SlideShare une entreprise Scribd logo
Chapitre 3
Cristaux réels et défauts structuraux
Composition chimique
Organisation inter-atomique,
structure
Microstruture
Architecture
Liaison chimique
Écart à la structure parfaite, défauts
Texture
Propriétés physiques des matériaux
Matériaux
Objets
Cristaux réels et défauts structuraux
Organisation interatomique
Structure amorphe ou cristalline
Propriétés intrinsèques
à la phase
Elasticité, dureté
Conductivité électrique
Caractéristiques optiques
Caractéristiques thermiques
Etc...
{
Propriétés = f(T,P, etc…)
Cristaux réels et défauts structuraux
Défauts cristallins
Les métaux utilisés dans l’industrie ne sont pas constitués de cristaux parfaits
(dans lesquels tous les nœuds seraient bien à leur place), ils ne sont généralement
pas purs. Les métaux sont souvent utilisés sous forme d’alliages. La présence de
ces impuretés (atomes étrangers) dans les métaux va engendrer la déformation du
réseau cristallin du fait qu’ils ont un volume différent par rapport au métal de
base.
Classification géométrique des défauts
Les défauts correspondent aux régions microscopiques d’un cristal dans
lesquelles un atome est entouré de proches voisins situés en des positions
différentes de celles observées dans un cristal parfait. Traditionnellement, les
défauts sont répartis en quatre catégories suivant leur dimensionnalité. Les défauts
ponctuels, linéaires, planaires et volumiques.
Cristaux réels et défauts structuraux
Ces défauts ont une importance considérable puisqu’ils déterminent un grand
nombre de propriétés physiques importantes des solides cristallins, telles que les
propriétés plastiques, optiques, électriques etc…...
Défauts ponctuels
Lacunes
{Atomes interstitiels
Défauts volumiques
Taille
Microdéformations
Fluctuation de composition
{
Défauts plans
Fautes d'empilement
Défauts linéaires Dislocations
Cristaux réels et défauts structuraux
On classe souvent les défauts par leur dimensionalité
L’atome en substitution
Défauts ponctuels complexes
{Joints de grains
Lacunes
Cristaux réels et défauts structuraux
Les défauts ponctuels
Groupement de lacunes
Lacunes
Substitution
Atomes interstitiels
Cristaux réels et défauts structuraux
Les défauts ponctuels
Cristaux réels et défauts structuraux
Les défauts ponctuels
- - - - - - - -
- - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
-
-
+ + + + + + + +
+ + + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+
+
Cas des cristaux ioniques
Dans les cristaux ioniques, la conservation de la neutralité électrique
conduit à des défauts plus complexes: défauts de FRENKEL, défaut de
SCHOTTKY
Cristaux réels et défauts structuraux
Les défauts ponctuels
- - - - - - - -
- - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
-
+ + + + + + + +
+ + + + + + + +
+ + + + + + +
+ + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
+ + + + + + + +
Défaut de Schottky Défaut de Frenkel
Cas des cristaux ioniques
Cristaux réels et défauts structuraux
Les défauts ponctuels
Cas des cristaux ioniques
Défauts de Frenkel
Défaut de Schottky
Association de deux lacunes de signe opposé
Association d’un atome interstitiel et d’une lacune
Cristaux réels et défauts structuraux
Défauts linéaires : les dislocations
Cristaux réels et défauts structuraux
La figure 1 présente une dislocation coin du point de vue des milieux continus
(c’est-à-dire en faisant abstraction des atomes). On crée une telle dislocation dans
un bloc de matériau en coupant le bloc jusqu’à la ligne marquée par un trait gras,
puis en déplaçant le matériau sous le plan de coupure par rapport à celui du
dessus d’une distance b (une distance interatomique) dans la direction
perpendiculaire à la coupure trait gras, enfin en recollant les parties déplacées. Le
résultat à l’échelle atomique est présenté sur la figure 2. Le matériau du milieu de
bloc contient à présent un demi-plan atomique dont la bordure inférieure est la
ligne en gras, la ligne de la dislocation. Ce défaut s’appelle une dislocation coin.
Son symbole est ⊥
Dislocation coin :
Fig.1 Une dislocation coin du point de vue des milieux continus (c’est-à-dire en
faisant abstraction des atomes)
Défauts linéaires : les dislocations
Cristaux réels et défauts structuraux
Fig.2 : Une dislocation coin avec représentation des atomes au voisinage de
la dislocation
On peut aussi simplement, pour générer une dislocation coin, insérer un
demi-plan d’atomes supplémentaire dans le réseau ou en retirer un. La
ligne de dislocation est le bord du demi-plan supplémentaire
Dislocation coin :
Cristaux réels et défauts structuraux
Fig.3: Déplacement d’une dislocation dans un cristal. Le schéma montre
comment les liaisons atomiques du cœur de la dislocation se brisent et se
referment pour permettre le mouvement de la dislocation
Le déplacement des dislocations produit la déformation plastique. La figure 3
montre comment les atomes se réordonnent au passage de la dislocation, et
pourquoi la partie inférieure du cristal se déplace d’une distance b (appelée
vecteur de Burgers) par rapport à la partie supérieure lorsqu’une dislocation
traverse le cristal de part en part
Cristaux réels et défauts structuraux
Dislocation vis :
Figure 4 : Formation d’une dislocation vis (OP) dans le plan de glissement
ABCD. La portion de cristal située à droite du plan de glissement et au-
dessus de la ligne de dislocation (OP) subit un glissement b par rapport au
cristal situé en-dessous.
On peut également se représenter une dislocation vis en imaginant que l’on
fait une coupure plane à travers le cristal, et que l’on fait glisser l’un des
bords obtenus par rapport à l’autre d’une distance interatomique. La ligne
de dislocation vis correspond alors au fond de la coupure. Une dislocation
vis transforme les plans successifs d’atomes en surfaces hélicoïdales, d’où
son nom.
Cristaux réels et défauts structuraux
Mouvement des Dislocations
Le processus de déplacement des dislocations dans leurs plans de glissement
constitue la base du mécanisme de la déformation plastique à basse
température (T< 0,4 Tm) dans la plupart des matériaux cristallins (métaux).
La déformation plastique est facilitée par la présence des dislocations. Elle
est induite par la propagation des dislocations. Pour se représenter leur
mouvement, on peut utiliser l'image d'un lourd tapis que l'on voudrait déplacer
sur le sol.
Cristaux réels et défauts structuraux
Deux méthodes sont utilisables : soit tirer le tapis pour le faire glisser, soit
créé une ondulation à un bord et la faire propager à travers le tapis. La
première méthode correspond au cas d'un glissement suivant un plan compact,
la seconde donne une image de la propagation des dislocations dans les
cristaux
Fig.5: La propagation d’un pli le long d’un tapis, analogue du mouvement d’une dislocation
coin.
Il existe un certain nombre de défauts plans parmi lesquels nous pouvons
citer que ceux ayant une importance particulière à savoir :
Les défauts plans
Cristaux réels et défauts structuraux
Les joints de grains :
Ce sont les zones de grand désordre (ayant une épaisseur de l’ordre de
quelques distances interatomiques) séparant les cristaux dans un même
solide polycristallin.
Cristaux réels et défauts structuraux
Défauts plans : fautes d’empilement
A
B
C
A
B
C
A
B
C
A
B
C
[111]
[112]
(-110)
[001]
[110]
A
B
C
A
A
B
C
A
B
C
B
C miroir
A B C A B C B A C B A C
Cristaux réels et défauts structuraux
Défauts plans : fautes d’empilement
Si la faute d’empilement sépare deux parties du cristal identiques par une
opération miroir, on parle de macle
Cristaux réels et défauts structuraux
Défauts plans : fautes d’empilement
Faute d’empilement intrinsèque et extrinsèque
Faute d'empilement (a) intrinsèque et (b) extrinsèque.
On a un défaut à trois dimensions quand une partie du cristal est
remplacée par un volume d’un composé différent ; la différence est de
nature chimique et peut ou non être accompagnée de différences
cristallographiques. La partie étrangère du cristal est soit
un précipité, soit une inclusion.
Les précipités sont de petites particules de seconde phase qui se sont
formées entre le métal de base et un élément d’alliage.
Les inclusions sont des «impuretés » dans le métal, qui proviennent de
son élaboration à l’état liquide ; ce sont le plus souvent des oxydes,
des sulfures ou des silicates.
La taille des précipités et la distance entre eux ont une très grande
influence sur les propriétés mécaniques
Les défauts volumiques les plus courants sont les précipités, formés par
l’inclusion d’une phase cristalline au sein d’une autre.
Défauts volumiques
Cristaux réels et défauts structuraux
Défauts et propriétés physiques
Cristaux réels et défauts structuraux
I- Centres colorés dans les cristaux ioniques
La coloration des pierres précieuses est un exemple emblématique de
l’influence des défauts sur les propriétés physiques. Le cristal de
corindon Al2O3, transparent, prend une valeur inestimable si quelques
atomes de chrome viennent se substituer aux atomes d’aluminium. Pour
une concentration d’impuretés substitutionnelles aussi faible que le
pourcent, la pierre prend une profonde coloration rouge et est appelée
« rubis »… Le saphir, pierre précieuse de couleur bleue, est également
obtenue à partir du corindon en substituant l’aluminium par du fer et du
titane.
La Figure suivante donne un aperçu de l’immense variété de colorations
que l’on peut obtenir dans un cristal de fluorine CaF2, suivant le type
de défaut ponctuel affectant la structure : lacunes, impuretés
substitutionnelles….
Cristaux réels et défauts structuraux
Figure 6 : Cristaux de fluorine CaF2. La grande variété de couleur observée est liée
à l’existence de défauts ponctuels (lacunes, impuretés substitutionnelles) ou
association de défauts ponctuels (inclusions d’ions moléculaires). Les cristaux purs
et exempts de défauts sont transparents (1). La fluorine violette doit sa couleur à
la présence de lacunes sur les sites habituellement occupés par le fluor (2). Les
autres couleurs s’expliquent par la présence d’impuretés chargées, sous forme d’ions
simples ou moléculaires
Cristaux réels et défauts structuraux
Les différentes colorations obtenues sont liées à la présence de centres
colorés. Il s’agit de zones dans lesquelles les électrons subissent le potentiel
électrostatique crée par les défauts ponctuels chargés. Il en résulte
l’apparition de niveaux d’énergie discrets {𝐸1 , 𝐸2, … , 𝐸𝑛 }. Les photons
d’énergie (𝐸𝑖′ − 𝐸𝑖 ) peuvent être absorbés pour générer des transitions
électroniques entre les niveaux 𝐸𝑖 et 𝐸𝑖′. La couleur perçue correspond aux
longueurs d’ondes non absorbées.
Les centres colorés F correspondent à une lacune d’ion négatif.
Figure 7 : Un centre F est une lacune d’ion négatif avec un électron en
excès lié à cette lacune. La distribution de cet électron en excès est
fortement concentrée au niveau de la lacune.
Cristaux réels et défauts structuraux
Figure 8 : Absorption optique en fonction de la longueur d’onde mesurée pour
différents chlorures contenant des centres F. De gauche à droite, le numéro
atomique/rayon ionique des cations augmente, de même que le paramètre a de la
maille cubique. Le pic d’absorption se décale vers les grandes longueurs d’ondes
quand le paramètre de maille augmente. La couleur des cristaux est donnée par les
composantes du spectre visible transmises : orangé pour NaCl (absorption dans le
bleu), violacé pour KCl (absorption dans le vert-jaune)
Les pics d’absorption correspondent à l’énergie de transition entre les niveaux 𝐸1 et
𝐸2 définis plus haut. Celle-ci est donnée par la formule :
La valeur de 𝑅 étant proportionnelle au paramètre de maille cubique 𝑎
II. Conductivité électrique
Cristaux réels et défauts structuraux
Les défauts ponctuels affectent la conductivité des métaux comme
des semi-conducteurs.
Les métaux possèdent des porteurs de charges libres à toutes les
températures. La résistivité est alors gouvernée par la mobilité de
ces porteurs. Dans ce cas, les impuretés augmentent la résistivité en
perturbant le parcours des électrons.
Dans les semi-conducteurs, la conduction est assurée par un petit
nombre d’électrons qui se délocalisent au fur et à mesure que la
température augmente. La conductivité dépend donc à la fois du
nombre de porteurs de charges et de leur mobilité.
Il est possible de doper les semi-conducteurs en porteurs de charge,
en procédant à des substitutions adéquates. Prenons l’exemple du
silicium :
Figure 9 : Insertion d’impuretés dans un cristal de silicium. (a) Le phosphore a
5 électrons de valence, alors que le silicium n’en a que 4. Par conséquent, 4 des
électrons du phosphore forment des liaisons tétraédriques covalentes
semblables à celles du silicium. Le 5e électron est alors disponible pour la
conduction. (b) Le bore n’a que 3 électrons de valence. Il ne peut compléter
ses liaisons tétraédriques qu’en prenant un électron sur une liaison Si-Si,
laissant ainsi un trou dans la bande de valence du silicium. Ce trou de charge
positive peut participer à la conduction.
Cristaux réels et défauts structuraux
II. Conductivité électrique
III- Déformation plastique
Cristaux réels et défauts structuraux
Nous considérons un barreau de matière soumis à une contrainte de
traction uniaxiale. On exerce dans ce cas une force F parallèlement à l’axe
de la section S [Figure 10 a]. La valeur de la contrainte se calcule comme le
rapport de la force sur la surface :
Sous l’action de la force F , le solide se déforme suivant l’axe de la
contrainte. On définit mathématiquement la déformation correspondante
comme , l’allongement relatif dans la direction de la contrainte.
Figure 10 : (a) Barre cylindrique soumise à une contrainte de traction
uniaxiale. (b) Relation schématique entre contrainte et déformation dans un
matériau solide. OL est le domaine élastique, et LR est le domaine plastique
Mécanisme de la déformation plastique
Dans le domaine de déformation élastique, les faibles contraintes
appliquées au solide déplacent légèrement les atomes par rapport à leurs
positions d’équilibre, vers lesquelles ils reviennent lorsque la sollicitation
extérieure diminue. Au contraire, les déformations obtenues dans le
domaine plastique persistent après relâchement de la contrainte
extérieure, posant la question de la nature des changements structuraux
subis par l’échantillon.
L’observation par microscopie optique de monocristaux métalliques soumis à
des contraintes de traction élevées révèle l’apparition de traces de
glissement lors de la déformation plastique [Figure 11 a]. Ces traces ont été
très tôt interprétées comme la conséquence du glissement de plans
cristallins les uns par rapport aux autres [Figure 11b].
Cristaux réels et défauts structuraux
Cristaux réels et défauts structuraux
Mécanisme de la déformation plastique
Cristaux réels et défauts structuraux
Figure 11 : (a) Traces de glissement dans un monocristal d’aluminium (diamètre 1 mm) soumis à une
traction uniaxiale à 600°C. (b) Représentation des traces de glissement à l’échelle atomique.
Ces dislocations ont des conséquences mécaniques importantes. Si on
calcule pour un cristal parfait la force nécessaire pour faire glisser
un plan par rapport à un autre il faut compter sur des forces de
l’ordre de 109 newtons. La force réellement requise est plutôt de
l’ordre de 106 newtons. Cette facilité relative est principalement
due à la présence de dislocation coin.
L’observation par microscopie optique de monocristaux métalliques soumis
à des contraintes de traction élevées révèle l’apparition de traces de
glissement lors de la déformation plastique (Figure 11a).
DIFFUSION A L’ETAT SOLIDE
Si l’on maintient en contact deux blocs de cuivre et d’or et que l’on porte
l’ensemble à 1000 °C, on peut observer au bout d’un certain temps la
soudure de ces deux blocs. La mesure de la concentration de l’un des
éléments en fonction de la distance x montre que les atomes de Cu se sont
déplacés du coté de l’or et que réciproquement des atomes d’or se sont
déplacés du coté du Cu. Cette migration d’atomes dans le réseau cristallin
s’appelle diffusion.
Fig.12 : Expérience de diffusion
Aspect macroscopique de la diffusion :
Les lois macroscopiques de la diffusion sont analogues à celles que l’on
établit pour la conduction électrique ou thermique. En diffusion ce sont
les lois de Fick. Si l’on considère tout d’abord un flux d’atomes traversant
une surface perpendiculaire à la direction x par unité de surface et par
unité de temps, on note que la densité de ce flux J est proportionnelle au
gradient de concentration. D’où la première loi de Fick :
DIFFUSION A L’ETAT SOLIDE
Où : J = flux de particules, C = concentration, X = distance selon la
direction choisie
Le coefficient de proportionnalité D ou coefficient de diffusion s’exprime
en m2/s
Le signe (-) nous indique que le courant de particule se déplace depuis des
zones où la concentration en particules est élevée, vers les zones où elle
est faible.
On peut également définir un flux de matière, , (= débit massique ou
volumique, nombre de particules, moléculaire, atomique, par unité de
temps à travers une surface) en fonction des paramètres :
- surface offerte à la diffusion, S,
- gradient de concentration en fonction de la distance, C/x,
- cœfficient de diffusion D.
Evidemment, les unités doivent rester cohérentes :
D en m2/s, S en m2, x en m, C en mole/m3 ==>  en mole/s
ou bien en unités usuelles, D en cm2/s, S en cm2, x en cm, C en
mg/cm3 ==>  en mg/s.
DIFFUSION A L’ETAT SOLIDE
Tableau illustrant l’évolution de D en fonction des molécules :
DIFFUSION A L’ETAT SOLIDE
On constate due D diminue lorsque M augmente (donc quand la taille de la
molécule augmente). En fait, D est une fonction des caractéristiques du
milieu (température, T) et du soluté (cœfficient de friction, f). Soit :
D = (k×T)/f
formule d’Einstein où k est la constante de Boltzmann :
La diffusion (D) augmente lorsque la température augmente (plus d’agitation
moléculaire) ou lorsque f diminue (moins de frottements).
Par ailleurs, Stockes a relié le cœfficient de friction, f, avec le cœfficient
de viscosité du milieu, , et le rayon, r, de la particule supposée sphérique.
Soit : f = 6π××r
où l’on voit que f augmente quand la viscosité du milieu augmente ou que l
La formule d’Einstein devient :
D = (k×T)/6π××r
Dans le cas où la particule est sphérique (approximativement vrai pour
les grosses molécules), on a :
m = rV = M/N
soit
DIFFUSION A L’ETAT SOLIDE
Diffusion uniforme :
Ce cas peut-être représenté par un gaz (H2) traversant une feuille
métallique de chaque coté de laquelle une forte pression et une faible sont
maintenues.
DIFFUSION A L’ETAT SOLIDE
Où : S : surface de la feuille et L : épaisseur de la feuille
Diffusion non uniforme :
C’est le cas présenté en introduction (voir figure 12) où le gradient de
concentration varie avec le temps et la distance X. C’est le cas général des
problèmes rencontrés en métallurgie. On peut montrer toujours en
considérant que D est indépendant de la composition, que :
DIFFUSION A L’ETAT SOLIDE
Aspect microscopique de la diffusion:
Mécanismes de la diffusion: Le mouvement des atomes se produit grâce à
leur vibration thermique, dont l'amplitude augmente avec la température.
Plusieurs mécanismes de déplacement des atomes peuvent être imaginés
(figure 13), mais seuls deux d'entre eux sont possibles :
Fig.13 : Schéma des principaux mécanismes de diffusion : 1) échange
simple ; 2) échange cyclique ; 3) lacunaire ; 4) interstitiel direct ; 5)
interstitiel indirect ; 6) « crowdion »
DIFFUSION A L’ETAT SOLIDE
Mécanismes de la diffusion:
Figure 14 : Mécanisme interstitiel indirect : (a) variante colinéaire, (b) variante non
colinéaire.
Figure 15 : Mécanisme de diffusion par relaxation
Ce mécanisme est une variante
de la diffusion lacunaire. Ici, la
région où se trouve la lacune
n'a plus de structure
cristalline. Il se traduit par un
déplacement des atomes voisin
de la lacune vers celle-ci.
Le coefficient de diffusion croit avec la température et est déterminé à
l'aide de la formule suivante:
DIFFUSION A L’ETAT SOLIDE
Aspect microscopique de la diffusion:
Où: Do = constante reliée à la fréquence du saut, R = 8,314J.mol-1 .K-1 T =
température en degré kelvins (K) ∆𝑯 = Enthalpie d'activation molaire en
joules par moles (J.mol-1 )
Diffusion aux joints de grains:
La diffusion en volume dans les cristaux peut-être parfois court-circuitée
par la diffusion le long des joints de grains. Le joint de grain se comporte
comme un canal plan de deux distances interatomiques environ, avec un
coefficient de diffusion qui peut localement être 106 fois plus grand que
celui du volume
- La diffusion est plus rapide dans les joints de grain, puisqu'il y a plus
de place pour circuler ;
- de même que pour les surfaces libres, l'énergie des atomes des joints
de grain est plus importante que celle des atomes au sein du cristal,
DIFFUSION A L’ETAT SOLIDE
Figure 16 : Diffusion au joint de grains
III- ANALOGIES PHYSIQUES
La loi de Fourier est analogue aux lois d’Ohm en électricité et de Fick
en ce qui concerne la diffusion. Le tableau suivant met en évidence les
analogies entre les différentes grandeurs.
DIFFUSION A L’ETAT SOLIDE
Exercice d’application :
Une mesure des coefficients de diffusion d’une substance en solution
aqueuse à 27°C donne la valeur D = 8,2 10-7 cm2/s.
1- Calculer le rayon des molécules de cette substance sachant que  = 10-
3 Pas.
2- Déduire la masse molaire de la substance sachant que r = 1,3 g/cm3.

Contenu connexe

Tendances

cristallographie
cristallographiecristallographie
cristallographie
Rafael Nadal
 
élaboration-désignation-matériaux
élaboration-désignation-matériauxélaboration-désignation-matériaux
élaboration-désignation-matériaux
Rafael Nadal
 
Diagrammes d'équilibre
Diagrammes d'équilibreDiagrammes d'équilibre
Diagrammes d'équilibre
Rafael Nadal
 
cours cristallographie
cours cristallographiecours cristallographie
cours cristallographie
Mouna Souissi
 
traitement thermique et thermochimique
traitement thermique et thermochimiquetraitement thermique et thermochimique
traitement thermique et thermochimique
Rafael Nadal
 
Métaux et alliages non ferreux lourds Cu, Ni, Co et autres
Métaux et alliages non ferreux lourds Cu, Ni, Co et autresMétaux et alliages non ferreux lourds Cu, Ni, Co et autres
Métaux et alliages non ferreux lourds Cu, Ni, Co et autres
Omar Benchiheub
 
Chapitre5 cristallographie
Chapitre5 cristallographieChapitre5 cristallographie
Chapitre5 cristallographie
Mouna Souissi
 
étude-du-diagramme-fer-carbone
étude-du-diagramme-fer-carboneétude-du-diagramme-fer-carbone
étude-du-diagramme-fer-carbone
Rafael Nadal
 
Diagramme bianire 2018 N. dokhan
Diagramme bianire 2018   N. dokhanDiagramme bianire 2018   N. dokhan
Diagramme bianire 2018 N. dokhan
Nahed Dokhan
 
Cours rdm
Cours rdmCours rdm
Cours rdm
Rafik Arslene
 
Les composites
Les compositesLes composites
Les composites
oumaimazizi
 
Elaboration des materiaux
Elaboration des materiauxElaboration des materiaux
Elaboration des materiaux
Rafael Nadal
 
Examen RDM 2014-2015
Examen RDM 2014-2015Examen RDM 2014-2015
Examen RDM 2014-2015
Mouna Souissi
 
Désignation des matériaux métalliques
Désignation des matériaux métalliquesDésignation des matériaux métalliques
Désignation des matériaux métalliques
Rafael Nadal
 
cours de licence matériaux et industrie chimique.ppt
cours de licence matériaux et industrie chimique.pptcours de licence matériaux et industrie chimique.ppt
cours de licence matériaux et industrie chimique.ppt
MohammedOuahabiAlHas
 
Exercice cristallographie
Exercice cristallographieExercice cristallographie
Exercice cristallographieMouna Souissi
 
Copier cours plasturgie (version 00)
Copier cours plasturgie (version 00)Copier cours plasturgie (version 00)
Copier cours plasturgie (version 00)
Ahmed Manai
 
Identification des métaux
Identification des métaux Identification des métaux
Identification des métaux
Rafael Nadal
 
Résistance des matériaux
Résistance des  matériaux Résistance des  matériaux
Résistance des matériaux
El Hassasna Riadh
 

Tendances (20)

cristallographie
cristallographiecristallographie
cristallographie
 
élaboration-désignation-matériaux
élaboration-désignation-matériauxélaboration-désignation-matériaux
élaboration-désignation-matériaux
 
Diagrammes d'équilibre
Diagrammes d'équilibreDiagrammes d'équilibre
Diagrammes d'équilibre
 
cours cristallographie
cours cristallographiecours cristallographie
cours cristallographie
 
traitement thermique et thermochimique
traitement thermique et thermochimiquetraitement thermique et thermochimique
traitement thermique et thermochimique
 
Métaux et alliages non ferreux lourds Cu, Ni, Co et autres
Métaux et alliages non ferreux lourds Cu, Ni, Co et autresMétaux et alliages non ferreux lourds Cu, Ni, Co et autres
Métaux et alliages non ferreux lourds Cu, Ni, Co et autres
 
Chapitre5 cristallographie
Chapitre5 cristallographieChapitre5 cristallographie
Chapitre5 cristallographie
 
étude-du-diagramme-fer-carbone
étude-du-diagramme-fer-carboneétude-du-diagramme-fer-carbone
étude-du-diagramme-fer-carbone
 
Diagramme bianire 2018 N. dokhan
Diagramme bianire 2018   N. dokhanDiagramme bianire 2018   N. dokhan
Diagramme bianire 2018 N. dokhan
 
Cours rdm
Cours rdmCours rdm
Cours rdm
 
Les composites
Les compositesLes composites
Les composites
 
Elaboration des materiaux
Elaboration des materiauxElaboration des materiaux
Elaboration des materiaux
 
Examen RDM 2014-2015
Examen RDM 2014-2015Examen RDM 2014-2015
Examen RDM 2014-2015
 
Désignation des matériaux métalliques
Désignation des matériaux métalliquesDésignation des matériaux métalliques
Désignation des matériaux métalliques
 
cours de licence matériaux et industrie chimique.ppt
cours de licence matériaux et industrie chimique.pptcours de licence matériaux et industrie chimique.ppt
cours de licence matériaux et industrie chimique.ppt
 
Chapitre 1 rdm
Chapitre 1 rdmChapitre 1 rdm
Chapitre 1 rdm
 
Exercice cristallographie
Exercice cristallographieExercice cristallographie
Exercice cristallographie
 
Copier cours plasturgie (version 00)
Copier cours plasturgie (version 00)Copier cours plasturgie (version 00)
Copier cours plasturgie (version 00)
 
Identification des métaux
Identification des métaux Identification des métaux
Identification des métaux
 
Résistance des matériaux
Résistance des  matériaux Résistance des  matériaux
Résistance des matériaux
 

Similaire à Ch.3.ppt

183148.ppt
183148.ppt183148.ppt
183148.ppt
SamahSamah10
 
Cours de cristallographie.pdf
Cours de cristallographie.pdfCours de cristallographie.pdf
Cours de cristallographie.pdf
houssam747
 
Chapitre 1 (20 06-2013-3)
Chapitre 1 (20 06-2013-3)Chapitre 1 (20 06-2013-3)
Chapitre 1 (20 06-2013-3)ramzi007
 
Module matériaux.docx
Module matériaux.docxModule matériaux.docx
Module matériaux.docx
KhadariAbdelmalek
 
Cristallographie cours
Cristallographie coursCristallographie cours
Cristallographie coursYassine King
 
Cours_Corrosion-Partie_1.pdf
Cours_Corrosion-Partie_1.pdfCours_Corrosion-Partie_1.pdf
Cours_Corrosion-Partie_1.pdf
BlaiseMKasongoshi
 
Présentation La course aux chocs
Présentation La course aux chocsPrésentation La course aux chocs
Présentation La course aux chocs
chainreactionfr
 

Similaire à Ch.3.ppt (7)

183148.ppt
183148.ppt183148.ppt
183148.ppt
 
Cours de cristallographie.pdf
Cours de cristallographie.pdfCours de cristallographie.pdf
Cours de cristallographie.pdf
 
Chapitre 1 (20 06-2013-3)
Chapitre 1 (20 06-2013-3)Chapitre 1 (20 06-2013-3)
Chapitre 1 (20 06-2013-3)
 
Module matériaux.docx
Module matériaux.docxModule matériaux.docx
Module matériaux.docx
 
Cristallographie cours
Cristallographie coursCristallographie cours
Cristallographie cours
 
Cours_Corrosion-Partie_1.pdf
Cours_Corrosion-Partie_1.pdfCours_Corrosion-Partie_1.pdf
Cours_Corrosion-Partie_1.pdf
 
Présentation La course aux chocs
Présentation La course aux chocsPrésentation La course aux chocs
Présentation La course aux chocs
 

Plus de easylife13

Presentation-Vesson-ACV-enerJMeeting.pptx
Presentation-Vesson-ACV-enerJMeeting.pptxPresentation-Vesson-ACV-enerJMeeting.pptx
Presentation-Vesson-ACV-enerJMeeting.pptx
easylife13
 
déchets industriel . déchets industriel.
déchets industriel . déchets industriel.déchets industriel . déchets industriel.
déchets industriel . déchets industriel.
easylife13
 
PPT FOUR 11.pptx Fours de traitement des déchets Incinération
PPT FOUR 11.pptx Fours de traitement des déchets IncinérationPPT FOUR 11.pptx Fours de traitement des déchets Incinération
PPT FOUR 11.pptx Fours de traitement des déchets Incinération
easylife13
 
Brochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdf
Brochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdfBrochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdf
Brochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdf
easylife13
 
tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...
tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...
tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...
easylife13
 
Procédure de Recrutement.docx
Procédure de Recrutement.docxProcédure de Recrutement.docx
Procédure de Recrutement.docx
easylife13
 
plan qualite.docx
plan qualite.docxplan qualite.docx
plan qualite.docx
easylife13
 

Plus de easylife13 (7)

Presentation-Vesson-ACV-enerJMeeting.pptx
Presentation-Vesson-ACV-enerJMeeting.pptxPresentation-Vesson-ACV-enerJMeeting.pptx
Presentation-Vesson-ACV-enerJMeeting.pptx
 
déchets industriel . déchets industriel.
déchets industriel . déchets industriel.déchets industriel . déchets industriel.
déchets industriel . déchets industriel.
 
PPT FOUR 11.pptx Fours de traitement des déchets Incinération
PPT FOUR 11.pptx Fours de traitement des déchets IncinérationPPT FOUR 11.pptx Fours de traitement des déchets Incinération
PPT FOUR 11.pptx Fours de traitement des déchets Incinération
 
Brochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdf
Brochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdfBrochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdf
Brochure-de-TP-Chimie-de-surface-3eme-chimie-fondamentale (2).pdf
 
tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...
tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...
tp chimieDéterminer l’isotherme d’adsorption de l’acide acétique sur le charb...
 
Procédure de Recrutement.docx
Procédure de Recrutement.docxProcédure de Recrutement.docx
Procédure de Recrutement.docx
 
plan qualite.docx
plan qualite.docxplan qualite.docx
plan qualite.docx
 

Dernier

SRE - Mythes et Réalités - Voxxed 2024.pdf
SRE - Mythes et Réalités - Voxxed 2024.pdfSRE - Mythes et Réalités - Voxxed 2024.pdf
SRE - Mythes et Réalités - Voxxed 2024.pdf
Henri Gomez
 
Rénovation des prairies sans labour est-ce possible en bio.pdf
Rénovation des prairies sans labour est-ce possible en bio.pdfRénovation des prairies sans labour est-ce possible en bio.pdf
Rénovation des prairies sans labour est-ce possible en bio.pdf
idelewebmestre
 
04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...
04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...
04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...
Institut de l'Elevage - Idele
 
Note Agro-climatique et prairies n°4 - Juin 2024
Note Agro-climatique et prairies n°4 - Juin 2024Note Agro-climatique et prairies n°4 - Juin 2024
Note Agro-climatique et prairies n°4 - Juin 2024
idelewebmestre
 
Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...
Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...
Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...
Daniel Bedard
 
03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...
03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...
03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...
Institut de l'Elevage - Idele
 
05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait
05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait
05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait
Institut de l'Elevage - Idele
 
PROVINLAIT - Bâtiment et bien-être estival
PROVINLAIT - Bâtiment et bien-être estivalPROVINLAIT - Bâtiment et bien-être estival
PROVINLAIT - Bâtiment et bien-être estival
idelewebmestre
 
01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...
01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...
01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...
Institut de l'Elevage - Idele
 
QCM de révision pour la haute qualité.pdf
QCM de révision pour la haute qualité.pdfQCM de révision pour la haute qualité.pdf
QCM de révision pour la haute qualité.pdf
ffffourissou
 
02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...
02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...
02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...
Institut de l'Elevage - Idele
 
S210-S-27.04-chaudiere-à-vapeur bilan thermique
S210-S-27.04-chaudiere-à-vapeur bilan thermiqueS210-S-27.04-chaudiere-à-vapeur bilan thermique
S210-S-27.04-chaudiere-à-vapeur bilan thermique
ALIIAE
 
Alternative - Complément au Tramway et 3 ème lien de la ville de Quebec (PDF)
Alternative - Complément au Tramway  et 3 ème lien de la ville de Quebec (PDF)Alternative - Complément au Tramway  et 3 ème lien de la ville de Quebec (PDF)
Alternative - Complément au Tramway et 3 ème lien de la ville de Quebec (PDF)
Daniel Bedard
 

Dernier (13)

SRE - Mythes et Réalités - Voxxed 2024.pdf
SRE - Mythes et Réalités - Voxxed 2024.pdfSRE - Mythes et Réalités - Voxxed 2024.pdf
SRE - Mythes et Réalités - Voxxed 2024.pdf
 
Rénovation des prairies sans labour est-ce possible en bio.pdf
Rénovation des prairies sans labour est-ce possible en bio.pdfRénovation des prairies sans labour est-ce possible en bio.pdf
Rénovation des prairies sans labour est-ce possible en bio.pdf
 
04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...
04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...
04_UMT STAR_Étude de nouveaux caractères en lien avec la santé et le bien-êtr...
 
Note Agro-climatique et prairies n°4 - Juin 2024
Note Agro-climatique et prairies n°4 - Juin 2024Note Agro-climatique et prairies n°4 - Juin 2024
Note Agro-climatique et prairies n°4 - Juin 2024
 
Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...
Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...
Alternative au 3eme lien et complement au Tramway de la ville de Quebec Rev 1...
 
03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...
03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...
03_UMT STAR_compromis entre résistance au parasitisme et efficience alimentai...
 
05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait
05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait
05_UMT STAR_Vers une indexation de la longévité fonctionnelle en ovin lait
 
PROVINLAIT - Bâtiment et bien-être estival
PROVINLAIT - Bâtiment et bien-être estivalPROVINLAIT - Bâtiment et bien-être estival
PROVINLAIT - Bâtiment et bien-être estival
 
01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...
01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...
01_UMT STAR_étude de la résilience et des compromis entre résilience et effic...
 
QCM de révision pour la haute qualité.pdf
QCM de révision pour la haute qualité.pdfQCM de révision pour la haute qualité.pdf
QCM de révision pour la haute qualité.pdf
 
02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...
02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...
02_UMT STAR_un nouveau biomarqueur de résilience basé sur les métabolites du ...
 
S210-S-27.04-chaudiere-à-vapeur bilan thermique
S210-S-27.04-chaudiere-à-vapeur bilan thermiqueS210-S-27.04-chaudiere-à-vapeur bilan thermique
S210-S-27.04-chaudiere-à-vapeur bilan thermique
 
Alternative - Complément au Tramway et 3 ème lien de la ville de Quebec (PDF)
Alternative - Complément au Tramway  et 3 ème lien de la ville de Quebec (PDF)Alternative - Complément au Tramway  et 3 ème lien de la ville de Quebec (PDF)
Alternative - Complément au Tramway et 3 ème lien de la ville de Quebec (PDF)
 

Ch.3.ppt

  • 1. Chapitre 3 Cristaux réels et défauts structuraux
  • 2. Composition chimique Organisation inter-atomique, structure Microstruture Architecture Liaison chimique Écart à la structure parfaite, défauts Texture Propriétés physiques des matériaux Matériaux Objets Cristaux réels et défauts structuraux
  • 3. Organisation interatomique Structure amorphe ou cristalline Propriétés intrinsèques à la phase Elasticité, dureté Conductivité électrique Caractéristiques optiques Caractéristiques thermiques Etc... { Propriétés = f(T,P, etc…) Cristaux réels et défauts structuraux
  • 4. Défauts cristallins Les métaux utilisés dans l’industrie ne sont pas constitués de cristaux parfaits (dans lesquels tous les nœuds seraient bien à leur place), ils ne sont généralement pas purs. Les métaux sont souvent utilisés sous forme d’alliages. La présence de ces impuretés (atomes étrangers) dans les métaux va engendrer la déformation du réseau cristallin du fait qu’ils ont un volume différent par rapport au métal de base. Classification géométrique des défauts Les défauts correspondent aux régions microscopiques d’un cristal dans lesquelles un atome est entouré de proches voisins situés en des positions différentes de celles observées dans un cristal parfait. Traditionnellement, les défauts sont répartis en quatre catégories suivant leur dimensionnalité. Les défauts ponctuels, linéaires, planaires et volumiques. Cristaux réels et défauts structuraux Ces défauts ont une importance considérable puisqu’ils déterminent un grand nombre de propriétés physiques importantes des solides cristallins, telles que les propriétés plastiques, optiques, électriques etc…...
  • 5. Défauts ponctuels Lacunes {Atomes interstitiels Défauts volumiques Taille Microdéformations Fluctuation de composition { Défauts plans Fautes d'empilement Défauts linéaires Dislocations Cristaux réels et défauts structuraux On classe souvent les défauts par leur dimensionalité L’atome en substitution Défauts ponctuels complexes {Joints de grains
  • 6. Lacunes Cristaux réels et défauts structuraux Les défauts ponctuels
  • 7. Groupement de lacunes Lacunes Substitution Atomes interstitiels Cristaux réels et défauts structuraux Les défauts ponctuels
  • 8. Cristaux réels et défauts structuraux Les défauts ponctuels - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Cas des cristaux ioniques
  • 9. Dans les cristaux ioniques, la conservation de la neutralité électrique conduit à des défauts plus complexes: défauts de FRENKEL, défaut de SCHOTTKY Cristaux réels et défauts structuraux Les défauts ponctuels - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + Défaut de Schottky Défaut de Frenkel Cas des cristaux ioniques
  • 10. Cristaux réels et défauts structuraux Les défauts ponctuels Cas des cristaux ioniques Défauts de Frenkel Défaut de Schottky Association de deux lacunes de signe opposé Association d’un atome interstitiel et d’une lacune
  • 11. Cristaux réels et défauts structuraux Défauts linéaires : les dislocations
  • 12. Cristaux réels et défauts structuraux La figure 1 présente une dislocation coin du point de vue des milieux continus (c’est-à-dire en faisant abstraction des atomes). On crée une telle dislocation dans un bloc de matériau en coupant le bloc jusqu’à la ligne marquée par un trait gras, puis en déplaçant le matériau sous le plan de coupure par rapport à celui du dessus d’une distance b (une distance interatomique) dans la direction perpendiculaire à la coupure trait gras, enfin en recollant les parties déplacées. Le résultat à l’échelle atomique est présenté sur la figure 2. Le matériau du milieu de bloc contient à présent un demi-plan atomique dont la bordure inférieure est la ligne en gras, la ligne de la dislocation. Ce défaut s’appelle une dislocation coin. Son symbole est ⊥ Dislocation coin : Fig.1 Une dislocation coin du point de vue des milieux continus (c’est-à-dire en faisant abstraction des atomes) Défauts linéaires : les dislocations
  • 13. Cristaux réels et défauts structuraux Fig.2 : Une dislocation coin avec représentation des atomes au voisinage de la dislocation On peut aussi simplement, pour générer une dislocation coin, insérer un demi-plan d’atomes supplémentaire dans le réseau ou en retirer un. La ligne de dislocation est le bord du demi-plan supplémentaire Dislocation coin :
  • 14. Cristaux réels et défauts structuraux Fig.3: Déplacement d’une dislocation dans un cristal. Le schéma montre comment les liaisons atomiques du cœur de la dislocation se brisent et se referment pour permettre le mouvement de la dislocation Le déplacement des dislocations produit la déformation plastique. La figure 3 montre comment les atomes se réordonnent au passage de la dislocation, et pourquoi la partie inférieure du cristal se déplace d’une distance b (appelée vecteur de Burgers) par rapport à la partie supérieure lorsqu’une dislocation traverse le cristal de part en part
  • 15. Cristaux réels et défauts structuraux Dislocation vis : Figure 4 : Formation d’une dislocation vis (OP) dans le plan de glissement ABCD. La portion de cristal située à droite du plan de glissement et au- dessus de la ligne de dislocation (OP) subit un glissement b par rapport au cristal situé en-dessous. On peut également se représenter une dislocation vis en imaginant que l’on fait une coupure plane à travers le cristal, et que l’on fait glisser l’un des bords obtenus par rapport à l’autre d’une distance interatomique. La ligne de dislocation vis correspond alors au fond de la coupure. Une dislocation vis transforme les plans successifs d’atomes en surfaces hélicoïdales, d’où son nom.
  • 16. Cristaux réels et défauts structuraux
  • 17. Mouvement des Dislocations Le processus de déplacement des dislocations dans leurs plans de glissement constitue la base du mécanisme de la déformation plastique à basse température (T< 0,4 Tm) dans la plupart des matériaux cristallins (métaux). La déformation plastique est facilitée par la présence des dislocations. Elle est induite par la propagation des dislocations. Pour se représenter leur mouvement, on peut utiliser l'image d'un lourd tapis que l'on voudrait déplacer sur le sol. Cristaux réels et défauts structuraux Deux méthodes sont utilisables : soit tirer le tapis pour le faire glisser, soit créé une ondulation à un bord et la faire propager à travers le tapis. La première méthode correspond au cas d'un glissement suivant un plan compact, la seconde donne une image de la propagation des dislocations dans les cristaux Fig.5: La propagation d’un pli le long d’un tapis, analogue du mouvement d’une dislocation coin.
  • 18. Il existe un certain nombre de défauts plans parmi lesquels nous pouvons citer que ceux ayant une importance particulière à savoir : Les défauts plans Cristaux réels et défauts structuraux Les joints de grains : Ce sont les zones de grand désordre (ayant une épaisseur de l’ordre de quelques distances interatomiques) séparant les cristaux dans un même solide polycristallin.
  • 19. Cristaux réels et défauts structuraux Défauts plans : fautes d’empilement A B C A B C A B C A B C [111] [112] (-110) [001] [110]
  • 20. A B C A A B C A B C B C miroir A B C A B C B A C B A C Cristaux réels et défauts structuraux Défauts plans : fautes d’empilement Si la faute d’empilement sépare deux parties du cristal identiques par une opération miroir, on parle de macle
  • 21. Cristaux réels et défauts structuraux Défauts plans : fautes d’empilement Faute d’empilement intrinsèque et extrinsèque Faute d'empilement (a) intrinsèque et (b) extrinsèque.
  • 22. On a un défaut à trois dimensions quand une partie du cristal est remplacée par un volume d’un composé différent ; la différence est de nature chimique et peut ou non être accompagnée de différences cristallographiques. La partie étrangère du cristal est soit un précipité, soit une inclusion. Les précipités sont de petites particules de seconde phase qui se sont formées entre le métal de base et un élément d’alliage. Les inclusions sont des «impuretés » dans le métal, qui proviennent de son élaboration à l’état liquide ; ce sont le plus souvent des oxydes, des sulfures ou des silicates. La taille des précipités et la distance entre eux ont une très grande influence sur les propriétés mécaniques Les défauts volumiques les plus courants sont les précipités, formés par l’inclusion d’une phase cristalline au sein d’une autre. Défauts volumiques Cristaux réels et défauts structuraux
  • 23. Défauts et propriétés physiques Cristaux réels et défauts structuraux I- Centres colorés dans les cristaux ioniques La coloration des pierres précieuses est un exemple emblématique de l’influence des défauts sur les propriétés physiques. Le cristal de corindon Al2O3, transparent, prend une valeur inestimable si quelques atomes de chrome viennent se substituer aux atomes d’aluminium. Pour une concentration d’impuretés substitutionnelles aussi faible que le pourcent, la pierre prend une profonde coloration rouge et est appelée « rubis »… Le saphir, pierre précieuse de couleur bleue, est également obtenue à partir du corindon en substituant l’aluminium par du fer et du titane. La Figure suivante donne un aperçu de l’immense variété de colorations que l’on peut obtenir dans un cristal de fluorine CaF2, suivant le type de défaut ponctuel affectant la structure : lacunes, impuretés substitutionnelles….
  • 24. Cristaux réels et défauts structuraux Figure 6 : Cristaux de fluorine CaF2. La grande variété de couleur observée est liée à l’existence de défauts ponctuels (lacunes, impuretés substitutionnelles) ou association de défauts ponctuels (inclusions d’ions moléculaires). Les cristaux purs et exempts de défauts sont transparents (1). La fluorine violette doit sa couleur à la présence de lacunes sur les sites habituellement occupés par le fluor (2). Les autres couleurs s’expliquent par la présence d’impuretés chargées, sous forme d’ions simples ou moléculaires
  • 25. Cristaux réels et défauts structuraux Les différentes colorations obtenues sont liées à la présence de centres colorés. Il s’agit de zones dans lesquelles les électrons subissent le potentiel électrostatique crée par les défauts ponctuels chargés. Il en résulte l’apparition de niveaux d’énergie discrets {𝐸1 , 𝐸2, … , 𝐸𝑛 }. Les photons d’énergie (𝐸𝑖′ − 𝐸𝑖 ) peuvent être absorbés pour générer des transitions électroniques entre les niveaux 𝐸𝑖 et 𝐸𝑖′. La couleur perçue correspond aux longueurs d’ondes non absorbées. Les centres colorés F correspondent à une lacune d’ion négatif. Figure 7 : Un centre F est une lacune d’ion négatif avec un électron en excès lié à cette lacune. La distribution de cet électron en excès est fortement concentrée au niveau de la lacune.
  • 26. Cristaux réels et défauts structuraux Figure 8 : Absorption optique en fonction de la longueur d’onde mesurée pour différents chlorures contenant des centres F. De gauche à droite, le numéro atomique/rayon ionique des cations augmente, de même que le paramètre a de la maille cubique. Le pic d’absorption se décale vers les grandes longueurs d’ondes quand le paramètre de maille augmente. La couleur des cristaux est donnée par les composantes du spectre visible transmises : orangé pour NaCl (absorption dans le bleu), violacé pour KCl (absorption dans le vert-jaune) Les pics d’absorption correspondent à l’énergie de transition entre les niveaux 𝐸1 et 𝐸2 définis plus haut. Celle-ci est donnée par la formule : La valeur de 𝑅 étant proportionnelle au paramètre de maille cubique 𝑎
  • 27. II. Conductivité électrique Cristaux réels et défauts structuraux Les défauts ponctuels affectent la conductivité des métaux comme des semi-conducteurs. Les métaux possèdent des porteurs de charges libres à toutes les températures. La résistivité est alors gouvernée par la mobilité de ces porteurs. Dans ce cas, les impuretés augmentent la résistivité en perturbant le parcours des électrons. Dans les semi-conducteurs, la conduction est assurée par un petit nombre d’électrons qui se délocalisent au fur et à mesure que la température augmente. La conductivité dépend donc à la fois du nombre de porteurs de charges et de leur mobilité. Il est possible de doper les semi-conducteurs en porteurs de charge, en procédant à des substitutions adéquates. Prenons l’exemple du silicium :
  • 28. Figure 9 : Insertion d’impuretés dans un cristal de silicium. (a) Le phosphore a 5 électrons de valence, alors que le silicium n’en a que 4. Par conséquent, 4 des électrons du phosphore forment des liaisons tétraédriques covalentes semblables à celles du silicium. Le 5e électron est alors disponible pour la conduction. (b) Le bore n’a que 3 électrons de valence. Il ne peut compléter ses liaisons tétraédriques qu’en prenant un électron sur une liaison Si-Si, laissant ainsi un trou dans la bande de valence du silicium. Ce trou de charge positive peut participer à la conduction. Cristaux réels et défauts structuraux II. Conductivité électrique
  • 29. III- Déformation plastique Cristaux réels et défauts structuraux Nous considérons un barreau de matière soumis à une contrainte de traction uniaxiale. On exerce dans ce cas une force F parallèlement à l’axe de la section S [Figure 10 a]. La valeur de la contrainte se calcule comme le rapport de la force sur la surface : Sous l’action de la force F , le solide se déforme suivant l’axe de la contrainte. On définit mathématiquement la déformation correspondante comme , l’allongement relatif dans la direction de la contrainte. Figure 10 : (a) Barre cylindrique soumise à une contrainte de traction uniaxiale. (b) Relation schématique entre contrainte et déformation dans un matériau solide. OL est le domaine élastique, et LR est le domaine plastique
  • 30. Mécanisme de la déformation plastique Dans le domaine de déformation élastique, les faibles contraintes appliquées au solide déplacent légèrement les atomes par rapport à leurs positions d’équilibre, vers lesquelles ils reviennent lorsque la sollicitation extérieure diminue. Au contraire, les déformations obtenues dans le domaine plastique persistent après relâchement de la contrainte extérieure, posant la question de la nature des changements structuraux subis par l’échantillon. L’observation par microscopie optique de monocristaux métalliques soumis à des contraintes de traction élevées révèle l’apparition de traces de glissement lors de la déformation plastique [Figure 11 a]. Ces traces ont été très tôt interprétées comme la conséquence du glissement de plans cristallins les uns par rapport aux autres [Figure 11b]. Cristaux réels et défauts structuraux
  • 31. Cristaux réels et défauts structuraux Mécanisme de la déformation plastique
  • 32. Cristaux réels et défauts structuraux Figure 11 : (a) Traces de glissement dans un monocristal d’aluminium (diamètre 1 mm) soumis à une traction uniaxiale à 600°C. (b) Représentation des traces de glissement à l’échelle atomique. Ces dislocations ont des conséquences mécaniques importantes. Si on calcule pour un cristal parfait la force nécessaire pour faire glisser un plan par rapport à un autre il faut compter sur des forces de l’ordre de 109 newtons. La force réellement requise est plutôt de l’ordre de 106 newtons. Cette facilité relative est principalement due à la présence de dislocation coin. L’observation par microscopie optique de monocristaux métalliques soumis à des contraintes de traction élevées révèle l’apparition de traces de glissement lors de la déformation plastique (Figure 11a).
  • 33. DIFFUSION A L’ETAT SOLIDE Si l’on maintient en contact deux blocs de cuivre et d’or et que l’on porte l’ensemble à 1000 °C, on peut observer au bout d’un certain temps la soudure de ces deux blocs. La mesure de la concentration de l’un des éléments en fonction de la distance x montre que les atomes de Cu se sont déplacés du coté de l’or et que réciproquement des atomes d’or se sont déplacés du coté du Cu. Cette migration d’atomes dans le réseau cristallin s’appelle diffusion. Fig.12 : Expérience de diffusion
  • 34. Aspect macroscopique de la diffusion : Les lois macroscopiques de la diffusion sont analogues à celles que l’on établit pour la conduction électrique ou thermique. En diffusion ce sont les lois de Fick. Si l’on considère tout d’abord un flux d’atomes traversant une surface perpendiculaire à la direction x par unité de surface et par unité de temps, on note que la densité de ce flux J est proportionnelle au gradient de concentration. D’où la première loi de Fick : DIFFUSION A L’ETAT SOLIDE Où : J = flux de particules, C = concentration, X = distance selon la direction choisie Le coefficient de proportionnalité D ou coefficient de diffusion s’exprime en m2/s Le signe (-) nous indique que le courant de particule se déplace depuis des zones où la concentration en particules est élevée, vers les zones où elle est faible.
  • 35. On peut également définir un flux de matière, , (= débit massique ou volumique, nombre de particules, moléculaire, atomique, par unité de temps à travers une surface) en fonction des paramètres : - surface offerte à la diffusion, S, - gradient de concentration en fonction de la distance, C/x, - cœfficient de diffusion D. Evidemment, les unités doivent rester cohérentes : D en m2/s, S en m2, x en m, C en mole/m3 ==>  en mole/s ou bien en unités usuelles, D en cm2/s, S en cm2, x en cm, C en mg/cm3 ==>  en mg/s. DIFFUSION A L’ETAT SOLIDE
  • 36. Tableau illustrant l’évolution de D en fonction des molécules : DIFFUSION A L’ETAT SOLIDE On constate due D diminue lorsque M augmente (donc quand la taille de la molécule augmente). En fait, D est une fonction des caractéristiques du milieu (température, T) et du soluté (cœfficient de friction, f). Soit : D = (k×T)/f formule d’Einstein où k est la constante de Boltzmann : La diffusion (D) augmente lorsque la température augmente (plus d’agitation moléculaire) ou lorsque f diminue (moins de frottements). Par ailleurs, Stockes a relié le cœfficient de friction, f, avec le cœfficient de viscosité du milieu, , et le rayon, r, de la particule supposée sphérique. Soit : f = 6π××r
  • 37. où l’on voit que f augmente quand la viscosité du milieu augmente ou que l La formule d’Einstein devient : D = (k×T)/6π××r Dans le cas où la particule est sphérique (approximativement vrai pour les grosses molécules), on a : m = rV = M/N soit DIFFUSION A L’ETAT SOLIDE
  • 38. Diffusion uniforme : Ce cas peut-être représenté par un gaz (H2) traversant une feuille métallique de chaque coté de laquelle une forte pression et une faible sont maintenues. DIFFUSION A L’ETAT SOLIDE Où : S : surface de la feuille et L : épaisseur de la feuille Diffusion non uniforme : C’est le cas présenté en introduction (voir figure 12) où le gradient de concentration varie avec le temps et la distance X. C’est le cas général des problèmes rencontrés en métallurgie. On peut montrer toujours en considérant que D est indépendant de la composition, que :
  • 39. DIFFUSION A L’ETAT SOLIDE Aspect microscopique de la diffusion: Mécanismes de la diffusion: Le mouvement des atomes se produit grâce à leur vibration thermique, dont l'amplitude augmente avec la température. Plusieurs mécanismes de déplacement des atomes peuvent être imaginés (figure 13), mais seuls deux d'entre eux sont possibles : Fig.13 : Schéma des principaux mécanismes de diffusion : 1) échange simple ; 2) échange cyclique ; 3) lacunaire ; 4) interstitiel direct ; 5) interstitiel indirect ; 6) « crowdion »
  • 40. DIFFUSION A L’ETAT SOLIDE Mécanismes de la diffusion: Figure 14 : Mécanisme interstitiel indirect : (a) variante colinéaire, (b) variante non colinéaire. Figure 15 : Mécanisme de diffusion par relaxation Ce mécanisme est une variante de la diffusion lacunaire. Ici, la région où se trouve la lacune n'a plus de structure cristalline. Il se traduit par un déplacement des atomes voisin de la lacune vers celle-ci.
  • 41. Le coefficient de diffusion croit avec la température et est déterminé à l'aide de la formule suivante: DIFFUSION A L’ETAT SOLIDE Aspect microscopique de la diffusion: Où: Do = constante reliée à la fréquence du saut, R = 8,314J.mol-1 .K-1 T = température en degré kelvins (K) ∆𝑯 = Enthalpie d'activation molaire en joules par moles (J.mol-1 ) Diffusion aux joints de grains: La diffusion en volume dans les cristaux peut-être parfois court-circuitée par la diffusion le long des joints de grains. Le joint de grain se comporte comme un canal plan de deux distances interatomiques environ, avec un coefficient de diffusion qui peut localement être 106 fois plus grand que celui du volume
  • 42. - La diffusion est plus rapide dans les joints de grain, puisqu'il y a plus de place pour circuler ; - de même que pour les surfaces libres, l'énergie des atomes des joints de grain est plus importante que celle des atomes au sein du cristal, DIFFUSION A L’ETAT SOLIDE Figure 16 : Diffusion au joint de grains
  • 43. III- ANALOGIES PHYSIQUES La loi de Fourier est analogue aux lois d’Ohm en électricité et de Fick en ce qui concerne la diffusion. Le tableau suivant met en évidence les analogies entre les différentes grandeurs. DIFFUSION A L’ETAT SOLIDE
  • 44. Exercice d’application : Une mesure des coefficients de diffusion d’une substance en solution aqueuse à 27°C donne la valeur D = 8,2 10-7 cm2/s. 1- Calculer le rayon des molécules de cette substance sachant que  = 10- 3 Pas. 2- Déduire la masse molaire de la substance sachant que r = 1,3 g/cm3.