à-dire la 
structuration hypertextuelle (partition communautaire) mais aussi de replacer 
cette localité dans son environnement (approche écologique) et d’étudier les 
principes d’organisation et d’interdépendances de la localité étudiée et de son 
environnement hypertextuel ». (Fouetillou 2007, p. 282) 
Pour ce faire, la méthodologie de Linkfluence peut être décomposée en plusieurs étapes : 
Figure 6 - Représentation schématique de la méthodologie d'écologie du Web par Linkfluence 
1. Identification des besoins du client : cette étape vise à définir les périmètres linguistiques 
& temporels de l’analyse d’écosystème ainsi qu’à permettre au client d’expliciter ses besoins 
en information et ses attentes ; 
2. Sourcing : il s’agit de créer le corpus de sites web faisant partie de l’environnement 
informationnel et réputationnel du client, à savoir : les sites qui mentionnent l’organisation, 
produit(s) ou marque (s) visés, les sites qui peuvent représenter des opportunités de 
communication pour le client et les sites qui peuvent représenter des risques pour celui-ci. La 
phase de sourcing est généralement assistée par les technologies Linkfluence, notamment : 
- Le Linkscape : un panel de sites web régulièrement mis à jour et classé par 
communautés ; 
- Le crawl exploratoire : une fois un premier corpus de sites web créé, un robot 
d’indexation va permettre d’identifier l’« environnement hypertextuel proche » de 
ce corpus (Fouetillou 2007, p. 282), à savoir les sites présents à un ou plusieurs 
clics de souris de ceux identifiés ; 
1. 
Identification 
des besoins 
2. Sourcing 3. Crawl 4. 
Cartographie 
5. Analyse & 
rédaction 
6. Rendu du 
livrable
39 
Une fois les sites identifiés, ceux-ci sont catégorisés selon les thématiques qu’ils traitent. 
3. Crawl : une fois le corpus de sites web constitué, un robot d’indexation développé par 
Linkfluence va identifier l’ensemble des liens hypertextes entrants et sortants des sites 
présents dans le corpus et ce afin de visualiser celui-ci sous la forme d’un graphe du web ; 
4. Cartographie : le fichier issu de l’indexation sera ensuite visualisé et spatialisé le logiciel de 
graphe Gephi26. Par la suite, Linkfluence réalise une visualisation interactive du graphe de 
sites web créé grâce à la technologie développée en interne. Cette visualisation fera partie du 
livrable rendu au client ; 
5. Analyse & rédaction : l’analyse est à la fois quantitative et qualitative. Il s’agit d’une 
combinaison entre analyse structurale du graphe de sites web constitué, à savoir une analyse 
des positions des sites web sur le graphe et des relations hypertextuelles existantes ou non-existantes 
entre ceux-ci (Fouetillou 2007), et une analyse netnographique, qui peut être 
définie comme « nouvelle méthode qualitative de recherche [en marketing] qui adapte les 
techniques de la recherche ethnographique à l’étude des cultures et des communautés 
émergeants à travers les communications médiées par ordinateurs »27 (Kozinets 2002, p. 2). 
6. Rendu du livrable : restitution du livrable au client et présentation orale des résultats de 
l’étude 
Comme nous l’avons souligné précédemment, Linkfluence réalise au sein de ses études une 
identification des sites web influents. L’étape du crawl (étape 3 de la figure 5) permet, outre 
l’identification de liens hypertextes entrants et sortants des sites du corpus, d’appliquer à ces derniers 
plusieurs métriques issues de l’analyse de réseaux sociaux de manière automatisée. Les principales 
métriques utilisées sont : 
- Degré entrant : les liens hypertextes étant dirigés, il s’agit du nombre de liens, ou arcs, 
pointant vers un noeud (site web) ; 
- Degré sortant : nombre de liens hypertextes sortant d’un site web ; 
- Degré : somme des liens hypertextes entrants et sortants ; 
- Linkfluence Score (ou score d’influence) : calcul d’autorité basé sur le nombre de liens 
entrants d’un site. Il s’agit du score utilisé pour identifier des sites influents. 
26 http://gephi.org 
27 « [a] new qualitative research methodology that adapts ethnographic research techniques to the study of cultures and communities emerging 
through computer-mediated communications. » - Kozinets 2002, p. 2
40 
Il convient de s’attarder sur la notion d’autorité sur le Web. Celle-ci est souvent définie comme 
le « pouvoir d’agir sur autrui »28. Comme le souligne Camille Alloing sur son blog, « Lorsque l’on 
parle d’autorité sur le web, on fait souvent référence à l’autorité cognitive (relation d’influence sur la 
pensée de quelqu’un) ou l’autorité de l’expertise liée à la crédibilité d’un individu ou d’une 
ressource »29. Il poursuit « Pour schématiser, l’autorité est la pertinence, la crédibilité dans un 
domaine particulier que confère un individu à une source web »30. Si plusieurs chercheurs ont 
travaillés sur la notion d’autorité sur le Web, tels qu’Evelyne Broudoux et l’autorité informationnelle 
(2007), Camille Alloing et l’autorité réputationnelle (2013), Louise Merzeau et l’autorité sur Twitter 
(2013) ou encore Dominique Cardon et le PageRank (2013), nous allons nous focaliser sur la notion 
d’autorité en analyse de réseaux, puisque le Linkfluence Score en est un dérivé. 
Dans le domaine de l’analyse de réseaux, la notion d’autorité peut être ramenée aux travaux de 
Jon Kleinberg (1999) qui a créé, l’algorithme HITS (Hyperkinked-Induced Topic Search). Celui-ci est 
parfois considéré comme un précurseur du PageRank de Google. L’algorithme HITS permet 
d’identifier, au sein d’un graphe de pages web, des hubs et des autorités (authorities). Les autorités sont 
des pages recevant de nombreux liens hypertextes entrants, ce qui permettrait, selon Jon Kleinberg, 
d’évaluer la qualité du contenu de celles-ci. Plus une page aura de liens entrants, plus celle-ci aura un 
score d’autorité élevé. Les hubs, quant-à-eux, désignent les pages web pointant vers de plusieurs 
pages à forte autorité. Comme le souligne Kleinberg, autorités et hubs entretiennent une « relation de 
renforcement mutuel » puisque : « un bon hub est une page qui pointe vers plusieurs bonnes 
autorités ; une bonne autorité est une page qui est pointée par plusieurs bons hubs »31 (Kleinberg 
2006, p. 611) 
Afin d’identifier un site Web ou un blog influent, Linkfluence utilise généralement plusieurs 
critères qui permettent de sélectionner les sites a priori, à savoir au moment de la constitution du 
corpus (étape 2 de la figure 5) : 
- La cohérence avec les besoins de l’organisation ou de la marque ; 
- La cohérence avec les thématiques sur lesquelles une marque ou une organisation souhaite 
communiquer ; 
28 http://www.cnrtl.fr/definition/autorite 
29 http://caddereputation.over-blog.com/article-pourquoi-mesure-t-on-la-notoriete-sur-le-web-mais-rarement-la-reputation- 
85808652.html 
30 Ibid. 
31 « Hubs and authorities exhibit what could be called a mutually reinforcing relationship: a good hub is a page that points to 
many good authorities; a good authority is a page that is pointed to many good hubs. » Kleinberg, p. 611
41 
- La cohérence avec l’audience ou les audiences visées ; 
- Le type de contenus publiés et l’engagement qu’ils génèrent ; 
- L’activité : rythme de publications, interactions avec les internautes à travers les 
commentaires ; 
- L’existence de profils sociaux liés à un site ou un blog : si il possède une audience importante 
sur Twitter, Facebook, Youtube, Instagram et autres médias sociaux, sa capacité à diffuser 
du contenu auprès de nombreux internautes représente un enjeu important ; 
Une fois le graphe de sites réalisé, à savoir après le crawl (étape 3 de la figure 5) et le calcul du 
Linkfluence Score par le robot d’indexation, les chargés d’études et de veille réalisent un filtrage des 
sites selon leur score d’influence. Ce afin d’identifier les sites considérés comme les plus influents et 
de les mettre en avant dans les études réalisées pour les clients. La méthode de Linkfluence pour 
identifier des influenceurs est donc à l’opposé de celles proposées par des outils tels que Klout, 
PeerIndex, ou Kred : 
Approche de Linkfluence 
Approche des principaux outils d’identification 
d’influenceurs 
Outils & algorithmes propriétaires 
Outils & algorithmes propriétaires 
Score d’influence basé sur l’autorité d’une source 
Score d’influence basé sur un algorithme « boîte noire » 
Le calcul du score d’influence ne prend en compte que les 
métriques structurales (nombre de liens entrants) 
Le calcul du score d’influence vise à mettre sur une même 
échelle les métriques provenant de différents médias 
sociaux (Facebook, Twitter, Instagram, LinkedIn etc.) 
Un corpus de sources est créé selon le contexte et selon 
les clients 
Une base de données unique de sources est utilisée pour 
tous les clients 
Un influenceur est un document Web : site Web, un blog, 
un profil social etc. La présence numérique d’un individu 
ou d’une organisation (ensemble de ses profils sociaux, 
sites et blogs) n’est pas unifiée. 
Un influenceur est évalué selon la commensuration de ses 
l’identités calculées (à travers différents profils sociaux) et 
donc, in fine, d’une partie de sa présence en ligne. 
Approche mêlant méthode quantitative (analyse 
structurale) et méthode qualitative (netnographie) 
Approche quantitative (analyse structurale, 
commensuration)
42 
La notion d’influence est contextuelle et 
contextualisée : Le score d’influence dépend de la 
thématique étudiée & de la position d’une source au sein 
d’un réseau, deux paramètres définis en amont de l’étude 
selon les besoins d’un client. 
L’influence est globale et décontextualisée : le score 
d’influence résulte de la commensuration de profils 
sociaux classés selon des thématiques. 
Tableau 2 - Comparaison entre l'approche de Linkfluence et celle des outils d'identification d'influenceurs sur le web 
Les deux approches comparées dans le tableau précédent peuvent être résumées de la manière 
suivante : 
- L’influenceur sur le Web, ou leader d’opinion, n’existe pas en soi, il s’agit d’une 
construction dépendant du contexte, des thématiques et des besoins d’une organisation : 
approche de Linkfluence ; 
- L’influenceur sur le Web existe en soi et ses capacités sont quantifiables, il suffit de 
l’identifier : approche des outils Klout, PeerIndex, Kred etc. 
Sans porter de jugement de valeur sur la pertinence ou non des deux approches, nous tenons à 
souligner que la première approche est celle qui a été retenue dans le cadre de l’étude de cas du 
présent mémoire. 
c. La construction des leaders d’opinion 
L’identification de leaders d’opinion sur le Web, telle que nous allons la développer au fil de 
ce mémoire, découle davantage d’une construction que d’une réelle identification. Pour ce faire, 
nous nous basons sur les travaux d’Alloing et Haikel-Elsabeh (2012) qui postulent que « le statut de 
leader d’opinion doit être un construit de l’entreprise voulant se reposer sur celui-ci pour développer 
sa stratégie marketing ou de communication sur le web, en fonction de ses objectifs et attentes ». Les 
auteurs définissent le leader d’opinion sur le web comme : 
« [Un] internaute développant une certaine expertise sur un sujet donné, 
expertise reconnue par sa capacité à diffuser et médiatiser des contenus et 
avis répondant à certains questionnements. De plus, le leader d’opinion diffuse 
de l’information aux membres de son réseau ou à son public, informations 
dont le filtrage permet ainsi à ce public non seulement de construire une 
opinion sur un sujet donné […], mais aussi de renforcer aux yeux de ce public 
la crédibilité du leader qui démontre ainsi sa capacité à connaitre de
43 
manière précise un sujet, et à se positionner comme ressource sur celui-ci. 
» (Alloing et Haikel-Elsabeh 2012, p.7) 
Trois éléments nous semblent important à retenir de cette définition, à savoir : 
- Le leader d’opinion sur le Web possède une expertise sur une thématique. 
Pour les auteurs, cette expertise est liée à la capacité au leader d’opinion de mettre en 
visibilité ces informations et ses contenus pour un public & des requêtes formulées 
sur un moteur de recherche ; 
- Le leader d’opinion collecte et diffuse de l’information qu’il met à disposition de 
son réseau et de son audience (invisible ou non) ; 
- Il existe une relation de co-construction entre le leader d’opinion, qui diffuse de 
l’information au public, et le public qui va renforcer la crédibilité du leader 
d’opinion ; 
Dès lors, comment identifier un leader d’opinion ? Alloing et Haikel-Elsabeh (2012) proposent 
trois approches complémentaires : 
- Approche structurelle : compréhension du contexte, de la thématique, du sujet, selon les 
besoins de l’organisation & analyse de réseaux sociaux (positionnement de l’internaute au 
sein d’un réseau) ; 
- Approche énonciative : capacité de l’auteur (internaute) à être reconnu comme crédible ou 
fiable selon différents critères ; 
- Approche informationnelle : interactions suscitées par la diffusion de contenus par 
l’internaute ; 
L’identification de leaders d’opinion peut être donc perçue comme une construction faite par 
l’organisation selon ses besoins et ses attentes, mais surtout ses objectifs. Alloing et Haikel-Elsabeh 
(2012) en distinguent quatre : faire connaître, faire voir, faire partager, faire réagir. 
Les auteurs proposent également une série d’indicateurs formalisés dans une matrice. Celle-ci ne 
sera pas présentée intégralement, mais elle sera adaptée à l’étude de cas que nous avons traitée dans 
le cadre de nos recherches, à savoir : l’identification de leaders d’opinion sur les droits des personnes 
lesbiennes, gaies, bisexuelles et transgenres (LGBT) sur le Web.
44 
Chapitre 2 - Cas d’étude : identification de potentiels 
leaders d’opinion en ligne dans le domaine des droits 
LGBT
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux
Identification de leaders d’opinion sur le Web & analyse de réseaux

Contenu connexe

Tendances

la veille
la veillela veille
la veille
MarouaChetmi
 
Les KPI dans la stratégie sur les réseaux sociaux
Les KPI dans la stratégie sur les réseaux sociauxLes KPI dans la stratégie sur les réseaux sociaux
Les KPI dans la stratégie sur les réseaux sociaux
Philippe Guelpa-Bonaro
 
Mémoire E-réputation
Mémoire E-réputationMémoire E-réputation
Mémoire E-réputation
Sabrina Debris
 
De l'importance de la communication externe
De l'importance de la communication externeDe l'importance de la communication externe
De l'importance de la communication externe
Julie Dardelet
 
Evaluer un dispositif de veille
Evaluer un dispositif de veilleEvaluer un dispositif de veille
Evaluer un dispositif de veille
M-Colette Fauré
 
Le marketing sensoriel des services et des expériences client
Le marketing sensoriel des services et des expériences clientLe marketing sensoriel des services et des expériences client
Le marketing sensoriel des services et des expériences client
Laurence Body
 
Piloter sa campagne digital marketing de A à Z
Piloter sa campagne digital marketing de A à ZPiloter sa campagne digital marketing de A à Z
Piloter sa campagne digital marketing de A à Z
Amar LAKEL, PhD
 
LA STRATEGIE DE COMMUNICATION
LA STRATEGIE DE COMMUNICATION LA STRATEGIE DE COMMUNICATION
LA STRATEGIE DE COMMUNICATION
Hajar Otmani
 
Veille stratégique et technologique
Veille stratégique et technologiqueVeille stratégique et technologique
Veille stratégique et technologique
André Dubreuil
 
Construire une campagne de communication
Construire une campagne de communicationConstruire une campagne de communication
Construire une campagne de communication
nextia
 
Communication interne
Communication interneCommunication interne
Communication interne
Safae Lahlou
 
étude de marché ppt
étude de marché pptétude de marché ppt
étude de marché ppt
Mî Rã
 
Théories des Sciences de l'Information et de la Communication (partie 1)
Théories des Sciences de l'Information et de la Communication (partie 1)Théories des Sciences de l'Information et de la Communication (partie 1)
Théories des Sciences de l'Information et de la Communication (partie 1)
Clément Dussarps
 
Plan de communication digitale
Plan de communication digitalePlan de communication digitale
Plan de communication digitale
Tarik Zghinou
 
Strategie de communication- Gang des grand mères
Strategie de communication- Gang des grand mèresStrategie de communication- Gang des grand mères
Strategie de communication- Gang des grand mères
Master CELSA Mines
 
Plan Stratégie Marketing digitale
Plan Stratégie Marketing digitalePlan Stratégie Marketing digitale
Plan Stratégie Marketing digitale
Charly Loukakou
 
Benchmarking
BenchmarkingBenchmarking
Benchmarking
slayerxor
 
Formation stratégie de présence reseaux sociaux
Formation stratégie de présence reseaux sociauxFormation stratégie de présence reseaux sociaux
Formation stratégie de présence reseaux sociaux
Aurelie GASTINEAU
 
[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...
[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...
[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...
Adrien Bourzat
 
Communication interne : Prévenir et gérer la rumeur
Communication interne : Prévenir et gérer la rumeurCommunication interne : Prévenir et gérer la rumeur
Communication interne : Prévenir et gérer la rumeur
LITTLE FISH
 

Tendances (20)

la veille
la veillela veille
la veille
 
Les KPI dans la stratégie sur les réseaux sociaux
Les KPI dans la stratégie sur les réseaux sociauxLes KPI dans la stratégie sur les réseaux sociaux
Les KPI dans la stratégie sur les réseaux sociaux
 
Mémoire E-réputation
Mémoire E-réputationMémoire E-réputation
Mémoire E-réputation
 
De l'importance de la communication externe
De l'importance de la communication externeDe l'importance de la communication externe
De l'importance de la communication externe
 
Evaluer un dispositif de veille
Evaluer un dispositif de veilleEvaluer un dispositif de veille
Evaluer un dispositif de veille
 
Le marketing sensoriel des services et des expériences client
Le marketing sensoriel des services et des expériences clientLe marketing sensoriel des services et des expériences client
Le marketing sensoriel des services et des expériences client
 
Piloter sa campagne digital marketing de A à Z
Piloter sa campagne digital marketing de A à ZPiloter sa campagne digital marketing de A à Z
Piloter sa campagne digital marketing de A à Z
 
LA STRATEGIE DE COMMUNICATION
LA STRATEGIE DE COMMUNICATION LA STRATEGIE DE COMMUNICATION
LA STRATEGIE DE COMMUNICATION
 
Veille stratégique et technologique
Veille stratégique et technologiqueVeille stratégique et technologique
Veille stratégique et technologique
 
Construire une campagne de communication
Construire une campagne de communicationConstruire une campagne de communication
Construire une campagne de communication
 
Communication interne
Communication interneCommunication interne
Communication interne
 
étude de marché ppt
étude de marché pptétude de marché ppt
étude de marché ppt
 
Théories des Sciences de l'Information et de la Communication (partie 1)
Théories des Sciences de l'Information et de la Communication (partie 1)Théories des Sciences de l'Information et de la Communication (partie 1)
Théories des Sciences de l'Information et de la Communication (partie 1)
 
Plan de communication digitale
Plan de communication digitalePlan de communication digitale
Plan de communication digitale
 
Strategie de communication- Gang des grand mères
Strategie de communication- Gang des grand mèresStrategie de communication- Gang des grand mères
Strategie de communication- Gang des grand mères
 
Plan Stratégie Marketing digitale
Plan Stratégie Marketing digitalePlan Stratégie Marketing digitale
Plan Stratégie Marketing digitale
 
Benchmarking
BenchmarkingBenchmarking
Benchmarking
 
Formation stratégie de présence reseaux sociaux
Formation stratégie de présence reseaux sociauxFormation stratégie de présence reseaux sociaux
Formation stratégie de présence reseaux sociaux
 
[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...
[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...
[MÉMOIRE] Améliorer l'image de marque d'une entreprise sur les médias sociaux...
 
Communication interne : Prévenir et gérer la rumeur
Communication interne : Prévenir et gérer la rumeurCommunication interne : Prévenir et gérer la rumeur
Communication interne : Prévenir et gérer la rumeur
 

En vedette

Questionner le digital labor au prisme des émotions : le capitalisme affectif...
Questionner le digital labor au prisme des émotions : le capitalisme affectif...Questionner le digital labor au prisme des émotions : le capitalisme affectif...
Questionner le digital labor au prisme des émotions : le capitalisme affectif...
Julien PIERRE
 
E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?
E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?
E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?
Camille A
 
Mesurer les publics numériques ?
Mesurer les publics numériques ?Mesurer les publics numériques ?
Mesurer les publics numériques ?
Camille A
 
Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.
Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.
Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.
CREATION
 
"Social influence analysis: a new insight territory"
"Social influence analysis: a new insight territory" "Social influence analysis: a new insight territory"
"Social influence analysis: a new insight territory"
Linkfluence
 
10 influencer marketing facts
10 influencer marketing facts10 influencer marketing facts
10 influencer marketing facts
Self-employed
 
Vers une définition scientifique de l'e-réputation
Vers une définition scientifique de l'e-réputationVers une définition scientifique de l'e-réputation
Vers une définition scientifique de l'e-réputation
Camille A
 
Google et la (e)réputation : autorité, algorithmes et affetcs
Google et la (e)réputation : autorité, algorithmes et affetcsGoogle et la (e)réputation : autorité, algorithmes et affetcs
Google et la (e)réputation : autorité, algorithmes et affetcs
Camille A
 
Medias sociaux et e-reputation : sensibilisation
Medias sociaux et e-reputation : sensibilisationMedias sociaux et e-reputation : sensibilisation
Medias sociaux et e-reputation : sensibilisation
Camille A
 
Comohacerdiapositivasdecalidad
ComohacerdiapositivasdecalidadComohacerdiapositivasdecalidad
Comohacerdiapositivasdecalidad
jopablo23
 
1 historiadelas computadoras.pdf presentacion
1 historiadelas computadoras.pdf presentacion1 historiadelas computadoras.pdf presentacion
1 historiadelas computadoras.pdf presentacion
Marta Alicia Romero
 
Contents Page Progression
Contents Page ProgressionContents Page Progression
Contents Page Progression
adaaamday
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aula
Marina Rea
 
Perle d’azote
Perle d’azotePerle d’azote
Perle d’azote
Amandine Prompt
 
Stencil y graffiti
Stencil y graffitiStencil y graffiti
Stencil y graffiti
Camila Fuenzalida Medina
 
Transformationdenergie
TransformationdenergieTransformationdenergie
Transformationdenergie
evmeier
 
Weeeeeeeeeeeeeeeeee q paixaaaaaaaaa locoooo
Weeeeeeeeeeeeeeeeee q paixaaaaaaaaa locooooWeeeeeeeeeeeeeeeeee q paixaaaaaaaaa locoooo
Weeeeeeeeeeeeeeeeee q paixaaaaaaaaa locoooo
antoniotrompet96
 
Trabajo fascismo nacismo
Trabajo fascismo nacismoTrabajo fascismo nacismo
Trabajo fascismo nacismo
antoniotrompet96
 
Los mejores portátiles de 2012
Los mejores portátiles de 2012Los mejores portátiles de 2012
Los mejores portátiles de 2012
mikiasenova
 
Cómo
 Cómo Cómo
Cómo
Miri98
 

En vedette (20)

Questionner le digital labor au prisme des émotions : le capitalisme affectif...
Questionner le digital labor au prisme des émotions : le capitalisme affectif...Questionner le digital labor au prisme des émotions : le capitalisme affectif...
Questionner le digital labor au prisme des émotions : le capitalisme affectif...
 
E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?
E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?
E-reputation et crises : l'ordinaire plutôt que l'exceptionnel ?
 
Mesurer les publics numériques ?
Mesurer les publics numériques ?Mesurer les publics numériques ?
Mesurer les publics numériques ?
 
Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.
Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.
Healthcare Professionals (HCPs) in Spain who have online influence in Diabetes.
 
"Social influence analysis: a new insight territory"
"Social influence analysis: a new insight territory" "Social influence analysis: a new insight territory"
"Social influence analysis: a new insight territory"
 
10 influencer marketing facts
10 influencer marketing facts10 influencer marketing facts
10 influencer marketing facts
 
Vers une définition scientifique de l'e-réputation
Vers une définition scientifique de l'e-réputationVers une définition scientifique de l'e-réputation
Vers une définition scientifique de l'e-réputation
 
Google et la (e)réputation : autorité, algorithmes et affetcs
Google et la (e)réputation : autorité, algorithmes et affetcsGoogle et la (e)réputation : autorité, algorithmes et affetcs
Google et la (e)réputation : autorité, algorithmes et affetcs
 
Medias sociaux et e-reputation : sensibilisation
Medias sociaux et e-reputation : sensibilisationMedias sociaux et e-reputation : sensibilisation
Medias sociaux et e-reputation : sensibilisation
 
Comohacerdiapositivasdecalidad
ComohacerdiapositivasdecalidadComohacerdiapositivasdecalidad
Comohacerdiapositivasdecalidad
 
1 historiadelas computadoras.pdf presentacion
1 historiadelas computadoras.pdf presentacion1 historiadelas computadoras.pdf presentacion
1 historiadelas computadoras.pdf presentacion
 
Contents Page Progression
Contents Page ProgressionContents Page Progression
Contents Page Progression
 
Proyecto de aula
Proyecto de aulaProyecto de aula
Proyecto de aula
 
Perle d’azote
Perle d’azotePerle d’azote
Perle d’azote
 
Stencil y graffiti
Stencil y graffitiStencil y graffiti
Stencil y graffiti
 
Transformationdenergie
TransformationdenergieTransformationdenergie
Transformationdenergie
 
Weeeeeeeeeeeeeeeeee q paixaaaaaaaaa locoooo
Weeeeeeeeeeeeeeeeee q paixaaaaaaaaa locooooWeeeeeeeeeeeeeeeeee q paixaaaaaaaaa locoooo
Weeeeeeeeeeeeeeeeee q paixaaaaaaaaa locoooo
 
Trabajo fascismo nacismo
Trabajo fascismo nacismoTrabajo fascismo nacismo
Trabajo fascismo nacismo
 
Los mejores portátiles de 2012
Los mejores portátiles de 2012Los mejores portátiles de 2012
Los mejores portátiles de 2012
 
Cómo
 Cómo Cómo
Cómo
 

Similaire à Identification de leaders d’opinion sur le Web & analyse de réseaux

Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...
Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...
Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...
Destiny TCHEHOUALI
 
Sfsic17 alexandre coutant
Sfsic17 alexandre coutantSfsic17 alexandre coutant
Sfsic17 alexandre coutant
SFSIC Association
 
Analyse critiques des réseaux sociaux slides de base
Analyse critiques des réseaux sociaux   slides de baseAnalyse critiques des réseaux sociaux   slides de base
Analyse critiques des réseaux sociaux slides de base
acmjanimweb
 
Arial Analyse critiques des réseaux sociaux slides de base
Arial Analyse critiques des réseaux sociaux   slides de baseArial Analyse critiques des réseaux sociaux   slides de base
Arial Analyse critiques des réseaux sociaux slides de base
acmjanimweb
 
Les médias socionumériques : des espaces de construction d'une culture numéri...
Les médias socionumériques : des espaces de construction d'une culture numéri...Les médias socionumériques : des espaces de construction d'une culture numéri...
Les médias socionumériques : des espaces de construction d'une culture numéri...
JCDomenget
 
Les usages des reseaux sociaux arifor
Les usages des reseaux sociaux ariforLes usages des reseaux sociaux arifor
Les usages des reseaux sociaux arifor
Frédéric Haeuw
 
2014 03 arcade j1 haguenau_app_itg_j_vds
2014 03 arcade  j1 haguenau_app_itg_j_vds2014 03 arcade  j1 haguenau_app_itg_j_vds
2014 03 arcade j1 haguenau_app_itg_j_vds
Jean Vanderspelden
 
20080911 Intro Conference Yves
20080911 Intro Conference Yves20080911 Intro Conference Yves
20080911 Intro Conference Yves
Social Computing
 
Cours Socio Reseaux Sociaux
Cours Socio Reseaux SociauxCours Socio Reseaux Sociaux
Cours Socio Reseaux Sociaux
Rémi Bachelet
 
E reputation these doctorat Camille Alloing
E reputation these doctorat Camille AlloingE reputation these doctorat Camille Alloing
E reputation these doctorat Camille Alloing
Amel Miaoulis
 
PréSentation Clcv 10 Nov V3
PréSentation Clcv 10 Nov V3PréSentation Clcv 10 Nov V3
PréSentation Clcv 10 Nov V3
François Duport
 
Presentation FCFP
Presentation FCFPPresentation FCFP
Presentation FCFP
Mario tout de go Inc.
 
Presentation_wiki
Presentation_wikiPresentation_wiki
Presentation_wiki
Jérôme Delacroix
 
L’influence des internautes sur les marques à travers les médias sociaux 2009
L’influence des internautes sur les marques à travers les médias sociaux 2009L’influence des internautes sur les marques à travers les médias sociaux 2009
L’influence des internautes sur les marques à travers les médias sociaux 2009
Sarah Connor
 
Dev communautes logiciel libre
Dev communautes logiciel libreDev communautes logiciel libre
Dev communautes logiciel libre
Rayna Stamboliyska
 
lisibleAnalyse critiques des réseaux sociaux slides de base
lisibleAnalyse critiques des réseaux sociaux   slides de baselisibleAnalyse critiques des réseaux sociaux   slides de base
lisibleAnalyse critiques des réseaux sociaux slides de base
acmjanimweb
 
La communication numérique : Internet et réseaux sociaux
La communication numérique : Internet et réseaux sociauxLa communication numérique : Internet et réseaux sociaux
La communication numérique : Internet et réseaux sociaux
Com'3elles - www.com3elles.com
 
AGMQ 2011 : Les données libres et le territoire
AGMQ 2011 : Les données libres et le territoireAGMQ 2011 : Les données libres et le territoire
AGMQ 2011 : Les données libres et le territoire
noucher
 
Extraits de cours - Marketing Communautaire
Extraits de cours - Marketing CommunautaireExtraits de cours - Marketing Communautaire
Extraits de cours - Marketing Communautaire
Erwan Le Nagard
 

Similaire à Identification de leaders d’opinion sur le Web & analyse de réseaux (20)

Profils des utilisateurs des réseaux sociaux
Profils des utilisateurs des réseaux sociauxProfils des utilisateurs des réseaux sociaux
Profils des utilisateurs des réseaux sociaux
 
Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...
Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...
Logiques d'usages et jeux d'acteurs sur les réseaux sociaux : Le cas de la pl...
 
Sfsic17 alexandre coutant
Sfsic17 alexandre coutantSfsic17 alexandre coutant
Sfsic17 alexandre coutant
 
Analyse critiques des réseaux sociaux slides de base
Analyse critiques des réseaux sociaux   slides de baseAnalyse critiques des réseaux sociaux   slides de base
Analyse critiques des réseaux sociaux slides de base
 
Arial Analyse critiques des réseaux sociaux slides de base
Arial Analyse critiques des réseaux sociaux   slides de baseArial Analyse critiques des réseaux sociaux   slides de base
Arial Analyse critiques des réseaux sociaux slides de base
 
Les médias socionumériques : des espaces de construction d'une culture numéri...
Les médias socionumériques : des espaces de construction d'une culture numéri...Les médias socionumériques : des espaces de construction d'une culture numéri...
Les médias socionumériques : des espaces de construction d'une culture numéri...
 
Les usages des reseaux sociaux arifor
Les usages des reseaux sociaux ariforLes usages des reseaux sociaux arifor
Les usages des reseaux sociaux arifor
 
2014 03 arcade j1 haguenau_app_itg_j_vds
2014 03 arcade  j1 haguenau_app_itg_j_vds2014 03 arcade  j1 haguenau_app_itg_j_vds
2014 03 arcade j1 haguenau_app_itg_j_vds
 
20080911 Intro Conference Yves
20080911 Intro Conference Yves20080911 Intro Conference Yves
20080911 Intro Conference Yves
 
Cours Socio Reseaux Sociaux
Cours Socio Reseaux SociauxCours Socio Reseaux Sociaux
Cours Socio Reseaux Sociaux
 
E reputation these doctorat Camille Alloing
E reputation these doctorat Camille AlloingE reputation these doctorat Camille Alloing
E reputation these doctorat Camille Alloing
 
PréSentation Clcv 10 Nov V3
PréSentation Clcv 10 Nov V3PréSentation Clcv 10 Nov V3
PréSentation Clcv 10 Nov V3
 
Presentation FCFP
Presentation FCFPPresentation FCFP
Presentation FCFP
 
Presentation_wiki
Presentation_wikiPresentation_wiki
Presentation_wiki
 
L’influence des internautes sur les marques à travers les médias sociaux 2009
L’influence des internautes sur les marques à travers les médias sociaux 2009L’influence des internautes sur les marques à travers les médias sociaux 2009
L’influence des internautes sur les marques à travers les médias sociaux 2009
 
Dev communautes logiciel libre
Dev communautes logiciel libreDev communautes logiciel libre
Dev communautes logiciel libre
 
lisibleAnalyse critiques des réseaux sociaux slides de base
lisibleAnalyse critiques des réseaux sociaux   slides de baselisibleAnalyse critiques des réseaux sociaux   slides de base
lisibleAnalyse critiques des réseaux sociaux slides de base
 
La communication numérique : Internet et réseaux sociaux
La communication numérique : Internet et réseaux sociauxLa communication numérique : Internet et réseaux sociaux
La communication numérique : Internet et réseaux sociaux
 
AGMQ 2011 : Les données libres et le territoire
AGMQ 2011 : Les données libres et le territoireAGMQ 2011 : Les données libres et le territoire
AGMQ 2011 : Les données libres et le territoire
 
Extraits de cours - Marketing Communautaire
Extraits de cours - Marketing CommunautaireExtraits de cours - Marketing Communautaire
Extraits de cours - Marketing Communautaire
 

Identification de leaders d’opinion sur le Web & analyse de réseaux

  • 1. UNIVERSITE DE POITIERS INSTITUT D’ADMINISTRATION DES ENTREPRISES MEMOIRE Identification de leaders d’opinion sur le Web & analyse de réseaux Maître d’apprentissage : Fanny Forgeau Professeur référent : Camille Alloing Responsable de filière : Nicolas Moinet Année universitaire 2013 – 2014 Jean Baptiste Mac Luckie Master 2 Intelligence Economique et Communication Stratégique Note obtenue : 18,5/20
  • 2. 2
  • 3. 3 Résumé Dans quelle mesure l'analyse & la visualisation de réseaux appliquées au web peuvent-elles permettre d'identifier de potentiels leaders d’opinions sur le Web ? C’est à cette question que ce mémoire a cherché à répondre. Le présent mémoire s’inscrit dans une volonté double : interroger le concept d’influence sur le Web, et plus précisément le concept de leader d’opinion, et proposer un cas d’étude portant sur l’identification de potentiels leaders d’opinions dans le domaine des droits LGBT afin de développer la notoriété d’Equaldex.com. Ce travail de recherche a été réalisé dans le cadre du Master 2 Intelligence Economique & Communication Stratégique de l’IAE de Poitiers et d’une année d’apprentissage au sein de l’entreprise Linkfluence, spécialiste du social media intelligence en France. A travers une revue de littérature sur les concepts d’influence, la réalisation & l’analyse d’un graphe de sites web afin d’identifier de potentiels leaders d’opinion au sein du réseau cartographié, nous avons souhaité déconstruire certains mythes rattachés à la notion d’influence. En effet, les discours des praticiens semblent parfois surévaluer le rôle des leaders d’opinion dans le déclenchement de dynamiques virales. A cela s’ajoute notre volonté de discuter des méthodes généralement utilisées pour identifier les influenceurs sur le Web et de proposer des nuances quant aux applications de celles-ci. Mots-clés : Influence | Leader d’opinion | Analyse de réseaux | Incertitude
  • 4. 4 Remerciements Je souhaite vivement remercier Camille Alloing, maître de conférences en Sciences de l’Information et de la Communication pour la qualité de son suivi et les remarques pertinentes qu’il aura su me faire au long de ces deux années de Master Intelligence Economique & Communication Stratégique. Puisque ce mémoire a été réalisé dans le cadre d’une année en apprentissage, je remercie l’entreprise Linkfluence qui m’a accueillie le 2 octobre 2013 en tant que social media analyst. Je n’aurais pu rêver mieux comme lieu d’apprentissage. Merci donc à Guilhem Fouetillou, co-fondateur, à Fanny Forgeau, directrice du pôle Research, à Matthieu Vion, Matthieu Ponzio, Hélène Girault, Antoine Vaguet et tous mes collègues du pôle Research pour leur accueil, leur gentillesse et pour la qualité de leurs conseils. Mes remerciements vont également à Hervé Simonin, CEO, Camille Maussang, co-fondateur, Romain Pedron et au reste de la grande équipe Linkfluence. Merci également à Mariannig Le Béchec pour ses retours très instructifs sur l’analyse de réseau et la visualisation de graphes lors du COSSI 2014, à Caitriona Noonan de The University of South Wales qui a su me donner goût à la recherche, à Christian Marcon et Nicolas Moinet. Je souhaite également remercier Antoine H. pour son aide & sa relecture attentive, Antoine D., Quentin G., Ludovic C., Raphaël B. & tous les amis qui ont pu m’aider pour la rédaction de ce mémoire. Merci à Dan Leveille pour avoir accepté que je réalise ce cas d’étude sur Equaldex & pour avoir suscité mon intérêt pour les droits des personnes LGBT. Enfin, j’adresse un dernier remerciement à l’ensemble de ma famille.
  • 5. 5 Afin de visualiser le graphe de site réalisé pour notre cas d’étude en haute qualité, merci de vous rendre à l’adresse suivante : http://www.jbmacluckie.net/blog/lgbt-map-642
  • 6. 6 Glossaire & sigles Agrégat : sur le Web, ensemble de sites web connectés traitant d’une même thématique. Amateurisation de masse : selon Shirky (2008) il s’agit du phénomène découlant de la possibilité pour tout internaute d’exprimer ses opinions sur le Web Analyse de réseaux (ou analyse structurale) : étude des réseaux & des relations sociales, principalement en sociologie. Arc : lien entre deux noeuds dans un graphe orienté. Arête : lien entre deux noeuds dans un graphe non-orienté. Autorité : en analyse de réseaux, une autorité désigne un noeud ayant un nombre important de liens entrants (Kleinberg 1999). Cartographie du web (ou graphe de site web) : visualisation de réseau de sites web & des liens hypertextes qu’ils entretiennent entre eux. Cascade d’informations (ou cascade d’influence, dynamique virale) : lorsqu’un individu adopte un comportement en conformité avec le comportement des membres de son réseau (Easley et Kleinberg 2010). Centralité de degré (degree) : détermine la position d’un noeud au sein d’un réseau. La centralité de degré désigne le nombre de liens entrants et sortants d’un noeud. Centralité d’intermédiarité (betweeness centrality) : nombre de plus courts chemins du réseau passant par chaque noeud (Drevelle 2013). Centralité de proximité (closeness centrality) : degré auquel un noeud est proche des autres noeuds d'un réseau. Centralité eigenvector (eigenvector centrality) : mesure la façon dont un noeud est connecté aux autres noeuds très connectés du graphe (Drevelle 2013) Complexité : dans le cadre de notre mémoire, ensemble d’éléments entretenant une forte interdépendance entre eux. Crawl : indexation réalisée par un robot. Crowdsourcing : approvisionnement par la foule. Dans le cadre de notre mémoire, Equaldex.com, le site faisant l’objet du cas d’étude, fonctionne grâce à l’approvisionnement par la foule d’informations sur les droits LGBT dans le monde Degré : nombre de liens entrants et sortants d’un noeud au sein d’un graphe non-orienté (où les liens n’ont pas de sens). Dans un graphe orienté, le degré peut être entrant (liens entrants vers un noeud) ou sortant (liens sortants d’un noeud). Droits LGBT : droits des personnes lesbiennes, gaies, bisexuelles et transgenres. EdgeRank : plgorithme de Facebook visant à gérer la mise en visibilité des informations sur le flux d’information des utilisateurs – Pour aller plus loin : www.whatisedgerank.com Equaldex : plateforme d’information sur les droits LGBT dans le monde créée par Dan Leveille. Elle fonctionne grâce au crowdsourcing.
  • 7. 7 Expertise : savoir acquis grâce à l’expérience. Dans le cadre de notre mémoire, l’expertise sur le Web est comprise comme la capacité d’un individu à produire du contenu expert et à mettre en visibilité celui-ci (Alloing et Haikel-Elsabeh 2012). Gay : Utilisé, dans le cadre de ce mémoire, en tant que synonyme d’homosexuel Gephi : Outil d’analyse et de visualisation de graphes Graphe : ensemble de sommets (noeuds) et d’arcs / arêtes (liens) liant certains sommets. Dans notre mémoire, le terme graphe sera utilisé en tant que synonyme de réseau. Hexis numérique : sculpture agissante de soi dans les mondes virtuelles (Georges 2007) Hub : noeuds d’un graphe possédant un degré important Identité numérique : ensemble des traces numériques laissées par un internaute sur le Web (Ertzscheid 2011) Influence : pour Massé, Marcon et Moinet Massé, exercer une influence c’est « obtenir d’autrui qu’il fasse librement quelque chose qu’il n’aurait pas fait spontanément sans votre intervention » (2006, p. 86) Influenceur : terme marketing utilisé comme synonyme de leader d’opinion. Internet : réseau informatique mondial reliant des ordinateurs entre eux. Loi de puissance (power law) : dans le cadre de notre mémoire, la loi de puissance s’applique concernant les degrés d’un graphe. Quelques noeuds concentrent la majorité des liens. Klout : outil en ligne permettant de computer l’activité des profils sociaux d’un internaute. Klout prétend pouvoir fournir un score d’influence. Leader d’opinion : pour Alloing et Haikel-Elsabeh, « le leader d’opinion, pris au sens de « diffuseur » est un amplificateur potentiel de la transmission de ce message. » Il s’agit dès lors d’une « source de diffusion et médiatisation sur le web plus que d’influence » (2012, p.10) LGBT : Lesbien, gay, bisexuel & transgenre Maven : utilisé comme synonyme de leader d’opinion Nouvelle science des réseaux (& Web science) : étude des réseaux ayant notamment émergé grâce aux travaux de Duncan Watts & Albert-László Barabási. Médias sociaux : « macro-concept » (Stenger et Coutant 2010) englobant réseaux socionumériques et plateformes de partage de contenu MOOC : Massive Online Open Course Mouvement LGBT : mouvement social ayant émergé depuis les années 60 visant à lutter contre l’homophobie, les discriminations et pour les droits LGBT (Beynon 2010). Netnographie : étude des communautés en ligne (Kozinets 2002). Noeud : sommet d’un réseau. Dans notre mémoire : site web sur le graphe. PageRank : algorithme de classement des pages web de Google, dérivé de l’algorithme de calcul de centralité eigenvector. Réseau : ensemble de noeuds interconnectés (Castells 1998, p. 526)
  • 8. 8 Réseaux socionumériques : services web permettant de 1. « Construire un profil public ou semi-public au sein d’un système, 2. De gérer une liste des utilisateurs avec lesquels il partage un lien, 3. De voir et naviguer sur leur liste de liens et ceux établis par les autres au sein du système, 4. Fondent leur attractivité essentiellement sur les trois premiers points et non sur une activité particulière ». (Stenger et Coutant, p. 221) STEPPS : cadre d’analyse développé par Jonah Berger permettant d’identifier les facteurs clés de la viralité (potentielle ou avérée) d’un contenu ou d’un produit Two-step flow of communication (flux communicationnel en deux temps) : modèle de l’influence interpersonnelle selon Katz et Lazarsfeld (1955). De manière schématique : les médias de masses diffusent du contenu qui sera filtré puis partagé par des leaders d’opinion aux membres de leurs réseaux. Ce modèle est encore utilisé dans le cadre de stratégies de relations publiques & de communication par exemple. Viralité (ou contagion) : idée selon laquelle un produit, une idée, une information peuvent se propager telles des épidémies sociales (Gladwell 2008) Web (World Wide Web) : application d’Internet basée sur l’hypertextualité.
  • 9. 9 Table des figures Figure 1 - Modèle du two-step flow of communication ________________________________________________________ 20 Figure 2 - Le modèle du two-step flow of communication comparé au modèle du réseau d'influence de Watts et Dodds (2007) ________ 27 Figure 3 - Le modèle STEPPS de Jonah Berger (2013) _____________________________________________________ 28 Figure 4 - Exemple de profil sur Klout.com ______________________________________________________________ 35 Figure 5 - Les trois couches du Web selon Ghitalla et Jacomy (2007) _____________________________________________ 37 Figure 6 - Représentation schématique de la méthodologie d'écologie du Web par Linkfluence ______________________________ 38 Figure 8 - Capture d'écran d'Equaldex - Frise chronologique des droits LGBT à travers le temps __________________________ 48 Figure 9 - Capture d'écran d'Equaldex - Un lieu réticulaire de synchorisation _______________________________________ 50 Figure 10 - Processus de réalisation de notre graphe de sites web sur les droits LGBT __________________________________ 57 Figure 11 - Etapes de spatialisation du graphe de sites web ____________________________________________________ 58 Figure 12 - Visualisation du graphe de sites web __________________________________________________________ 60 Figure 14 – Répartition des sites du graphe selon leurs catégories ________________________________________________ 61 Figure 16 - Le graphe des droits LGBT, un réseau invariant d'échelle ____________________________________________ 64 Table des tableaux Tableau 1 - Typologie des émotions selon leurs potentiels de viralité selon Jonah Berger (2013) _____________________________ 29 Tableau 2 - Comparaison entre l'approche de Linkfluence et celle des outils d'identification d'influenceurs sur le web _______________ 42 Tableau 3 - Principaux indicateurs pour l'identification de potentiels leaders d'opinion pour Equaldex _______________________ 53 Tableau 4 - Principaux critères retenus pour la création du graphe de sites web _______________________________________ 54 Tableau 5 - Comparaison des sources ayant les scores les plus importants selon 3 métriques structurales _______________________ 62 Tableau 6 - Sélection des potentiels leaders d'opinion pour Equaldex _____________________________________________ 63
  • 10. 10 Table des matières Résumé ...................................................................................................................................... 3 Remerciements .......................................................................................................................... 4 Glossaire & sigles ...................................................................................................................... 6 Table des figures ....................................................................................................................... 9 Table des tableaux ..................................................................................................................... 9 Introduction ............................................................................................................................. 12 Positionnement théorique ................................................................................................................. 14 Problématique ................................................................................................................................... 15 Démarche méthodologique .............................................................................................................. 15 Cadrage de l’environnement : un mémoire portant également sur les droits LGBT ....................... 16 Présentation du plan ......................................................................................................................... 16 Chapitre 1 - Revue de littérature sur l’influence sur le web .................................................... 18 Introduction au chapitre 1 ....................................................................................................... 19 I. Influence : déconstruction d’un concept .......................................................................... 19 a. Qu’est-ce que l’influence ? ......................................................................................................... 19 b. La métaphore de la contagion ................................................................................................... 21 c. Le web : entre amateurisme, expertise & influence .................................................................. 22 II. L’influence sur le web : un processus complexe ............................................................. 24 a. Le rôle des individus et des réseaux sur le Web dans les dynamiques d’adoption virales : les apports de l’analyse de réseaux ......................................................................................................... 24 b. Le rôle du contenu et le modèle STEPPS ................................................................................. 27 c. La dépendance aux plateformes sociales & aux algorithmes ................................................... 30 d. L’influence sur le web : complexité et biais de rétrospection ................................................... 31 III. De l’identification à la construction des leaders d’opinion ........................................... 34 a. Les outils d’identification de leaders d’opinion sur le Web ...................................................... 34 b. L’identification de leaders d’opinions chez Linkfluence .......................................................... 36 c. La construction des leaders d’opinion ....................................................................................... 42 Chapitre 2 - Cas d’étude : identification de potentiels leaders d’opinion en ligne dans le domaine des droits LGBT ....................................................................................................... 44 Introduction au chapitre 2 ....................................................................................................... 45 I. Présentation d’Equaldex en trois points ........................................................................... 47 a. Equaldex : un site d’information sur les droits LGBT .............................................................. 47 b. Equaldex : Un lieu réticulaire de synchorisation ...................................................................... 49 c. Equaldex : Un site en quête de notoriété ? ................................................................................ 50 II. Structuration de l’écosystème informationnel d’Equaldex ............................................. 51 a. Définition des besoins d’Equaldex & leur déclinaison en indicateurs ..................................... 52
  • 11. 11 b. Constitution du corpus de sites web ......................................................................................... 53 c. Quel statut donner aux liens hypertextes ? ................................................................................ 54 d. La cartographie comme processus itératif ................................................................................ 56 III. Visualisation de l’écosystème informationnel d’Equaldex ........................................... 57 a. Spatialisation .............................................................................................................................. 57 b. Choix des signes : de la nécessité d’un travail sémiologique ................................................... 58 c. Visualisation & analyse de l’écosystème informationnel d’Equaldex ....................................... 59 IV. Résultats & discussion ................................................................................................... 61 a. Identification de potentiels leaders d’opinion ........................................................................... 61 b. Le graphe de sites web et nos hypothèses de recherche ........................................................... 64 c. Réflexions sur la cartographie & limites de l’approche ............................................................ 65 Conclusion ............................................................................................................................... 67 Bibliographie ........................................................................................................................... 71 Articles & monographies .................................................................................................................. 71 Articles de blogs ................................................................................................................................ 76 Vidéo ................................................................................................................................................. 76 Cours ayant inspiré nos travaux ........................................................................................................ 76 Annexes ................................................................................................................................... 77 Correspondance avec Dan Leveille (anglais) – Juillet 2014 .............................................................. 77 Visualisation du graphe de sites web realisé (sans étiquette des noeuds) ........................................ 79
  • 12. 12 Introduction « Le désastre de l’ère de l’information réside dans le fait que la toxicité des données augmente plus rapidement que leurs avantages »1 (Taleb 2010a, p. 57). Cette citation de Nassim Nicholas Taleb, économiste, philosophe et spécialiste de l’épistémologie des probabilités, semble refléter la fascination que les individus entretiennent avec les technologies de l’information et de la communication (TIC). Aujourd’hui, Internet, le « réseau des réseaux », et le World Wide Web, l’application la plus connue d’Internet, jouent un rôle important dans le quotidien de nos sociétés. Ainsi, en 2013 le monde comptait plus de 2,8 milliards d’internautes, dont plus de 55 millions en France2. En ce sens, Internet et le Web sont « ubiquitaires – ils sont partout – et pervasifs – ils ne peuvent être éteints »3 (Deuze 2012, p. xi). Comme le souligne Mark Deuze, nous vivons « dans » les TIC plutôt qu’« avec » elles. Les vies des individus connectés seraient ainsi dissoutes dans l’ubiquité du numérique. L’omniprésence de ces technologies de l’information et de la communication semble avoir des impacts sur nos vies et ce à plusieurs échelles. Le World Wide Web, inventé par Tim Berners- Lee et Robert Cailliau en 1991 (Castells 2001), est une application d’Internet basée sur un système d’hypertextualité permettant de naviguer d’une page web à un autre de manière non-linéaire. Le début des années 2000 marque l’émergence d’un nouveau stade du développement du Web : le Web 2.0, parfois appelé Web social ou Web participatif. Popularisé par Tim O’Reilly en 2005, le Web 2.0 désigne un ensemble de techniques, fonctionnalités et plateformes qui met les usagers « au centre du dispositif médiatique » (Breton et Proulx 2012, p. 314). Il est couramment admis que grâce au Web social « les modes de création et de distribution des contenus médiatiques connaissent des transformations significatives, bouleversant les modèles traditionnels des industries culturelles » (ibid. p. 314). Le Web 2.0 favoriserait ainsi l’émergence d’une « culture participative » (Jenkins 2006), de « communautés virtuelles » (Rheingold 2002) et permettrait à tout individu de devenir un medium (Shirky 2008). L’émergence du Web 2.0 semble avoir nourrit un certain nombres d’utopies liées à l’information et la communication. En effet, en permettant aux internautes de produire du contenu, d’interagir avec leurs pairs, de collaborer par l’intermédiaire de plateformes à dimension « sociales », 1 « The calamity of the information age is that the toxicity of data increases much faster than its benefits » (Taleb 2010, p. 57) 2 Voir www.internetworldstats.com 3 « Media are ubiquitous – they are everwhere – and pervasive – they cannot be switched off » (Deuze 2012, p. xi)
  • 13. 13 de financer des projets de manière participative grâce à des sites de crowdfunding4 ou encore de participer à changer la société par le biais de plateformes de pétitions en ligne5, le Web social semble être au coeur d’une utopie grandissante : celle d’une communication universelle permettant une collaboration pour le bien de la société. Il est important de noter que cette utopie est portée par différents profils d’individus : consultants spécialisés en technologies de l’information et de la communication, professionnels de la communication, mais également par des universitaires tels que Clay Shirky (2008) ou encore David Gauntlett (2011). Lorsque le Web social est évoqué, il est souvent lié aux notions de médias sociaux et de réseaux sociaux. Ces expressions sont d’ailleurs fréquemment utilisées dans le domaine de la communication et du marketing. Frédéric Cavazza, consultant dans le domaine de la communication et blogueur, définissait en 2009 les médias sociaux comme « un ensemble de services permettant de développer des conversations et des interactions sociales sur internet ou en situation de mobilité »6. Pour ce consultant en communication, des plateformes telles que Facebook, Twitter, Youtube, ou encore Tumblr sont des médias sociaux. Stenger et Coutant (2010) soulignent néanmoins que le concept de médias sociaux est avant tout un « macro-concept ». Il s’agirait selon les auteurs d’un terme englobant différentes notions, différents types de plateformes & différentes pratiques numériques. Pour Alloing (2013), parler de médias sociaux est un pléonasme car cela supposerait qu’il existe des médias non sociaux. Depuis l’émergence du Web 2.0 il est important de noter qu’il existe de réels discours de promotion des médias sociaux à destination des entreprises (Stenger et Coutant 2010). Agences de communication, praticiens & blogueurs en communication et en marketing font fréquemment l’éloge de la présence en ligne des organisations et de leurs dirigeants. A titre d’exemple, en août 2014 Nicolas Bordas, vice président de l’agence de communication TBWAEurope, publiait sur le média LesEchos.fr une tribune intitulée « Pourquoi les patrons français doivent être présents sur Twitter »7. Dans cette logique de présence en ligne, organisations et marques sont encouragées à amplifier leur présence en ligne grâce au marketing d’influence ou marketing viral. La recherche de la 4 Un exemple de plateforme de crowdfunding est kickstarter.com 5 Change.org s’inscrit directement dans ce créneau : change.org 6 Cavazza, F., 2009, « Une définition des médias sociaux », MediasSociaux.fr [En ligne] http://www.mediassociaux.fr/2009/06/29/une-definition-des-medias-sociaux/ 7 Tribune en ligne : http://www.lesechos.fr/idees-debats/editos-analyses/0203718074566-pourquoi-les-patrons-francais- doivent-etre-presents-sur-twitter-1035897.php
  • 14. 14 viralité et du buzz sont caractéristiques de ces discours. De nombreux acteurs se sont positionnés sur ce marché et proposent leurs services pour identifier, recruter et activer des influenceurs, ou leaders d’opinion, qui seraient capables de diffuser à de larges audiences des informations. Si ces pratiques se sont peut être répandues de manière corrélée avec le Web social et les médias sociaux, elles prennent néanmoins leurs sources dans les recherches effectuées en media studies sur l’influence des médias. Par influence, nous retiendrons l’acception suivante de Massé, Marcon et Moinet (2006, p. 86) : exercer une influence c’est « obtenir d’autrui qu’il fasse librement quelque chose qu’il n’aurait pas fait spontanément sans votre intervention ». En cherchant à évaluer l’influence des médias dans la communication de masse, des chercheurs américains ont décrit celle-ci en utilisant la métaphore de la « « seringue hypodermique » : les médias injecteraient des modèles de comportement et attitudes dans la conscience d’individus passifs et atomisés constituant une masse amorphe » (Breton et Proulx 2012, p. 159). Katz et Lazarsfeld (1955), chercheurs de l’école de Columbia, ont formulé l’hypothèse du two-step flow of communication (flux communicationnel en deux temps) : les messages des médias seraient filtrés par des leaders d’opinions et diffusés par ces derniers auprès d’audiences plus importantes. Le leader d’opinion, notion sur laquelle nous reviendrons plus tard, est encore aujourd’hui vu par de nombreux praticiens et agences de communication comme un moyen d’amplifier la communication des organisations sur le Web. Positionnement théorique Les travaux de recherche sur l’influence sociale, l’influence des médias et l’influence sur le Web sont nombreux. Notre revue de littérature sur ces différents sujets ne pourra donc être exhaustive. Le présent mémoire n’est pas, en soi, un mémoire de recherche, dans la mesure où le Master en Intelligence Economique & Communication Stratégique de l’IAE de Poitiers a avant tout une finalité professionnelle. Pourtant, celui-ci ainsi que les travaux de recherches qui ont été effectués pour sa réalisation s’inscrivent dans une démarche en sciences de l’information et de la communication (SIC). Cette discipline est caractérisée par sa relative jeunesse comparée aux autres disciplines des sciences humaines et sociales (SHS), mais surtout par sa complexité et son interdisciplinarité, à savoir sa capacité à confronter échanger des méthodes (Bourdeloie 2014). En ce sens, l’objet de recherche, les notions mobilisées ainsi que les méthodes utilisées dans le cadre de nos
  • 15. 15 recherches proviennent de différentes disciplines que sont : les SIC, la sociologie des réseaux, la sémiologie, l’informatique, le marketing & la gestion, la géographie, les gender studies ainsi que la Web science aussi appelée la nouvelle science des réseaux. Problématique Notre mémoire cherchera à répondre à cette problématique : dans quelle mesure l'analyse & la visualisation de réseaux appliquées au web peuvent-elles permettre d'identifier de potentiels leaders d’opinions sur le Web dans le domaine des droits LGBT, ce afin de faire connaître le site Equaldex.com auprès d’une large audience ? Afin de répondre à cette problématique nous avons émis trois hypothèses que nous chercherons à vérifier grâce à l’utilisation conjointe de notre revue de littérature et de notre travail de recherche : Dans un premier temps, nous supposons que la diffusion virale d’un contenu sur le Web dépend de nombreux facteurs souvent non contrôlés par l’organisation. En ce sens, nous émettons l’hypothèse que l’identification de potentiels leaders d’opinion dans le cadre d’une stratégie de communication numérique ne permet pas de garantir la diffusion virale d’un contenu. Les hypothèses suivantes chercheront à être vérifiées à travers la réalisation d’un graphe de sites Web (Chapitre 2) : nous faisons ainsi l’hypothèse que le graphe de sites Web que nous réaliserons dans le cadre de nos recherche sera un réseau invariant d’échelle8. Enfin, nous supposons qu’Equaldex, en tant que site récent, s’inscrit dans un processus d’attachement préférentiel au sein de ce réseau9. Démarche méthodologique Afin de répondre à notre problématique et de vérifier nos hypothèses, nous allons réaliser un graphe de sites web traitant des droits des personnes lesbiennes, gaies, bisexuelles et transgenres en France et aux Etats-Unis. Dans le domaine des sciences humaines et sociales, et plus particulièrement des SIC, nous retiendrons que l’analyse du web revient à « vouloir saisir une réalité techniquement complexe et socialement construite » (Monnoyer-Smith 2013, p. 13). 8 Un réseau invariant d’échelle (scale-free network) désigne un réseau où les liens sont répartis selon une loi de puissance : quelques noeuds du réseau (acteurs ou sites web) concentrent la majorité des liens (liens sociaux ou liens hypertextes) 9 L’attachement préférentiel désigne le principe selon lequel un nouvel acteur au sein d’un réseau va chercher à tisser des liens avec les acteurs les plus connectés de celui-ci.
  • 16. 16 Par graphe de sites web nous entendons un ensemble de noeuds reliés entre eux par des liens dirigés ou non-dirigés. Dans le cadre de notre recherche, le graphe sera composé de sites web (noeuds) et de liens hypertextes (liens dirigés). Pour cela, nous allons nous appuyer sur plusieurs socles théoriques et méthodologiques : l’analyse de réseaux sociaux (Mercklé 2011, Lazega 2014, Scott 2000), la théorie des graphes, la nouvelle science des réseaux (Rieder 2009), la sémiologie ainsi que les sciences de l’information et de la communication. L’idée de réaliser un graphe de sites web pour notre mémoire est le résultat d’une triple influence : premièrement, notre année d’alternance au sein de Linkfluence, cabinet d’études & éditeur de logiciel de veille e-réputation connu pour ses travaux pionniers dans le domaine de la cartographie du Web. Puis, les enseignements du Master Intelligence Economique et Communication Stratégie, dispensés par Christian Marcon & Camille Alloing sur le management de réseau (2013-2014), par Camille Alloing sur l’e-réputation et la communication de crise (2012-2013 et 2013-2014) et par Mariannig Le Béchec sur l’intelligence territoriale (2013-2014) et la gestion des connaissances (2012-2013). Et enfin, le suivi des MOOCs (cours en lignes ouverts et massifs) « Social Network Analysis » dispensé par Lada Adamic sur la plateforme Coursera10 et « Web science: how the web is changing the world » dispensé par Leslie Carr et Susan Halford sur FutureLearn.com11. Cadrage de l’environnement : un mémoire portant également sur les droits LGBT Notre cas d’étude portera sur les sites web traitant des droits des personnes lesbiennes, gaies, bisexuelles et transgenres (LGBT). Nous souhaitons, par le biais de la réalisation d’un graphe de sites web portant sur cette thématique, analyser et visualiser l’écosystème informationnel d’Equaldex.com, plateforme d’information sur les droits LGBT créée par Dan Leveille. Notre objectif est, in fine, d’identifier de potentiels leaders d’opinion dans ce domaine afin d’accroître la notoriété d’Equaldex.com auprès des publics intéressés par la question des droits LGBT. Présentation du plan Ce mémoire est divisé en deux chapitres distincts mais complémentaires : Le premier chapitre cherchera à présenter une revue de littérature non-exhaustive sur l’influence et plus particulièrement sur l’influence sur le Web. Pour ce faire nous nous baserons sur 10 https://www.coursera.org/course/sna 11 https://www.futurelearn.com/courses/web-science
  • 17. 17 différents travaux de recherche en sciences de l’information et de la communication, en économie, en sociologie, en psychologie sociale, en informatique et en marketing. Le second chapitre portera sur notre cas d’études, à savoir la réalisation et l’analyse d’un graphe de sites web sur les droits LGBT afin d’identifier de potentiels leaders d’opinion pour accroître la notoriété d’Equaldex. Le graphe réalisé est également accessible en ligne en image haute définition : http://www.jbmacluckie.net/blog/lgbt-map-642
  • 18. 18 Chapitre 1 - Revue de littérature sur l’influence sur le web
  • 19. 19 Introduction au chapitre 1 Ce chapitre vise tout d’abord à présenter la notion centrale de ce mémoire qu’est l’influence, ainsi que les termes qui lui sont rattachés, à savoir : le leadership d’opinion, le relai d’opinion, la viralité, le buzz, le Word of Mouth (trad : bouche à oreille), l’autorité ou encore l’expertise. Dans un second temps, ce chapitre cherche à rendre intelligible le processus d’influence sur le web grâce à une revue de littérature. Enfin, ce chapitre vise également à comprendre comment un relai d’opinion peut être identifié, voire construit, selon les besoins d’une organisation. I. Influence : déconstruction d’un concept a. Qu’est-ce que l’influence ? Nous allons tenter, dans un premier temps, de définir la notion d’influence. La principale difficulté réside dans l’équivocité de cette dernière, dans la mesure où l’influence a fait l’objet de nombreuses recherches en sciences humaines et sociales. Provenant du latin influentia, l’influence désignait alors le « pouvoir occulte attribué aux astres de modifier le destin des hommes » (Dortier 2008, p. 343). Aujourd’hui, l’influence ne désigne plus un pouvoir occulte et céleste, la notion a fait son apparition dans le langage courant et n’est plus connotée à quelque chose de mystique. Ainsi, le Centre National de Ressources Textuelles et Lexicales (CNRTL) la définit comme une « action (généralement lente et continue) d'un agent physique (sur quelqu'un, quelque chose), suscitant des modifications d'ordre matériel »12. Les deux définitions ci-dessus présentent, malgré leurs différences, une similarité : l’influence permettrait de modifier le comportement de quelqu’un ou de quelque chose. C’est d’ailleurs ce que défendent Massé, Marcon et Moinet (2006, p. 86) pour qui exercer une influence c’est avant tout « obtenir d’autrui qu’il fasse librement quelque chose qu’il n’aurait pas fait spontanément sans votre intervention ». L’influence a fait l’objet de nombreuses recherches en sciences humaines et sociales. La psychologie sociale, par exemple, s’intéresse à l’influence sociale, à savoir la « façon dont les attitudes et les comportements des personnes changent sous l’effet d’une pression réelle ou imaginaire de la part d’autres personnes » (Levine et Zdaniuk 2008, p. 25). Parmi les études les plus connues sur 12 CNRTL - http://www.cnrtl.fr/definition/influence
  • 20. 20 l’influence sociale, celle de Solomon E. Ash datant de 195213 a permis de démontrer qu’un individu peut changer d’avis grâce à l’influence exercée par un groupe sur lui. Les travaux de Stanley Milgram sur la soumission à l’autorité (1963) montrent l’influence que peut avoir une personne ayant une autorité particulière, chez Milgram il s’agissait d’une autorité médicale, sur un autre individu. Des travaux plus récents de psychologie sociale mettent en avant les influences quotidiennes, ainsi que les techniques de manipulation et de persuasion auxquelles nous sommes exposés tous les jours (Cialdini 2004, Beauvois et Joule 1987, Beauvois 2011). Dans le domaine de la communication et des media studies, l’un des types d’influences le plus souvent étudié est celui de l’influence des médias sur les audiences. Cette dernière a longtemps été expliquée grâce à la métaphore de la « seringue hypodermique », c’est à dire que « les médias injecteraient modèles de comportement et attitudes dans la conscience d’individus passifs et atomisés constituant une masse amorphe » (Breton et Proulx 2012, p. 159). Les travaux de Katz et Lazarsfeld (1955) viennent remettre en question l’influence des médias sur les prises de décisions des individus, notamment dans un contexte d’élections, et mettent en avant le rôle de l’influence interpersonnelle. Katz et Lazarsfeld (ibid.) formulent ainsi l’hypothèse du « flux communicationnel en deux temps »14 (two-step flow of communication) : Figure 1 - Modèle du two-step flow of communication L’hypothèse du two-step flow of communication s’articule comme suit : 1. Les médias de masse délivrent un message qui est réceptionné et filtré par des leaders d’opinion 2. Ces mêmes leaders d’opinion jouent le rôle de médiateurs : ils font les intermédiaires entre les médias de masse et les audiences qui sont en contact avec eux. 13 Asch, S.E. (1952b). "Social psychology". Englewood Cliffs,NJ:Prentice Hall. 14 Traduction de Breton et Proulx (2012) L’explosion de la communication
  • 21. 21 Les leaders d’opinions sont définis par Katz et Lazarsfeld comme des personnes « ayant été influentes dans leurs environnements immédiats (2008, p. 27). L’hypothèse du two-step flow of communication est encore aujourd’hui utilisée, notamment dans les domaines du marketing d’influence et du marketing viral, comme le souligne Mellet (2009), ainsi que de la communication d’influence. La définition de l’influence que nous retiendrons est celle de Massé, Marcon et Moinet (2006, p. 86) pour qui exercer une influence c’est « obtenir d’autrui qu’il fasse librement quelque chose qu’il n’aurait pas fait spontanément sans votre intervention ». b. La métaphore de la contagion Influence, leaders d’opinion ou encore influenceurs sont des notions utilisées par de nombreux acteurs (prestataires de services, éditeurs de logiciels et praticiens) de la communication, du marketing, des relations publiques, du lobbying ou encore de l’intelligence économique. L’une des métaphores les plus utilisées pour expliquer le phénomène d’influence est celle de la contagion, de la viralité, surtout depuis l’émergence d’Internet et des réseaux socionumériques. Cette métaphore prend directement ses sources dans l’hypothèse du « flux communicationnel en deux temps » de Katz et Lazarsfeld (1955), notamment avec la valorisation du rôle des leaders d’opinion. Elle reprend en effet le postulat qu’un groupe de personnes restreint, les leaders d’opinion, sera à même de disséminer des informations, de propager une mode ou de diffuser une innovation, auprès d’une audience plus large. La métaphore de la viralité a été principalement popularisée par Malcolm Gladwell, journaliste et auteur du best-seller Le Point de Bascule (The Tipping Point) paru dans sa version originale en 2000. Selon l’auteur, pour comprendre l’émergence des modes, leurs succès et leurs échecs, il convient de percevoir celles-ci comme des épidémies sociales qui se propagent notamment grâce à trois types d’acteurs : les connecteurs, les mavens et les vendeurs (Gladwell 2008) : - Les connecteurs (connectors) sont, selon l’auteur, des personnes « sociables » pour qui le bouche-à-oreille est l’« apanage » (ibid. p. 57 et p. 59). Ils permettent de « dissémin[er] la tendance » (ibid. p.59) ; - Les mavens (mavens), de l’hébreu mevin, désignent ceux qui « possèdent l’information inédite » (ibid. p. 59). Le maven a d’abord été théorisé par Feick et Price (1987) qui le considèrent comme un individu ayant des informations inédites sur des produits du marché et qui est en mesure de répondre aux demandes de son entourage. Selon Gladwell (2008, p.
  • 22. 22 66), les mavens « jouent un rôle important dans le déclenchement des épidémies sociales puisqu’ils connaissent plus de choses que la majorité des gens » ; - Les vendeurs (salesmen) sont primordiaux pour le déclenchement d’une épidémie sociale. Un vendeur, au sens de Gladwell, « possède les compétences nécessaires pour persuader ceux qui hésitent encore à croire au message » (2008, p.69) ; Ces trois acteurs sont, selon Gladwell, des éléments clés de la propagation d’une épidémie sociale. Cependant, l’approche du Point de Bascule a été critiquée par plusieurs chercheurs dont Watts et Dodds (2007) et Berger (2013) notamment pour sa dimension réductrice manquant de preuve empirique. L’idée que des leaders d’opinion puissent exercer une influence sur une audience plus ou moins grande a, depuis Katz et Lazarsfeld en 1955, été réutilisée dans les domaines de la communication et du marketing (Mellet 2009). Les années 2000 marquent en effet le « retour en force dans la littérature professionnelle et académique » du leader d’opinion (Vernette 2006). Dès lors, quelles sont les caractéristiques propres aux leaders d’opinion qui pourraient faciliter leur identification ? Outre l’expertise, qui peut être définie comme l’acquisition de savoir par l’expérience, Vernette et Florès (2004) décrivent le leader d’opinion comme « une personne qui exerce une force d’attraction (physique, psychologique et/ou sociale) sur son entourage et qui dispose d’une forte crédibilité dans une catégorie de produit. Ses jugements et comportements influencent les attitudes et les choix de marques de son entourage dans ce domaine ». Cependant, comme le soulignent Alloing et Haikel-Elsabeh (2012) cette définition ne permet pas de distinguer les leaders d’opinion en ligne des leaders d’opinion hors-ligne. c. Le web : entre amateurisme, expertise & influence L’émergence du Web 2.0, conceptualisé dès 2005 par Tim O’Reilly dans l’article « What Is Web 2.0 »15, a favorisé l’idée que le Web est devenu social. L’apparition des fora, plateformes de blogging (Over-Blog, Wordpress, Ghost, Medium), de vlogging (Youtube, Vine, Vimeo), de microblogging (Twitter & Tumblr) ou encore les réseaux socionumériques (Facebook) a permis aux internautes de partager des informations, de créer des contenus et d’exprimer leurs opinions. Cette production d’opinions est liée à ce que Shirky (2008) appelle le phénomène d’amateurisation de 15 O'Reilly, T., 2005, « What Is Web 2.0. Design Patterns and Business Models for the Next Generation of Software », O’Reilly.com [En ligne] http://oreilly.com/web2/archive/what-is-web-20.html
  • 23. 23 masse (mass amateurization). Tout internaute devient ainsi un medium (« everyone is a media outlet », ibid., p.55) et s’adresse à une audience plus ou moins « invisible » (boyd, 2007.). Patrice Flichy (2010) va plus loin en établissant le postulat que le web favorise l’émergence d’un nouveau règne : celui du pro-am, à savoir le professionnel-amateur qui, grâce à ses passions et à ses échanges avec d’autres passionnés, peut frôler l’expertise sur un ou plusieurs domaines particuliers. Or, cette notion d’expertise est souvent considérée comme l’une des caractéristiques principales du leader d’opinion (Vernette et Flores 2004). Néanmoins nous retiendrons l’idée selon laquelle la notion d’expertise sur le Web est avant tout liée à la capacité à un individu à mettre en visibilité le contenu qu’il publie sous l’autorité des moteurs de recherche (Alloing et Haikel-Elsabeh 2012). L’identification de leaders d’opinion pour nourrir des stratégies de communication et de marketing sur le web apparaît souvent comme une étape importante pour les professionnels de ces secteurs. Ainsi, l’existence de véritables « discours de promotion » des réseaux socionumériques à destination des entreprises (Stenger et Coutant 2010) promeuvent l’idée que les entreprises doivent avoir une présence en ligne et engager le dialogue avec leurs communautés virtuelles. En outre, celles-ci cherchent parfois à amplifier leurs campagnes de communication numérique, notamment par le biais du marketing viral (Vernette 2006.), à savoir l’ensemble des « techniques incitant les clients d’un produit ou d’une marque à les promouvoir dans leur entourage » (Lendrévie, Lévy 2014, p. 414, 619). Afin d’accroître leurs audiences, les campagnes de marketing viral (viral marketing) tendent souvent à cibler les influenceurs pour augmenter le phénomène de bouche-à-oreille (Word of Mouth). Smith et al. (2007) expliquent le marketing viral comme l’identification « des individus influents au sein d’un réseau social et engager avec eux de manières à encourager le bouche-à-oreille »16 (trad., p.387). Selon Beauvisage et al. (2011), cette focalisation des organisations et agences de communication sur le marketing viral et sur la métaphore de la contagion découle d’une « figure idéale de la diffusion sur le Web, où les individus s’enthousiasment pour un contenu inconnu reçu de leurs proches et le retransmettent ensuite à leurs (autres) amis : de quelques individus passionnés, le contenu se diffuse de proche en proche au plus grand nombre » (p.151). Cette association entre diffusion et influence sur le Web est également faite par Alloing et Haikel-Elsabeh (2012) qui voient dans le leader d’opinion avant tout une capacité à diffuser et à amplifier la transmission d’un message. 16 « identifying influential individuals in social networks and connecting with them in ways that encourage WOM message movement » p. 387
  • 24. 24 La définition de leader d’opinion sur le Web que nous retiendrons est celle d’Alloing et Haikel- Elsabeh (2012), à savoir : « le leader d’opinion, pris au sens de « diffuseur » est un amplificateur potentiel de la transmission de ce message. » Il s’agit dès lors d’une « source de diffusion et médiatisation sur le web plus que d’influence » (p. 10) II. L’influence sur le web : un processus complexe La problématique de l’influence sur le web a été largement traitée dans la littérature professionnelle et académique depuis le début des années 2000. L’émergence de la « new science of networks » (Watts 2004), aussi appelée « Web science » (Hendler et al., 2008), qui s’appuie principalement sur la théorie des graphes17 et l’analyse de réseaux sociaux, ainsi que de nombreuses recherches effectuées en informatique (computer science), en sociologie, en sciences de gestion et en marketing ont cherché à isoler les paramètres clés de l’influence sur le Web. Nous ne pouvons prétendre à présenter, ici, de manière exhaustive les recherches effectuées sur concernant la problématique de l’influence sur le web et surtout de l’amplification de la transmission de contenus. C’est pourquoi nous nous focaliserons sur trois orientations de recherches que nous considérons comme primordiales, à savoir : l’importance des individus et des réseaux, le rôle joué par le contenu, ainsi que la dépendance de la diffusion de l’information aux plateformes sociales et aux algorithmes. a. Le rôle des individus et des réseaux sur le Web dans les dynamiques d’adoption virales : les apports de l’analyse de réseaux Quels sont les facteurs clés de transmission d’une information sur le Web ? Le rôle des individus et des réseaux dans le processus de diffusion et d’amplification de la transmission de contenus sur le Web connaît un succès particulier au sein des mondes de la communication et du marketing (Beauvisage et al. 2011). De nombreux travaux académiques se sont ainsi focalisés sur la compréhension de la « contagiosité des individus » sur le Web (ibid.), c’est à dire comment les 17 Théorie des graphes : théorie mathématique et informatique visant à étudier les graphes, à savoir l’« [e]nsemble de sommets (ou points) et d'arcs (ou lignes orientées) ou d'arêtes (ou lignes non orientées) liant certains couples de points » - http://www.cnrtl.fr/lexicographie/graphe
  • 25. 25 caractéristiques de ces derniers ainsi que leurs places au sein de réseaux peuvent être des leviers de diffusion d’informations. Une première série de travaux visant à analyser la répartition des liens sociaux sur le Web a permis de montrer qu’un petit groupe d’individus concentrait la majorité des liens. Ces travaux marquaient les prémices de ce que certains chercheurs nomment « nouvelle science des réseaux » (Watts 2004, Rieder 2009) ou encore la « web science » (Hendler et al. 2008). Comme le souligne Rieder (2009) et Plantin (2013), ces travaux de recherches s’inscrivent dans la tradition de la sociologie des réseaux datant des travaux de Georg Simmel pour qui « la forme sociologique la plus simple du point de vue méthodologique est la relation entre deux éléments » (1999, p. 116), de Moreno sur le sociogramme ou en encore de Barnes (1954). Les concepts de réseau et de réseau social peuvent être respectivement définis comme un « ensemble de noeuds interconnectés » (Castells 1998, p. 526) et comme « constitué d’un ensemble d’unités sociales et des relations que ces unités sociales entretiennent les unes avec les autres, directement, ou indirectement à travers des chaînes de longueurs variables » (Mercklé 2011, p. 4). Mercklé poursuit : « ces unités sociales peuvent être des individus, des groupes informels d’individus ou bien des organisations plus formelles, comme des associations, des entreprises, voire des pays » (ibid., p.4). Il souligne également que les relations entretenues par ces unités sociales entre elles peuvent être diverses : amitié, diffusion d’informations, interactions verbales ou non verbales, échanges de bien ou de services ou encore la participation à un même événement (ibid.). L’analyse de réseaux peut dès lors être perçue comme une méthode quantitative (Mercklé 2011) qui se base notamment sur la théorie des graphes. Comme le développe Mercklé : « L’apport méthodologique de la théorie des graphes est double : d’une part les graphes donnent une représentation graphique des réseaux de relations, qui facilite leur visualisation, permet la mise en lumière d’un certain nombre de leurs propriétés structurales ; d’autre part, la théorie des graphes développe un corpus extrêmement riche de concepts formels permettant de mesurer un certain nombre de propriétés des relations entre éléments » (2011, p. 22). Parmi les différentes mesures structurelles évoquées par Mercklé (ibid.), Lazega (2014) et Rieder (2009), retenons : - La densité : la densité d’un graphe désigne le rapport entre le nombre d’arcs (liens orientés) ou d’arêtes (liens non-orientés) existants et le nombre maximum d’arcs ou d’arêtes possibles ;
  • 26. 26 - La connexité : la connexité d’un graphe désigne l’absence de sommets (noeuds) isolés des autres ; - Le degré : pour un graphe non-orienté (où les arêtes, ou liens, n’ont pas de sens), il s’agit du nombre de liens rattachés à un noeud X. Pour un graphe orienté (où les arcs, ou liens, ont un sens), on parle de degré entrant pour le nombre d’arcs pointant vers un noeud Y ou de degré sortant pour le nombre d’arcs sortant d’un noeud Y ; - La centralité : la centralité permet de mesurer la « position relative des acteurs au sein d’un système » (Lazega 2014, p. 41). Les trois principales mesures de centralité sont : la centralité de degré, de proximité et d’intermédiarité (Freeman 1979). Christian Marcon résume le concept de centralité d’un acteur au sein d’un réseau comme celui qui « opère l’interface rare » (Marcon 2013-2014). Appliquée à l’analyse des relations sur le Web, l’analyse de réseaux a permis à Albert-László Barabási et Reka Albert (1999) d’identifier une propriété particulière de la toile : il s’agit d’un réseau sans échelle (scale free network). Cela signifie que la distribution des degrés (nombre de liens d’un noeud) suit une loi de puissance (power law). Bernhard Rieder résume cette propriété de la manière suivante : « la majorité des noeuds affichent un degré relativement bas tandis qu’un nombre restreint de noeuds assemble un nombre très élevé de connexions. » (2009, p. 6). Albert-László Barabási, dans son ouvrage Linked: The New Science of Networks paru en 2003, affirme que la structure du Web est dominée par ces noeuds hyper-connectés, ces hubs, et cite en exemple Yahoo! et Amazon.com. Pour lui, « comparé à ces hubs, le reste du Web est invisible »18 (Barabási 2009, p. 58). Les recherches de Barabási et Albert de 1999 ont été extrapolées par l’auteur de pop-science (ou vulgarisation scientifique) Malcolm Gladwell dans son ouvrage Le Point de Bascule. Celui-ci parle alors de « super-échangeurs » (2008, p. 187) voire de super-influentials, littéralement « super-influenceurs » (Gladwell 2002, Beauvisage et al. 2011) pour désigner ces hubs. Dès lors, suffit-il qu’un noeud au sein d’un réseau soit hyper-connecté pour faire de lui un influenceur ? En 2007, Watts et Dodds publient un article remettant en question le rôle des influenceurs, ou super-influenceurs, dans la formation de l’opinion public. Les auteurs ont utilisés les modèles de seuil de comportement collectif (threshold model of collective behavior), conceptualisé notamment par Granovetter (1978) qui stipule que l’adoption ou non d’un comportement par des individus au sein d’un collectif dépend du nombre d’autres individus ayant déjà adopté ce comportement, afin de modéliser mathématiquement la capacité des individus à provoquer des 18 « Compared to these hubs, the rest of the Web is invisible » - p. 58
  • 27. 27 « cascades d’influence » (cascades of influence), que l’on peut concevoir comme une « dynamique d’adoption virale » (Beauvisage et al. 2011, p. 158). Watts et Dodds (ibid.) représentent leur modèle de l’influence comme suit : Figure 2 - Le modèle du two-step flow of communication comparé au modèle du réseau d'influence de Watts et Dodds (2007) La partie gauche de la figure est une représentation schématique de l’hypothèse du two-step flow of communication de Katz et Lazarsfeld (1955). La partie droite de la figure représente le réseau d’influence tel que modélisé par Watts et Dodds en 2007 où l’influence est co-construite entre les différents membres du réseau. La modélisation mathématique effectuée par Watts et Dodds (2007) a donc permis de remettre en question l’hypothèse des influenceurs (« the influential hypothesis »). Pour les auteurs, le déclenchement d’une dynamique virale d’adoption ne peut se produire que si une masse critique d’individus influence un nombre important d’individus influençables (ibid., p. 445, Beauvisage et al. 2011, p. 158), ce qui remet en question le postulat selon lequel un petit groupe d’influenceurs serait à la source d’une dynamique virale d’adoption tel que le soutien Gladwell (2008). D’autres recherches visent, quant à elles, à comprendre le rôle du contenu, du message ou encore du produit, dans les dynamiques virales. b. Le rôle du contenu et le modèle STEPPS En parallèle des recherches effectuées sur les réseaux d’influence évoquées ci-dessus, plusieurs scientifiques ont cherchés à identifier les caractéristiques des contenus et des informations qui se diffusent de manière virale, notamment sur le Web.
  • 28. 28 Plusieurs travaux se sont intéressés à la viralité en tant que focalisation de l’attention des internautes sur un contenu en ligne. Beauvisage et al. (2011) soulignent que ces recherches, notamment celles de Szabo et Huberman (2010) et Leskovec et al. (2009) ont permis de mettre en avant deux « effets contradictoires du temps sur l’audience » à savoir : - L’audience totale augmente avec le temps, ce qui a pour effet d’attirer l’attention des internautes car ces derniers prêtent attention à des contenus qui ont déjà reçus de l’attention ; - L’attention des internautes est également portée sur la nouveauté. Bien que d’autres travaux de recherches portant sur la focalisation de l’attention des internautes existent, tout comme sur les trajectoires virales d’audiences (Crane et Sornette 2008), notre attention se portera principalement sur les travaux de Jonah Berger. Jonah Berger est professeur de marketing à l’université de Wharton et l’auteur de plusieurs recherches sur la viralité et le bouche-à-oreille. Dans son ouvrage Contagious: Why Things Catch On (2013), Berger affirme que l’hypothèse des influenceurs telle que formulée par Malcolm Gladwell (2008) est non-valide et que les facteurs clés de la viralité se trouvent ailleurs. Pour lui, ce qui rend un message, un produit, une information ou tout autre type de contenu viral, que ce soit en ligne ou hors-ligne, c’est avant tout les caractéristiques intrinsèques de ces derniers. Les caractéristiques des contenus ou des produits capables de susciter une dynamique d’adoption ou de diffusion virale sont, selon Berger au nombre de six. Il s’agit du cadre d’analyse STEPPS (Berger 2013) : Social Currency Triggers Emotion Public Practical Value Stories Figure 3 - Le modèle STEPPS de Jonah Berger (2013) - Social currency (monnaie social) : selon Jonah Berger, les gens se soucient des représentations qu’ont leur environnement d’eux. Pour cela, un produit ou une information doit permettre à ces derniers de se différencier, de « trouver leur remarquabilité intérieure »
  • 29. 29 (inner remarkability, p. 22), de « paraître intelligent plutôt qu’idiot, riche plutôt que pauvre, cool plutôt que geek »19 (ibid., p. 22) ; - Triggers (amorces) : afin de rappeler aux gens de parler d’un produit, d’une idée ou d’une information, ceux-ci doivent être conçus pour que l’environnement puisse constamment rappeler leur existence. Un des exemples cités par l’auteur est celui de la chanson « Friday » de l’artiste américaine Rebecca Black20 dont la popularité serait due au fait qu’elle renvoie à un contexte récurrent à savoir l’arrivée du week-end ; - Emotion : Berger utilise la maxime « when we care, we share » (ibid. p. 23) à savoir « quand cela nous importe, nous le partageons ». Selon l’auteur, les contenus et produits à forte contagiosité font appel aux émotions. En s’appuyant sur ses propres recherches (2011) Berger propose une typologie des émotions selon leurs potentiels de viralité (2013, p. 109) : Potentiel élevé Potentiel faible Emotion positive Emerveillement (awe) Excitation (excitement) Amusement / humour (humor) Satisfaction (contentment) Emotion négative Colère (anger) Anxiété (anxiety) Tristesse (sadness) Tableau 1 - Typologie des émotions selon leurs potentiels de viralité selon Jonah Berger (2013) - Public : la publicité, au sens de la mise en visibilité, la dimension publique d’un produit ou un contenu apparaît comme l’un des facteurs clés de viralité selon Jonah Berger ; - Practical value (valeur pratique) : plus des produits ou des informations seront pratiques et utiles, plus les individus auront tendance à les partager à leurs entourages respectifs. Cependant, l’auteur souligne également que face à la masse importante d’informations auxquels ceux-ci sont soumis, les produits et informations doivent se différencier afin d’attirer l’attention ; - Stories (narration) : selon Berger, les individus ne partagent pas juste des informations, ils racontent des histoires. Dès lors, les produits et informations doivent être compris au sein d’une véritable stratégie de storytelling ; Les six facteurs clés de viralité présentés par Jonah Berger sous la forme du cadre d’analyse STEPPS ont la particularité de ne pas être interdépendants. En effet, l’auteur signale qu’un produit ne peut réunir que l’une des six caractéristiques et pourtant être adopté de manière virale, idem pour 19 « Most people would rather look smart than dumb, rich than poor and cool than geeky » - Berger 2013, p. 22 20 En ligne : http://www.youtube.com/watch?v=kfVsfOSbJY0
  • 30. 30 la diffusion d’un contenu. Cependant, existe t-il d’autres facteurs pouvant provoquer la diffusion virale d’un contenu sur le Web ? Et quelles sont les limites du modèle STEPPS ? c. La dépendance aux plateformes sociales & aux algorithmes Les recherches menées sur l’influence sur le Web ont permis de mieux comprendre, dans une certaine mesure, les éléments clés permettant le déclenchement de cascades d’influence (Barabási et Albert 1999, Watts et Dodds 2007, Berger 2013). Mais ces résultats peuvent-ils être généralisés aux médias sociaux présents sur le Web ? Tout d’abord il convient de définir ce que nous entendons par médias sociaux. Ce terme regroupe selon nous deux sous-ensembles, à savoir les réseaux socionumériques et les plateformes de « computation sociale »21. Bien qu’il existe de nombreuses définitions des réseaux socionumériques (Kaplan et Haenlein 2010, Kietzmann et al. 2011), nous retiendrons la définition de Stenger et Coutant (2010 p. 221) qui se base sur celle donnée par boyd et Ellison (2007), à savoir : les réseaux socionumériques sont des services Web permettant aux individus de : 5. « Construire un profil public ou semi-public au sein d’un système, 6. De gérer une liste des utilisateurs avec lesquels il partage un lien, 7. De voir et naviguer sur leur liste de liens et ceux établis par les autres au sein du système, 8. Fondent leur attractivité essentiellement sur les trois premiers points et non sur une activité particulière ». Par exemple, sont considérés comme des réseaux socionumériques : Facebook, LinkedIn, Viadeo. Dans une autre mesure, les plateformes de computation sociales telles que définies par Pierre Lévy participent à la construction et au partage « de manière collaborative des mémoires numériques collectives à l'échelle mondiale, qu'il s'agisse de photos (Flickr), de video (YouTube, DailyMotion), de musique (Bittorrent), de pointeurs web (Delicious, Furl, Diigo) ou bien de connaissances encyclopédiques (Wikipedia, Freebase) »22. Réseaux socionumériques et plateformes de computation sociales font ainsi partie du « macro-concept » des médias sociaux, c’est à dire une « notion centrale qui en utilise d’autres pour être expliquée et précisée » (Stenger et Coutant 2010, p. 210). Plusieurs recherches tendent à montrer que l’influence, ou plus précisément les cascades d’influence, à savoir les dynamiques de diffusion virale de l’information, varient en fonction des 21 http://entretiens-du-futur.blogspirit.com/archive/2008/10/02/la-mutation-inachevee-de-la-sphere-publique.html 22 ibid.
  • 31. 31 médias sociaux étudiés. Sur Twitter, par exemple, Cha et al. (2010) ont montré à travers leurs travaux que le nombre de followers d’un compte (nombre de personnes abonnées) est décorrélé de la capacité de ce même compte à être retweeté. Ce qui va à l’encontre de l’intuition suivante : plus un compte aura d’abonnés, plus ses tweets seront repris par d’autres comptes Twitter. De même sur Flickr, puisque Beuscart et al. (2009) ont montré que le « le nombre de favoris reçus par une photo est décorrélé du nombre d’amis de son auteur : le succès social de certains individus ne se traduit pas par celui de leurs oeuvres » (Beauvisage et al. 2011, p. 159). Plus récemment, des recherches menées par Chang et al. (2014) du Yahoo! Labs ont permis de mieux comprendre les dynamiques d’influence sur la plateforme de microblogging Tumblr. Selon les auteurs, les liens sociaux sur Tumblr (matérialisés par un abonnement, ou follow) sont répartis selon une loi de puissance et les cascades d’influence sont restreintes, dans la mesure 36,05% d’entre elles se déroulent uniquement entre deux comptes Tumblr. Dès lors, il conviendrait de ne pas généraliser les différents modèles de diffusion virale d’informations sur le Web aux différents médias sociaux existants. d. L’influence sur le web : complexité et biais de rétrospection L’influence sur le Web apparaît comme une notion complexe, même si plusieurs travaux de recherches ont tentées d’isoler les facteurs clés permettant de déclencher des dynamiques virales de diffusion de l’information (cascades of influence) comme nous avons pu le voir précédemment. Pour définir ce que nous entendons par complexité, nous allons nous appuyer sur les travaux d’Edgar Morin et de Nassim Nicholas Taleb. La complexité peut être caractérisée comme la variété des constituants d’un système et par les relations d’interactions entre ceux-ci. Reprenant la métaphore du tissu, Edgar Morin définit la complexité comme « un tissu de constituants hétérogènes inséparablement associés » qui « coïncide avec une part d’incertitude », incertitude due à des phénomènes particuliers ou aux limites de l’entendement humain (Morin 2005). Pour Nassim Nicholas Taleb (2010b), un système complexe est caractérisé par une grande interdépendance entre les composants de ce système d’un point de vue : temporel (un composant A est influencé par ses propres changements internes, qui sont survenus dans le passé), horizontal (il y a une interdépendance entre un composant A et un composant B d’un même système complexe) et diagonal (un composant A est influencé par les changements subis par un composant B, et vice-versa). Dès lors, toujours selon Taleb, s’installe une non-linéarité qui affecte les relations de cause à
  • 32. 32 effet, en les rendant plus complexes. Cette non-linéarité affecte aussi les changements d’un système, en les rendant imprédictibles (Taleb 2012). Les recherches effectuées jusqu’à présent tendent en effet à montrer que les dynamiques de diffusion de l’information dépendent de nombreux facteurs : les caractéristiques intrinsèques des contenus & leurs contextes de diffusion (Berger 2013), la contagiosité des individus et leurs places au sein des réseaux (Barabási et Albert 1999, Watts et Dodds 2007), les plateformes elles-mêmes (Beauvisage et al. 2011, Chang et al. 2014), les dispositifs attentionnels mis en place (Beauvisage et al. 2011) et les algorithmes qui servent à la fois de filtres et mettent en visibilité certaines informations ou comptes recommandés (Alloing et Haikel-Elsabeh 2012). La complexité du processus d’influence sur le Web est soulignée par Watts et Dodds (2007). Ces derniers font une analogie entre les dynamiques de diffusion d’informations en ligne et les systèmes complexes naturels, et plus précisément les feux de forêts : « Certains feux de forêts, par exemple, sont beaucoup plus importants que la moyenne ; pourtant personne ne peut affirmer que la taille d’un feu de forêt peut être attribuée aux propriétés exceptionnelles de l’étincelle qui l’a déclenchée ou de la taille de l’arbre qui a été le premier à brûler. Les grands feux de forêts nécessitent une conjuration de vent, température, faible humidité et de combustibles qui sont présents sur de larges étendues de terrain. Tout comme les cascades larges au sein de réseaux d’influence, quand la bonne combinaison de conditions existe, alors tout étincelle peut la déclencher ; quand ce n’est pas le cas, aucune étincelle ne suffira. »23 (Watts et Dodds 2007, p. 454). L’identification d’acteurs ou de facteurs ayant joué un rôle dans la diffusion virale d’information sur le Web semble donc plus aisée a posteriori qu’a priori. L’examen d’un phénomène après que celui-ci se soit déroulé peut être affecté par un biais important : le biais de rétrospection. Comme le souligne le sociologue Gérald Bronner dans l’ouvrage de Portal et Roux-Dufort (2013), le biais de rétrospection a été largement traité en sciences sociales et a été parfois appelé « « dépendance téléologique », « illusion a posteriori », « illusion rétrospective » » (ibid. p. 111). L’auteur l’explique comme suit : « lorsque l’on considère les événements présents, et que l’on sait 23 Traduction de : « Some forest fires, for example, are many times larger than average; yet no one would claim that the size of a forest fire can be in any way attributed to the exceptional properties of the spark that ignited it or the size of the tree that was the first to burn. Major forest fires require a conspiracy of wind, temperature, low humidity, and combustible fuel that extends over large tracts of land. Just as for large cascades in social influence networks, when the right global combination of conditions exists, any spark will do; when it does not, none will suffice. » (Watts et Dodds 2007, p. 454)
  • 33. 33 donc qu’ils sont survenus, nous avons trop facilement l’impression qu’ils étaient en fait prévisibles » (ibid, p. 111). La tendance à vouloir expliquer, voire justifier, des phénomènes passés se trouve également dans certains écrits sur l’influence et sur la viralité. Malcolm Gladwell (2012), par exemple, tente d’identifier a posteriori les facteurs de diffusion virale des chaussures Hush Puppies, le tabagisme chez les adolescents, la dépression ou encore le suicide dans son ouvrage Le Point de Bascule. Barabási dans son ouvrage Linked (2003) explique la propagation du virus du Sida au moment de son émergence aux Etats-Unis notamment par l’existence d’un « réseau sexuel complexe parmi les homosexuels » dont l’un de hubs était Gaëtan Dugas (2003, p. 123). Enfin, Berger (2013) décrit les mécanismes de diffusion de nombreux contenus tels que la chanson « Friday » de Rebecca Black, le succès des vidéos « Will it blend », des marques Abercrombie & Fitch et Victoria’s Secret à travers le prisme de son cadre d’analyse STEPPS. Pourtant, ces tentatives d’explications des phénomènes de modes et de contagions sociales ne sont-elles pas réductrices ou du moins simplificatrices ? Si l’influence est bien un processus complexe, comme souligné par Watts et Dodds (2007), quels rôles jouent la chance, le hasard, la volatilité et l’incertitude dans celui-ci ? La tendance des individus à vouloir simplifier les phénomènes complexes et à les justifier, notamment a posteriori, est ce que Nassim Nicholas Taleb nomme l’erreur de narration (narrative fallacy). Il s’agit du « besoin que nous avons de faire coller une histoire ou un modèle à une succession de faits ayant ou non un rapport entre eux » (2012, p. 390). Ce que nous retiendrons de cette revue de littérature est la complexité de phénomène d’influence sur le Web. Le déclenchement de cascades d’influence, ou de dynamiques virales de diffusion d’information, dépend de nombreux paramètres difficilement maîtrisables. En outre, nous retiendrons que le rôle des leaders d’opinion est parfois surévalué, notamment dans la littérature professionnelle, et que l’activité ces derniers semble n’être qu’un paramètre parmi d’autres.
  • 34. 34 III. De l’identification à la construction des leaders d’opinion a. Les outils d’identification de leaders d’opinion sur le Web Bien que de nombreuses recherches aient montré les limites de l’hypothèse des influenceurs, celle-ci persiste au sein des communautés de professionnels de la communication, du marketing, de la veille ou encore des relations publiques. Plusieurs sociétés se sont ainsi positionnées sur ces problématiques d’identification d’influenceurs sur le web, à l’image d’Augure, éditeur de logiciel et prestataire de service français, qui a créé un moteur permettant d’identifier, selon eux, des influenceurs24, ou encore des éditeurs de plateformes permettant grâce à des algorithmes propriétaires et opaques de quantifier l’influence des individus sur le web social, à l’image de Klout.com, Kred.com, Followerwonk.com et PeerIndex.com. Klout.com, par exemple, définit l’influence comme « l’aptitude à conduire l’action »25 et prétend mesurer 400 indicateurs de réseaux socionumériques différents pour produire le Klout Score d’un individu ou d’une organisation. Le Klout Score est un indice exprimé sur 100 qui prend en compte les critères suivants : - Le « true reach » (portée réelle) : nombre d’abonnés, d’amis, de contacts ; - L ‘« amplification » : le nombre d’interactions provoquées (retweets, likes, commentaires) ; - Le network (réseau) : le ratio entre abonnements et abonnés (principalement sur Twitter) ; Klout.com, ainsi que la plupart des autres outils d’identification d’influenceurs sur le Web existants sur le marché, se basent ainsi sur des données quantitatives exploitées selon des algorithmes propriétaires. Ces données quantitatives recueillies par les outils proviennent de l’identité numérique, à savoir la « somme des traces numériques se rapportant à un individu ou à une collectivité » (Ertzscheid 2011, p. 16). Pour Olivier Ertzscheid, ces traces numériques peuvent être des « écrits, contenus audio ou vidéo, messages sur des forums, identifiants de connexion, etc. » (ibid., p. 16). Pour mieux comprendre la notion d’identité numérique et surtout pour comprendre d’où sont puisées les données quantitatives exploitées par les outils d’identification d’influenceurs tels que Klout.com, nous retiendrons la définition de Fanny Georges de l’hexis numérique qu’elle assimile au concept d’identité numérique (2007). Par hexis numérique, Fanny Georges entend « une sculpture agissante de soi dans le monde virtuel » (Georges 2008, p. 1). Citant Goffman, elle compare l’hexis 24 http://www.augure.com/fr/software/influenceurs 25 https://klout.com/corp/score
  • 35. 35 numérique à une barbe-à-papa, « une substance poisseuse à laquelle se collent sans cesse de nouveaux détails biographiques » (ibid., p. 1). Selon Georges, l’identité numérique s’articule autour de trois identités (ibid.) : - l’identité déclarative : renseignée par l’utilisateur, il s’agit principalement des détails biographiques et des centres d’intérêts ; - l’identité agissante : activités, liens sociaux et comportements de l’utilisateur ; - l’identité calculée : la computation de l’identité agissante par le système ; Nombre des outils d’identification d’influenceurs, dont Klout.com, vont ainsi exploiter les données provenant de l’identité déclarative (pseudonyme, nom, prénom, activités, centres d’intérêts) ainsi que les données provenant de l’identité calculée (nombre d’amis, followers, followings, nombre d’interactions, fréquence de publication etc.) d’un ou plusieurs comptes sociaux d’un utilisateur. Sur Klout.com, par exemple, l’exploitation de ces données prend la forme suivante : Figure 4 - Exemple de profil sur Klout.com 1) Photo de profil : identité déclarative 2) Nom et prénom : identité déclarative 3) Biographie (déclarée sur Twitter) : identité déclarative 4) Score Klout : identité calculée (computation de l’identité agissante de l’utilisateur) 5) Centres d’intérêts : identité calculée selon les sujets les plus abordés par l’utilisateur 6) Réseaux socionumériques pris en compte par le système Klout.com pour la computation Bien que la mesure de l’influence d’un utilisateur sur le Web en fonction de son identité calculée, répartie entre un ou plusieurs réseaux socionumériques, puisse apparaître comme une solution pertinente pour l’identification d’influenceurs, quelles en sont les limites ? Tout d’abord, comme le souligne Dominique Cardon (2013), les métriques prises en compte par les systèmes que sont Facebook, Twitter et Google ne prennent pas en compte les mêmes éléments et chaque algorithme
  • 36. 36 « impos[e] [son] ordre sur la forme du Web qu'[il] mesur[e] » (2013, p. 174), ce qui rend artificielle leur harmonisation. Aussi, comme le soulignent Beauvisage et al. (2011) à travers leur revue de littérature sur l’influence, les « métriques d’influence » ne sont pas toujours corrélées à la capacité d’un utilisateur à déclencher des cascades d’information sur le Web. Louise Merzeau (2013) signale par ailleurs que la métrique émise par Klout.com se base sur des actions déjà effectuées par l’utilisateur (interactions déjà provoquées, par exemple). Il s’agit donc d’une mesure a posteriori, or, si le déclenchement de dynamiques virales de diffusion est complexe, comme souligné par Watts et Dodds (2007), qu’est-ce qui permet d’affirmer qu’un individu « influent » selon Klout.com le sera encore à l’avenir ? Enfin, si l’influence sur le Web est phénomène complexe, à savoir résultant de la combinaison de multiples facteurs interdépendants, celle-ci peut elle être computable comme le font Klout.com, PeerIndex ou Kred ? b. L’identification de leaders d’opinions chez Linkfluence Linkfluence est l’organisation qui a permis d’orienter les réflexions de ce mémoire. Cette startup, créée en 2006, s’est très rapidement inscrite en tant qu’acteur de l’e-réputation et du social media intelligence en France puis en Europe. L’identification de leaders d’opinions pour des clients, annonceurs & agences de communication, est une mission récurrente effectuée par les chargés d’études et de veille, aussi appelés social media researchers, de l’entreprise. Les chargés d’études et de veille produisent, généralement, deux types de livrables. Tout d’abord, les rapports de veille e-réputation et/ou de social media performance. Ces derniers visent à évaluer les actions de communication sur le web social menées par les organisations dans le cadre de leurs stratégies de présence en ligne. Puis, les études, qui sont au nombre de quatre : - Le bilan d’image : vise à faire un audit de la présence en ligne d’une organisation, d’une marque ou d’un produit. Pour chaque client, ce type d’étude répond aux questions : Qui parle de moi ? Où, quand, comment & pourquoi parle-t-on de moi ? - L’engage (analyse d’écosystème) : Il s’agit d’une étude visant à analyser l’écosystème informationnel et réputationnel d’une organisation. Ce type d’étude a pour but d’identifier et de mieux comprendre les communautés en lignes qui se sont exprimées à propos d’une marque, d’un produit ou d’une organisation et celles auprès de qui il serait intéressant pour l’organisation de communiquer ; - L’impact : Ce type d’étude vise à évaluer les retombées d’une campagne de communication d’un client sur le Web. Elle s’appuie principalement sur des données quantitatives ;
  • 37. 37 - Le trends (analyse de tendances) : Ce type d’études vise à comprendre la perception qu’une ou plusieurs communautés en ligne ont d’un type de produit, comme le parfum, le chocolat ou encore l’hôtellerie ; Au coeur de l’approche de Linkfluence se trouve une méthodologie centrale qui est celle de l’écologie du Web (Fouetillou 2007). Pour Linkfluence, le Web peut être perçu comme un écosystème (ibid.). Cette métaphore sert avant tout à appréhender la complexité de l’environnement numérique et des éléments qui le composent et qui sont en interaction : sites web, blogs, plateformes, réseaux sociaux numériques, liens hypertextes, internautes, algorithmes, données etc. La notion d’écologie du Web prend alors tout son sens : Linkfluence vise à étudier les relations entre ces éléments et de comprendre comment ils entrent en interaction entre eux et avec leur environnement numérique. Comme le souligne Jean-Christophe Plantin citant Franck Ghitalla (2002), le Web est en effet un « constitué de documents possédant une topologie qu’il est possible de visualiser et d’analyser » (Plantin 2013, p. 229). Les travaux de Jacomy et Ghitalla (2007) ont permis une représentation schématique de la structure du Web. Celle-ci serait articulée autour de trois couches interconnectées : Figure 5 - Les trois couches du Web selon Ghitalla et Jacomy (2007) - La « couche la plus visible » : composée de sites web et plateformes tels que Google, Amazon, Wikipedia, SNCF etc. ; - La « couche intermédiaire » : il s’agit de la couche explorée par Linkfluence dans le cadre de ses analyses d’écosystèmes. Elle est composée d’agrégats et de communautés en lignes. Comme le souligne Le Béchec (2011), la notion d’agrégats « qualifie les sites web connectés et traitant d’une même thématique », elle peut être résumée par l’aphorisme : « Qui se ressemble se connecte » (Ghitalla et Jacomy 2007, p. 4) ;
  • 38. 38 - La « couche profonde » : parfois qualifiée de Web invisible, il s’agit principalement des bases de données ; Cette représentation, bien que schématique, est cohérente avec les travaux de Barabási et Albert (1999) concernant la répartition des liens hypertextes sur le Web selon une loi de puissance. Pour Guilhem Fouetillou, co-fondateur de Linkfluence, l’analyse d’un écosystème Web permet de : « révéler les propriétés morphologiques d’une localité du web (ensemble de sites en proximité tant hypertextuelle que thématique) c'est-à-dire la structuration hypertextuelle (partition communautaire) mais aussi de replacer cette localité dans son environnement (approche écologique) et d’étudier les principes d’organisation et d’interdépendances de la localité étudiée et de son environnement hypertextuel ». (Fouetillou 2007, p. 282) Pour ce faire, la méthodologie de Linkfluence peut être décomposée en plusieurs étapes : Figure 6 - Représentation schématique de la méthodologie d'écologie du Web par Linkfluence 1. Identification des besoins du client : cette étape vise à définir les périmètres linguistiques & temporels de l’analyse d’écosystème ainsi qu’à permettre au client d’expliciter ses besoins en information et ses attentes ; 2. Sourcing : il s’agit de créer le corpus de sites web faisant partie de l’environnement informationnel et réputationnel du client, à savoir : les sites qui mentionnent l’organisation, produit(s) ou marque (s) visés, les sites qui peuvent représenter des opportunités de communication pour le client et les sites qui peuvent représenter des risques pour celui-ci. La phase de sourcing est généralement assistée par les technologies Linkfluence, notamment : - Le Linkscape : un panel de sites web régulièrement mis à jour et classé par communautés ; - Le crawl exploratoire : une fois un premier corpus de sites web créé, un robot d’indexation va permettre d’identifier l’« environnement hypertextuel proche » de ce corpus (Fouetillou 2007, p. 282), à savoir les sites présents à un ou plusieurs clics de souris de ceux identifiés ; 1. Identification des besoins 2. Sourcing 3. Crawl 4. Cartographie 5. Analyse & rédaction 6. Rendu du livrable
  • 39. 39 Une fois les sites identifiés, ceux-ci sont catégorisés selon les thématiques qu’ils traitent. 3. Crawl : une fois le corpus de sites web constitué, un robot d’indexation développé par Linkfluence va identifier l’ensemble des liens hypertextes entrants et sortants des sites présents dans le corpus et ce afin de visualiser celui-ci sous la forme d’un graphe du web ; 4. Cartographie : le fichier issu de l’indexation sera ensuite visualisé et spatialisé le logiciel de graphe Gephi26. Par la suite, Linkfluence réalise une visualisation interactive du graphe de sites web créé grâce à la technologie développée en interne. Cette visualisation fera partie du livrable rendu au client ; 5. Analyse & rédaction : l’analyse est à la fois quantitative et qualitative. Il s’agit d’une combinaison entre analyse structurale du graphe de sites web constitué, à savoir une analyse des positions des sites web sur le graphe et des relations hypertextuelles existantes ou non-existantes entre ceux-ci (Fouetillou 2007), et une analyse netnographique, qui peut être définie comme « nouvelle méthode qualitative de recherche [en marketing] qui adapte les techniques de la recherche ethnographique à l’étude des cultures et des communautés émergeants à travers les communications médiées par ordinateurs »27 (Kozinets 2002, p. 2). 6. Rendu du livrable : restitution du livrable au client et présentation orale des résultats de l’étude Comme nous l’avons souligné précédemment, Linkfluence réalise au sein de ses études une identification des sites web influents. L’étape du crawl (étape 3 de la figure 5) permet, outre l’identification de liens hypertextes entrants et sortants des sites du corpus, d’appliquer à ces derniers plusieurs métriques issues de l’analyse de réseaux sociaux de manière automatisée. Les principales métriques utilisées sont : - Degré entrant : les liens hypertextes étant dirigés, il s’agit du nombre de liens, ou arcs, pointant vers un noeud (site web) ; - Degré sortant : nombre de liens hypertextes sortant d’un site web ; - Degré : somme des liens hypertextes entrants et sortants ; - Linkfluence Score (ou score d’influence) : calcul d’autorité basé sur le nombre de liens entrants d’un site. Il s’agit du score utilisé pour identifier des sites influents. 26 http://gephi.org 27 « [a] new qualitative research methodology that adapts ethnographic research techniques to the study of cultures and communities emerging through computer-mediated communications. » - Kozinets 2002, p. 2
  • 40. 40 Il convient de s’attarder sur la notion d’autorité sur le Web. Celle-ci est souvent définie comme le « pouvoir d’agir sur autrui »28. Comme le souligne Camille Alloing sur son blog, « Lorsque l’on parle d’autorité sur le web, on fait souvent référence à l’autorité cognitive (relation d’influence sur la pensée de quelqu’un) ou l’autorité de l’expertise liée à la crédibilité d’un individu ou d’une ressource »29. Il poursuit « Pour schématiser, l’autorité est la pertinence, la crédibilité dans un domaine particulier que confère un individu à une source web »30. Si plusieurs chercheurs ont travaillés sur la notion d’autorité sur le Web, tels qu’Evelyne Broudoux et l’autorité informationnelle (2007), Camille Alloing et l’autorité réputationnelle (2013), Louise Merzeau et l’autorité sur Twitter (2013) ou encore Dominique Cardon et le PageRank (2013), nous allons nous focaliser sur la notion d’autorité en analyse de réseaux, puisque le Linkfluence Score en est un dérivé. Dans le domaine de l’analyse de réseaux, la notion d’autorité peut être ramenée aux travaux de Jon Kleinberg (1999) qui a créé, l’algorithme HITS (Hyperkinked-Induced Topic Search). Celui-ci est parfois considéré comme un précurseur du PageRank de Google. L’algorithme HITS permet d’identifier, au sein d’un graphe de pages web, des hubs et des autorités (authorities). Les autorités sont des pages recevant de nombreux liens hypertextes entrants, ce qui permettrait, selon Jon Kleinberg, d’évaluer la qualité du contenu de celles-ci. Plus une page aura de liens entrants, plus celle-ci aura un score d’autorité élevé. Les hubs, quant-à-eux, désignent les pages web pointant vers de plusieurs pages à forte autorité. Comme le souligne Kleinberg, autorités et hubs entretiennent une « relation de renforcement mutuel » puisque : « un bon hub est une page qui pointe vers plusieurs bonnes autorités ; une bonne autorité est une page qui est pointée par plusieurs bons hubs »31 (Kleinberg 2006, p. 611) Afin d’identifier un site Web ou un blog influent, Linkfluence utilise généralement plusieurs critères qui permettent de sélectionner les sites a priori, à savoir au moment de la constitution du corpus (étape 2 de la figure 5) : - La cohérence avec les besoins de l’organisation ou de la marque ; - La cohérence avec les thématiques sur lesquelles une marque ou une organisation souhaite communiquer ; 28 http://www.cnrtl.fr/definition/autorite 29 http://caddereputation.over-blog.com/article-pourquoi-mesure-t-on-la-notoriete-sur-le-web-mais-rarement-la-reputation- 85808652.html 30 Ibid. 31 « Hubs and authorities exhibit what could be called a mutually reinforcing relationship: a good hub is a page that points to many good authorities; a good authority is a page that is pointed to many good hubs. » Kleinberg, p. 611
  • 41. 41 - La cohérence avec l’audience ou les audiences visées ; - Le type de contenus publiés et l’engagement qu’ils génèrent ; - L’activité : rythme de publications, interactions avec les internautes à travers les commentaires ; - L’existence de profils sociaux liés à un site ou un blog : si il possède une audience importante sur Twitter, Facebook, Youtube, Instagram et autres médias sociaux, sa capacité à diffuser du contenu auprès de nombreux internautes représente un enjeu important ; Une fois le graphe de sites réalisé, à savoir après le crawl (étape 3 de la figure 5) et le calcul du Linkfluence Score par le robot d’indexation, les chargés d’études et de veille réalisent un filtrage des sites selon leur score d’influence. Ce afin d’identifier les sites considérés comme les plus influents et de les mettre en avant dans les études réalisées pour les clients. La méthode de Linkfluence pour identifier des influenceurs est donc à l’opposé de celles proposées par des outils tels que Klout, PeerIndex, ou Kred : Approche de Linkfluence Approche des principaux outils d’identification d’influenceurs Outils & algorithmes propriétaires Outils & algorithmes propriétaires Score d’influence basé sur l’autorité d’une source Score d’influence basé sur un algorithme « boîte noire » Le calcul du score d’influence ne prend en compte que les métriques structurales (nombre de liens entrants) Le calcul du score d’influence vise à mettre sur une même échelle les métriques provenant de différents médias sociaux (Facebook, Twitter, Instagram, LinkedIn etc.) Un corpus de sources est créé selon le contexte et selon les clients Une base de données unique de sources est utilisée pour tous les clients Un influenceur est un document Web : site Web, un blog, un profil social etc. La présence numérique d’un individu ou d’une organisation (ensemble de ses profils sociaux, sites et blogs) n’est pas unifiée. Un influenceur est évalué selon la commensuration de ses l’identités calculées (à travers différents profils sociaux) et donc, in fine, d’une partie de sa présence en ligne. Approche mêlant méthode quantitative (analyse structurale) et méthode qualitative (netnographie) Approche quantitative (analyse structurale, commensuration)
  • 42. 42 La notion d’influence est contextuelle et contextualisée : Le score d’influence dépend de la thématique étudiée & de la position d’une source au sein d’un réseau, deux paramètres définis en amont de l’étude selon les besoins d’un client. L’influence est globale et décontextualisée : le score d’influence résulte de la commensuration de profils sociaux classés selon des thématiques. Tableau 2 - Comparaison entre l'approche de Linkfluence et celle des outils d'identification d'influenceurs sur le web Les deux approches comparées dans le tableau précédent peuvent être résumées de la manière suivante : - L’influenceur sur le Web, ou leader d’opinion, n’existe pas en soi, il s’agit d’une construction dépendant du contexte, des thématiques et des besoins d’une organisation : approche de Linkfluence ; - L’influenceur sur le Web existe en soi et ses capacités sont quantifiables, il suffit de l’identifier : approche des outils Klout, PeerIndex, Kred etc. Sans porter de jugement de valeur sur la pertinence ou non des deux approches, nous tenons à souligner que la première approche est celle qui a été retenue dans le cadre de l’étude de cas du présent mémoire. c. La construction des leaders d’opinion L’identification de leaders d’opinion sur le Web, telle que nous allons la développer au fil de ce mémoire, découle davantage d’une construction que d’une réelle identification. Pour ce faire, nous nous basons sur les travaux d’Alloing et Haikel-Elsabeh (2012) qui postulent que « le statut de leader d’opinion doit être un construit de l’entreprise voulant se reposer sur celui-ci pour développer sa stratégie marketing ou de communication sur le web, en fonction de ses objectifs et attentes ». Les auteurs définissent le leader d’opinion sur le web comme : « [Un] internaute développant une certaine expertise sur un sujet donné, expertise reconnue par sa capacité à diffuser et médiatiser des contenus et avis répondant à certains questionnements. De plus, le leader d’opinion diffuse de l’information aux membres de son réseau ou à son public, informations dont le filtrage permet ainsi à ce public non seulement de construire une opinion sur un sujet donné […], mais aussi de renforcer aux yeux de ce public la crédibilité du leader qui démontre ainsi sa capacité à connaitre de
  • 43. 43 manière précise un sujet, et à se positionner comme ressource sur celui-ci. » (Alloing et Haikel-Elsabeh 2012, p.7) Trois éléments nous semblent important à retenir de cette définition, à savoir : - Le leader d’opinion sur le Web possède une expertise sur une thématique. Pour les auteurs, cette expertise est liée à la capacité au leader d’opinion de mettre en visibilité ces informations et ses contenus pour un public & des requêtes formulées sur un moteur de recherche ; - Le leader d’opinion collecte et diffuse de l’information qu’il met à disposition de son réseau et de son audience (invisible ou non) ; - Il existe une relation de co-construction entre le leader d’opinion, qui diffuse de l’information au public, et le public qui va renforcer la crédibilité du leader d’opinion ; Dès lors, comment identifier un leader d’opinion ? Alloing et Haikel-Elsabeh (2012) proposent trois approches complémentaires : - Approche structurelle : compréhension du contexte, de la thématique, du sujet, selon les besoins de l’organisation & analyse de réseaux sociaux (positionnement de l’internaute au sein d’un réseau) ; - Approche énonciative : capacité de l’auteur (internaute) à être reconnu comme crédible ou fiable selon différents critères ; - Approche informationnelle : interactions suscitées par la diffusion de contenus par l’internaute ; L’identification de leaders d’opinion peut être donc perçue comme une construction faite par l’organisation selon ses besoins et ses attentes, mais surtout ses objectifs. Alloing et Haikel-Elsabeh (2012) en distinguent quatre : faire connaître, faire voir, faire partager, faire réagir. Les auteurs proposent également une série d’indicateurs formalisés dans une matrice. Celle-ci ne sera pas présentée intégralement, mais elle sera adaptée à l’étude de cas que nous avons traitée dans le cadre de nos recherches, à savoir : l’identification de leaders d’opinion sur les droits des personnes lesbiennes, gaies, bisexuelles et transgenres (LGBT) sur le Web.
  • 44. 44 Chapitre 2 - Cas d’étude : identification de potentiels leaders d’opinion en ligne dans le domaine des droits LGBT