SlideShare une entreprise Scribd logo
CHAPITRE 4 : Trigonométrie
I ) Lectures sur le cercle trigonométrique
1) Enroulement de la droite numérique :
Propriété et définition :
Dans un repère orthonormé (O ; ⃗i , ⃗j ), le cercle trigonométrique C
est le cercle de centre O est de rayon 1, parcouru dans le sens
direct, c'est-à-dire dans le sens inverse des aiguilles d'une montre.
On considère la droite d tangente au cercle C en I sur laquelle
on définit un repère d'origine I.
On enroule la droite d autour de C. Pour tout réel , le point
d'abscisse  sur d coïncide avec un unique point M sur le cercle C ;
M s'appelle l'image de  sur le cercle trigonométrique.
Réciproquement, tout point M du cercle trigonométrique est l'image
d'une infinité de réels. Si  est un de ces réels, les autres réels ayant
comme image M sont de la forme α+2k π , où k est un entier relatif.
Illustration : https://www.geogebra.org/material/show/id/1236779
2) Radian :
Définition:
Soit U, le point du cercle trigonométrique, image du nombre réel 1
de la droite d.
On définit 1 radian comme la mesure de l'angle ̂IOU . On note 1 rad.
Exemple : Le point image de π
2
est J. Donc la mesure en radians de l'angle
̂IOJ est
π
2 . Cela correspond à un angle de 90°.
Propriété :
Les mesures d'un angle en degrés d'une part et en radians d'autre part sont
proportionnelles. On en déduit le tableau de conversion suivant :
Mesure en degrés 30 45 60 90 180
Mesure en radians π
6
π
4
π
3
π
2
π
3) Mesure principale d'un angle :
Soit M, un point du cercle trigonométrique. OI et OM sont appelés des vecteurs unitaires,
c'est-à-dire de norme 1.
Propriété et définition :
Le réel  d'image M est appelé une mesure en radians de l'angle orienté des
vecteurs ( ⃗OI , ⃗OM ).
Tous les réels ayant pour image le point M sur C sont aussi des mesures en radians de
l'angle ( ⃗OI , ⃗OM ). Toutes les mesures x en radians de l'angle ( ⃗OI , ⃗OM ) sont de la
forme x =  + 2kπ , où k est un entier relatif.
1S Chapitre 4– page 1/3
..×
180
π
..× π
180
Définition :
L'angle ( ⃗OI , ⃗OM ) a une unique mesure appartenant à l'intervalle ] –π ; π ].
On appelle cette mesure la mesure principale de l'angle ( ⃗OI , ⃗OM ).
Remarque : Si a est la mesure principale de l'angle ( ⃗OI , ⃗OM ), alors la mesure de
l'angle géométrique ̂IOM est ̂IOM = |a|.
Exemple : Sur le cercle trigonométrique, une mesure de l'angle ( ⃗OI , ⃗OJ ) est
3π
2
; sa
mesure principale est −π
2
car −π
2
∈]- π ; π ] et ̂IOJ'=π
2
.
II ) Angle orienté d'un couple de vecteurs
1) Introduction :
Dans un repère (O ; I,J), on considère le cercle
trigonométrique et 2 vecteurs ⃗u et ⃗v non nuls.
On considère A' et B' les points définis par ⃗OA' = ⃗u
et ⃗OB ' = ⃗v .
Les demi-droites [OA') et [OB') coupent le cercle
trigonométrique respectivement en A et B.
Les vecteurs ⃗OA et ⃗OB sont unitaires et sont
respectivement colinéaires à ⃗u et ⃗v , de même sens.
Définition :
Les mesures en radians de l'angle orienté de vecteurs ( ⃗u , ⃗v ) sont celles de l'angle
orienté de vecteurs unitaires ( ⃗OA , ⃗OB ). Si x est une mesure de ( ⃗u , ⃗v ), alors toutes
les mesures de ( ⃗u , ⃗v ) sont de la forme x+2k π , avec k un entier relatif.
Exemple :
( ⃗u , ⃗v ) =
π
2 signifie qu'une mesure de l'angle orienté de vecteurs ( ⃗u , ⃗v ) est égale à
π
2 .
Toutes les mesures de l'angle ( ⃗u , ⃗v ) sont de la forme (⃗u ,⃗v )= π
2
+2kπ , k∈ℤ.
On peut aussi écrire ( ⃗u , ⃗v ) =
π
2 ( 2π ). On lit :
π
2 modulo 2π .
Définition :
Une seule des mesures de l'angle orienté de vecteurs ( ⃗u , ⃗v ) appartient à ] –π ; π ].
Cette mesure est la mesure principale de l'angle orienté de vecteurs ( ⃗u , ⃗v ).
2) Propriétés
Propriété :
Soit ⃗u et ⃗v deux vecteurs non nuls.
• Dire que ⃗u et ⃗v sont colinéaires revient à dire que la mesure
principale de ( ⃗u , ⃗v ) est égale à 0 ( ⃗u et ⃗v sont de même sens)
ou π ( ⃗u et ⃗v sont de sens opposés).
• Dire que ⃗u et ⃗v sont orthogonaux revient à dire que la mesure
principale de ( ⃗u , ⃗v ) est égale à
π
2 ou
−π
2 .
Remarque : Pour tout vecteur ⃗u non nul, ( ⃗u , ⃗u ) = 0+2k π et ( ⃗u ,- ⃗u ) = π+2k π
Relation de Chasles pour les angles orientés :
Soient ⃗u , ⃗v , ⃗w , trois vecteurs non nuls.
On a alors : ( ⃗u , ⃗w ) = ( ⃗u , ⃗v )+( ⃗v , ⃗w )+ 2k π
1S Chapitre 4– page 2/3
Propriétés :
Soient ⃗u et ⃗v , deux vecteurs non nuls, k et k' deux réels non nuls.
1. ( ⃗v , ⃗u ) = -( ⃗u , ⃗v )+ 2k π 2. ( ⃗u , −⃗v ) = (⃗u ,⃗v )+π + 2k π
3. ( −⃗u , ⃗v ) = (⃗u ,⃗v )+π + 2k π 4. ( −⃗u , −⃗v ) = (⃗u ,⃗v ) + 2k π
5. Si k et k' sont de même signe, ( k ⃗u , k ' ⃗v ) = (⃗u ,⃗v ) + 2k π
6. Si k et k' sont de signes contraires, ( k ⃗u , k ' ⃗v ) = (⃗u ,⃗v )+π + 2k π
Ces propriétés se déduisent de la relation de Chasles
Démonstration :
• Certaines sont démontrées au niveau du ROC 74 p 209.
• Manuel page 196 (bas)
• Vidéo de démonstration : https://lc.cx/ZtQF
III. Calculs trigonométriques
1) Cosinus et sinus d'un nombre réel
Définition :
Soit x , un nombre réel et M, son image sur le cercle trigonométrique.
Dans un repère (O ; I,J), on appelle :
• cosinus du réel x , noté cos( x ), l'abscisse du point M.
• sinus du réel x , noté sin( x ), l'ordonnée du point M.
2) Propriétés algébriques
Propriétés :
• Pour tout réel t, on a : −1⩽cos(t)⩽1 et −1⩽sin(t )⩽1 .
• Pour tout réel t et tout entier k, on a : cos(t+2k π ) = cos(t) et sin(t+2k π ) = sin(t).
• Pour tout réel t, cos²(t) + sin²(t) = 1.
Ces propriétés se démontrent à partir du cercle trigonométrique.
3) Angles associés
Propriétés :
Pour tout réel t, on a :
1. cos(-t) = cos(t) 2. sin(-t) = - sin(t)
3. cos( π -t) = - cos(t) 4. sin( π -t) = sin(t)
5. cos( π +t) = - cos(t) 6. sin( π -t) = - sin(t)
7.cos( π
2
−t )=sin(t ) 8.sin(π
2
−t )=cos(t )
9.cos( π
2
+t )=−sin(t ) 10.sin( π
2
+t)=cos(t )
Démonstration : Par symétrie, sur le cercle trigonométrique.
4) Résolution des équations cos(x) = cos(a) et sin(x) = sin(a)
Propriété
Soient x et a deux nombres réels.
• cos(x) = cos(a) ⇔ x=a+2k π ou x=−a+2k π , k étant entier relatif.
• sin(x) = sin(a) ⇔ x=a+2k π ou x=π−a+2 k π , k étant entier relatif.
Démonstration : A partir des propriétés du 3).
1S Chapitre 4– page 3/3

Contenu connexe

Tendances

03 nivellement
03 nivellement03 nivellement
03 nivellement
SARAH SUNSHINE
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
Matthew Leingang
 
Nivellement direct-ou-indirect
Nivellement direct-ou-indirectNivellement direct-ou-indirect
Nivellement direct-ou-indirect
abdo rrahim
 
Polycopie Analyse Numérique
Polycopie Analyse NumériquePolycopie Analyse Numérique
Polycopie Analyse Numérique
Jaouad Dabounou
 
Résolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en pythonRésolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en python
Ali SIDIBE
 
División sintética
División sintética División sintética
División sintética
carlospereira1234
 
Un triangle quelconque
Un triangle quelconqueUn triangle quelconque
Un triangle quelconque
Mouhssine Toni
 
Unit 3
Unit 3Unit 3
Approche de la préparation physique
Approche de la préparation physiqueApproche de la préparation physique
Approche de la préparation physiqueachatenet
 
Drop profil en long v1.1.1.c
Drop profil en long v1.1.1.cDrop profil en long v1.1.1.c
Drop profil en long v1.1.1.c
idropproject
 
resume algo 2023.pdf
resume algo 2023.pdfresume algo 2023.pdf
resume algo 2023.pdf
salah fenni
 
Introduction to Real Time Rendering
Introduction to Real Time RenderingIntroduction to Real Time Rendering
Introduction to Real Time Rendering
Koray Hagen
 
04 cours matrices_suites
04 cours matrices_suites04 cours matrices_suites
04 cours matrices_suites
Fouzia Bch Fouzia Net
 
Exercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamelExercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamel
Kamel Djeddi
 
Cálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesCálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funções
Rodolfo Almeida
 
Cours equation d'une droite
Cours equation d'une droite Cours equation d'une droite
Cours equation d'une droite
Alialimehydine
 
Linear functions
Linear functionsLinear functions
Linear functions
halcr1ja
 
Exercices sur-python-turtle-corrige
Exercices sur-python-turtle-corrigeExercices sur-python-turtle-corrige
Exercices sur-python-turtle-corrige
WajihBaghdadi1
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivative
math265
 

Tendances (20)

03 nivellement
03 nivellement03 nivellement
03 nivellement
 
Lesson 7: Limits at Infinity
Lesson 7: Limits at InfinityLesson 7: Limits at Infinity
Lesson 7: Limits at Infinity
 
Nivellement direct-ou-indirect
Nivellement direct-ou-indirectNivellement direct-ou-indirect
Nivellement direct-ou-indirect
 
Polycopie Analyse Numérique
Polycopie Analyse NumériquePolycopie Analyse Numérique
Polycopie Analyse Numérique
 
Résolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en pythonRésolution numérique de l'équation de Black Scholes en python
Résolution numérique de l'équation de Black Scholes en python
 
División sintética
División sintética División sintética
División sintética
 
Un triangle quelconque
Un triangle quelconqueUn triangle quelconque
Un triangle quelconque
 
Unit 3
Unit 3Unit 3
Unit 3
 
Approche de la préparation physique
Approche de la préparation physiqueApproche de la préparation physique
Approche de la préparation physique
 
Drop profil en long v1.1.1.c
Drop profil en long v1.1.1.cDrop profil en long v1.1.1.c
Drop profil en long v1.1.1.c
 
resume algo 2023.pdf
resume algo 2023.pdfresume algo 2023.pdf
resume algo 2023.pdf
 
Introduction to Real Time Rendering
Introduction to Real Time RenderingIntroduction to Real Time Rendering
Introduction to Real Time Rendering
 
04 cours matrices_suites
04 cours matrices_suites04 cours matrices_suites
04 cours matrices_suites
 
Exercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamelExercices corrigés les matrices- djeddi kamel
Exercices corrigés les matrices- djeddi kamel
 
Cálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesCálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funções
 
Cours equation d'une droite
Cours equation d'une droite Cours equation d'une droite
Cours equation d'une droite
 
Linear functions
Linear functionsLinear functions
Linear functions
 
Exercices sur-python-turtle-corrige
Exercices sur-python-turtle-corrigeExercices sur-python-turtle-corrige
Exercices sur-python-turtle-corrige
 
2.4 defintion of derivative
2.4 defintion of derivative2.4 defintion of derivative
2.4 defintion of derivative
 
Cours topo fst def
Cours topo fst defCours topo fst def
Cours topo fst def
 

Similaire à Courschapitre4 trigonometrie

Al7 ma19tepa0009 sequence-03
Al7 ma19tepa0009 sequence-03Al7 ma19tepa0009 sequence-03
Al7 ma19tepa0009 sequence-03tarek1961moussa
 
2.4_cylindriques_spheriques (1).pdf formulaire
2.4_cylindriques_spheriques (1).pdf formulaire2.4_cylindriques_spheriques (1).pdf formulaire
2.4_cylindriques_spheriques (1).pdf formulaire
murieldubienmbackeoc
 
Rappel eb8
Rappel eb8Rappel eb8
Rappel eb8
zeinabze
 
Cours mecanique de point materiel s1 par coursedu.blogspot.com
Cours mecanique de point materiel s1 par coursedu.blogspot.comCours mecanique de point materiel s1 par coursedu.blogspot.com
Cours mecanique de point materiel s1 par coursedu.blogspot.com
coursedu
 
Cours mecanique s1 par www.etudecours.com
Cours mecanique  s1 par www.etudecours.comCours mecanique  s1 par www.etudecours.com
Cours mecanique s1 par www.etudecours.com
etude cours
 
Cours
CoursCours
Cours
fd25
 
Geome2
Geome2Geome2
M312_Electricité_BCG.ppt
M312_Electricité_BCG.pptM312_Electricité_BCG.ppt
M312_Electricité_BCG.ppt
Abdo Brahmi
 
Vision Numérique : Rappels mathématiques
Vision Numérique : Rappels mathématiquesVision Numérique : Rappels mathématiques
Vision Numérique : Rappels mathématiques
KevinJobin2
 
Grandeurs et unités
Grandeurs et unitésGrandeurs et unités
Grandeurs et unités
Aminata Keita
 
Cours espace
Cours espaceCours espace
Cours espace
Yessin Abdelhedi
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1
Dany-Jack Mercier
 
85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)
AHMED ENNAJI
 
U1 le dessin industriel et les figures géométriques
U1   le dessin industriel et les figures géométriquesU1   le dessin industriel et les figures géométriques
U1 le dessin industriel et les figures géométriques
Carles López
 
Géométrie différentielle élémentaire pour la physique-Mostafa Bousder
Géométrie différentielle élémentaire pour la physique-Mostafa BousderGéométrie différentielle élémentaire pour la physique-Mostafa Bousder
Géométrie différentielle élémentaire pour la physique-Mostafa Bousder
Mostafa Bousder
 
Exercice coniques
Exercice coniquesExercice coniques
Exercice coniques
Yessin Abdelhedi
 
les matrices
les matricesles matrices
les matrices
Kha-lid Khalid
 
AD-CH1-FCA-MAC-2019-21.pdf
AD-CH1-FCA-MAC-2019-21.pdfAD-CH1-FCA-MAC-2019-21.pdf
AD-CH1-FCA-MAC-2019-21.pdf
MoussaouiMohammed1
 
Le planimetre d'Amsler
Le planimetre d'AmslerLe planimetre d'Amsler
Le planimetre d'Amsler
RichardTerrat1
 
en analyse des composantes de donnees.pdf
en analyse des composantes de donnees.pdfen analyse des composantes de donnees.pdf
en analyse des composantes de donnees.pdf
ELHASSANEAJARCIF1
 

Similaire à Courschapitre4 trigonometrie (20)

Al7 ma19tepa0009 sequence-03
Al7 ma19tepa0009 sequence-03Al7 ma19tepa0009 sequence-03
Al7 ma19tepa0009 sequence-03
 
2.4_cylindriques_spheriques (1).pdf formulaire
2.4_cylindriques_spheriques (1).pdf formulaire2.4_cylindriques_spheriques (1).pdf formulaire
2.4_cylindriques_spheriques (1).pdf formulaire
 
Rappel eb8
Rappel eb8Rappel eb8
Rappel eb8
 
Cours mecanique de point materiel s1 par coursedu.blogspot.com
Cours mecanique de point materiel s1 par coursedu.blogspot.comCours mecanique de point materiel s1 par coursedu.blogspot.com
Cours mecanique de point materiel s1 par coursedu.blogspot.com
 
Cours mecanique s1 par www.etudecours.com
Cours mecanique  s1 par www.etudecours.comCours mecanique  s1 par www.etudecours.com
Cours mecanique s1 par www.etudecours.com
 
Cours
CoursCours
Cours
 
Geome2
Geome2Geome2
Geome2
 
M312_Electricité_BCG.ppt
M312_Electricité_BCG.pptM312_Electricité_BCG.ppt
M312_Electricité_BCG.ppt
 
Vision Numérique : Rappels mathématiques
Vision Numérique : Rappels mathématiquesVision Numérique : Rappels mathématiques
Vision Numérique : Rappels mathématiques
 
Grandeurs et unités
Grandeurs et unitésGrandeurs et unités
Grandeurs et unités
 
Cours espace
Cours espaceCours espace
Cours espace
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1
 
85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)
 
U1 le dessin industriel et les figures géométriques
U1   le dessin industriel et les figures géométriquesU1   le dessin industriel et les figures géométriques
U1 le dessin industriel et les figures géométriques
 
Géométrie différentielle élémentaire pour la physique-Mostafa Bousder
Géométrie différentielle élémentaire pour la physique-Mostafa BousderGéométrie différentielle élémentaire pour la physique-Mostafa Bousder
Géométrie différentielle élémentaire pour la physique-Mostafa Bousder
 
Exercice coniques
Exercice coniquesExercice coniques
Exercice coniques
 
les matrices
les matricesles matrices
les matrices
 
AD-CH1-FCA-MAC-2019-21.pdf
AD-CH1-FCA-MAC-2019-21.pdfAD-CH1-FCA-MAC-2019-21.pdf
AD-CH1-FCA-MAC-2019-21.pdf
 
Le planimetre d'Amsler
Le planimetre d'AmslerLe planimetre d'Amsler
Le planimetre d'Amsler
 
en analyse des composantes de donnees.pdf
en analyse des composantes de donnees.pdfen analyse des composantes de donnees.pdf
en analyse des composantes de donnees.pdf
 

Plus de vauzelle

Déroulement du chapitre 1 sur les suites
Déroulement du chapitre 1 sur les suitesDéroulement du chapitre 1 sur les suites
Déroulement du chapitre 1 sur les suites
vauzelle
 
Progression Maths TS
Progression Maths TSProgression Maths TS
Progression Maths TS
vauzelle
 
Organisation rentrée 2016
Organisation rentrée 2016Organisation rentrée 2016
Organisation rentrée 2016
vauzelle
 
Budget prévisionnel ENSC 2016
Budget prévisionnel ENSC 2016Budget prévisionnel ENSC 2016
Budget prévisionnel ENSC 2016
vauzelle
 
Comptes ENSC 2015
Comptes ENSC 2015Comptes ENSC 2015
Comptes ENSC 2015
vauzelle
 
Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)
vauzelle
 
Déroulement du chapitre6
Déroulement du chapitre6Déroulement du chapitre6
Déroulement du chapitre6
vauzelle
 
Exercices d'introduction sur le chapitre 6
Exercices d'introduction sur le chapitre 6Exercices d'introduction sur le chapitre 6
Exercices d'introduction sur le chapitre 6
vauzelle
 
Activités du chapitre6
Activités du chapitre6Activités du chapitre6
Activités du chapitre6
vauzelle
 
Devoir maison 5 (manuel Sésamath)
Devoir maison 5 (manuel Sésamath)Devoir maison 5 (manuel Sésamath)
Devoir maison 5 (manuel Sésamath)
vauzelle
 
Activités statistiques
Activités statistiquesActivités statistiques
Activités statistiques
vauzelle
 
Cours statistiques
Cours statistiquesCours statistiques
Cours statistiques
vauzelle
 
Déroulement chapitre5
Déroulement chapitre5Déroulement chapitre5
Déroulement chapitre5
vauzelle
 
Bilan dm3
Bilan dm3Bilan dm3
Bilan dm3
vauzelle
 
Deroulement chapitre4
Deroulement chapitre4Deroulement chapitre4
Deroulement chapitre4
vauzelle
 
Correction testchapitre3
Correction testchapitre3Correction testchapitre3
Correction testchapitre3
vauzelle
 
Test chapitre3
Test chapitre3Test chapitre3
Test chapitre3
vauzelle
 
Courschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegreCourschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegre
vauzelle
 
Deroulement chapitre3
Deroulement chapitre3Deroulement chapitre3
Deroulement chapitre3
vauzelle
 
Courschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegreCourschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegre
vauzelle
 

Plus de vauzelle (20)

Déroulement du chapitre 1 sur les suites
Déroulement du chapitre 1 sur les suitesDéroulement du chapitre 1 sur les suites
Déroulement du chapitre 1 sur les suites
 
Progression Maths TS
Progression Maths TSProgression Maths TS
Progression Maths TS
 
Organisation rentrée 2016
Organisation rentrée 2016Organisation rentrée 2016
Organisation rentrée 2016
 
Budget prévisionnel ENSC 2016
Budget prévisionnel ENSC 2016Budget prévisionnel ENSC 2016
Budget prévisionnel ENSC 2016
 
Comptes ENSC 2015
Comptes ENSC 2015Comptes ENSC 2015
Comptes ENSC 2015
 
Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)
 
Déroulement du chapitre6
Déroulement du chapitre6Déroulement du chapitre6
Déroulement du chapitre6
 
Exercices d'introduction sur le chapitre 6
Exercices d'introduction sur le chapitre 6Exercices d'introduction sur le chapitre 6
Exercices d'introduction sur le chapitre 6
 
Activités du chapitre6
Activités du chapitre6Activités du chapitre6
Activités du chapitre6
 
Devoir maison 5 (manuel Sésamath)
Devoir maison 5 (manuel Sésamath)Devoir maison 5 (manuel Sésamath)
Devoir maison 5 (manuel Sésamath)
 
Activités statistiques
Activités statistiquesActivités statistiques
Activités statistiques
 
Cours statistiques
Cours statistiquesCours statistiques
Cours statistiques
 
Déroulement chapitre5
Déroulement chapitre5Déroulement chapitre5
Déroulement chapitre5
 
Bilan dm3
Bilan dm3Bilan dm3
Bilan dm3
 
Deroulement chapitre4
Deroulement chapitre4Deroulement chapitre4
Deroulement chapitre4
 
Correction testchapitre3
Correction testchapitre3Correction testchapitre3
Correction testchapitre3
 
Test chapitre3
Test chapitre3Test chapitre3
Test chapitre3
 
Courschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegreCourschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegre
 
Deroulement chapitre3
Deroulement chapitre3Deroulement chapitre3
Deroulement chapitre3
 
Courschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegreCourschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegre
 

Dernier

Mémoire de licence en finance comptabilité et audit
Mémoire de licence en finance comptabilité et auditMémoire de licence en finance comptabilité et audit
Mémoire de licence en finance comptabilité et audit
MelDjobo
 
Exame DELF - A2 Francês pout tout public
Exame DELF - A2  Francês pout tout publicExame DELF - A2  Francês pout tout public
Exame DELF - A2 Francês pout tout public
GiselaAlves15
 
Iris et les hommes.pptx
Iris      et         les      hommes.pptxIris      et         les      hommes.pptx
Iris et les hommes.pptx
Txaruka
 
Contrôle fiscale en république de guinée
Contrôle fiscale en république de guinéeContrôle fiscale en république de guinée
Contrôle fiscale en république de guinée
bangalykaba146
 
Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...
Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...
Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...
cristionobedi
 
M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...
M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...
M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...
M2i Formation
 
Conseils pour Les Jeunes | Conseils de La Vie| Conseil de La Jeunesse
Conseils pour Les Jeunes | Conseils de La Vie| Conseil de La JeunesseConseils pour Les Jeunes | Conseils de La Vie| Conseil de La Jeunesse
Conseils pour Les Jeunes | Conseils de La Vie| Conseil de La Jeunesse
Oscar Smith
 
SYLLABUS DU COURS MARKETING DTS 1-2.pdf
SYLLABUS DU COURS  MARKETING DTS 1-2.pdfSYLLABUS DU COURS  MARKETING DTS 1-2.pdf
SYLLABUS DU COURS MARKETING DTS 1-2.pdf
Moukagni Evrard
 
Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...
Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...
Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...
mrelmejri
 
Calendrier du 3 juin 2024 et compte rendu.pdf
Calendrier du 3 juin 2024 et compte rendu.pdfCalendrier du 3 juin 2024 et compte rendu.pdf
Calendrier du 3 juin 2024 et compte rendu.pdf
frizzole
 
Newsletter SPW Agriculture en province du Luxembourg du 03-06-24
Newsletter SPW Agriculture en province du Luxembourg du 03-06-24Newsletter SPW Agriculture en province du Luxembourg du 03-06-24
Newsletter SPW Agriculture en province du Luxembourg du 03-06-24
BenotGeorges3
 
Edito-B1-francais Manuel to learning.pdf
Edito-B1-francais Manuel to learning.pdfEdito-B1-francais Manuel to learning.pdf
Edito-B1-francais Manuel to learning.pdf
WarlockeTamagafk
 
Système de gestion des fichiers de amine
Système de gestion des fichiers de amineSystème de gestion des fichiers de amine
Système de gestion des fichiers de amine
sewawillis
 
Cours de conjugaison des verbes du premier, deuxième et troisième groupe
Cours de conjugaison des verbes du premier, deuxième et troisième groupeCours de conjugaison des verbes du premier, deuxième et troisième groupe
Cours de conjugaison des verbes du premier, deuxième et troisième groupe
Yuma91
 
Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"
Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"
Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"
IES Turina/Rodrigo/Itaca/Palomeras
 

Dernier (15)

Mémoire de licence en finance comptabilité et audit
Mémoire de licence en finance comptabilité et auditMémoire de licence en finance comptabilité et audit
Mémoire de licence en finance comptabilité et audit
 
Exame DELF - A2 Francês pout tout public
Exame DELF - A2  Francês pout tout publicExame DELF - A2  Francês pout tout public
Exame DELF - A2 Francês pout tout public
 
Iris et les hommes.pptx
Iris      et         les      hommes.pptxIris      et         les      hommes.pptx
Iris et les hommes.pptx
 
Contrôle fiscale en république de guinée
Contrôle fiscale en république de guinéeContrôle fiscale en république de guinée
Contrôle fiscale en république de guinée
 
Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...
Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...
Formation Intelligence Artificielle pour dirigeants- IT6-DIGITALIX 24_opt OK_...
 
M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...
M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...
M2i Webinar - « Participation Financière Obligatoire » et CPF : une opportuni...
 
Conseils pour Les Jeunes | Conseils de La Vie| Conseil de La Jeunesse
Conseils pour Les Jeunes | Conseils de La Vie| Conseil de La JeunesseConseils pour Les Jeunes | Conseils de La Vie| Conseil de La Jeunesse
Conseils pour Les Jeunes | Conseils de La Vie| Conseil de La Jeunesse
 
SYLLABUS DU COURS MARKETING DTS 1-2.pdf
SYLLABUS DU COURS  MARKETING DTS 1-2.pdfSYLLABUS DU COURS  MARKETING DTS 1-2.pdf
SYLLABUS DU COURS MARKETING DTS 1-2.pdf
 
Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...
Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...
Impact des Critères Environnementaux, Sociaux et de Gouvernance (ESG) sur les...
 
Calendrier du 3 juin 2024 et compte rendu.pdf
Calendrier du 3 juin 2024 et compte rendu.pdfCalendrier du 3 juin 2024 et compte rendu.pdf
Calendrier du 3 juin 2024 et compte rendu.pdf
 
Newsletter SPW Agriculture en province du Luxembourg du 03-06-24
Newsletter SPW Agriculture en province du Luxembourg du 03-06-24Newsletter SPW Agriculture en province du Luxembourg du 03-06-24
Newsletter SPW Agriculture en province du Luxembourg du 03-06-24
 
Edito-B1-francais Manuel to learning.pdf
Edito-B1-francais Manuel to learning.pdfEdito-B1-francais Manuel to learning.pdf
Edito-B1-francais Manuel to learning.pdf
 
Système de gestion des fichiers de amine
Système de gestion des fichiers de amineSystème de gestion des fichiers de amine
Système de gestion des fichiers de amine
 
Cours de conjugaison des verbes du premier, deuxième et troisième groupe
Cours de conjugaison des verbes du premier, deuxième et troisième groupeCours de conjugaison des verbes du premier, deuxième et troisième groupe
Cours de conjugaison des verbes du premier, deuxième et troisième groupe
 
Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"
Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"
Evaluación docentes "Un cielo, dos países: El camino de los descubrimientos"
 

Courschapitre4 trigonometrie

  • 1. CHAPITRE 4 : Trigonométrie I ) Lectures sur le cercle trigonométrique 1) Enroulement de la droite numérique : Propriété et définition : Dans un repère orthonormé (O ; ⃗i , ⃗j ), le cercle trigonométrique C est le cercle de centre O est de rayon 1, parcouru dans le sens direct, c'est-à-dire dans le sens inverse des aiguilles d'une montre. On considère la droite d tangente au cercle C en I sur laquelle on définit un repère d'origine I. On enroule la droite d autour de C. Pour tout réel , le point d'abscisse  sur d coïncide avec un unique point M sur le cercle C ; M s'appelle l'image de  sur le cercle trigonométrique. Réciproquement, tout point M du cercle trigonométrique est l'image d'une infinité de réels. Si  est un de ces réels, les autres réels ayant comme image M sont de la forme α+2k π , où k est un entier relatif. Illustration : https://www.geogebra.org/material/show/id/1236779 2) Radian : Définition: Soit U, le point du cercle trigonométrique, image du nombre réel 1 de la droite d. On définit 1 radian comme la mesure de l'angle ̂IOU . On note 1 rad. Exemple : Le point image de π 2 est J. Donc la mesure en radians de l'angle ̂IOJ est π 2 . Cela correspond à un angle de 90°. Propriété : Les mesures d'un angle en degrés d'une part et en radians d'autre part sont proportionnelles. On en déduit le tableau de conversion suivant : Mesure en degrés 30 45 60 90 180 Mesure en radians π 6 π 4 π 3 π 2 π 3) Mesure principale d'un angle : Soit M, un point du cercle trigonométrique. OI et OM sont appelés des vecteurs unitaires, c'est-à-dire de norme 1. Propriété et définition : Le réel  d'image M est appelé une mesure en radians de l'angle orienté des vecteurs ( ⃗OI , ⃗OM ). Tous les réels ayant pour image le point M sur C sont aussi des mesures en radians de l'angle ( ⃗OI , ⃗OM ). Toutes les mesures x en radians de l'angle ( ⃗OI , ⃗OM ) sont de la forme x =  + 2kπ , où k est un entier relatif. 1S Chapitre 4– page 1/3 ..× 180 π ..× π 180
  • 2. Définition : L'angle ( ⃗OI , ⃗OM ) a une unique mesure appartenant à l'intervalle ] –π ; π ]. On appelle cette mesure la mesure principale de l'angle ( ⃗OI , ⃗OM ). Remarque : Si a est la mesure principale de l'angle ( ⃗OI , ⃗OM ), alors la mesure de l'angle géométrique ̂IOM est ̂IOM = |a|. Exemple : Sur le cercle trigonométrique, une mesure de l'angle ( ⃗OI , ⃗OJ ) est 3π 2 ; sa mesure principale est −π 2 car −π 2 ∈]- π ; π ] et ̂IOJ'=π 2 . II ) Angle orienté d'un couple de vecteurs 1) Introduction : Dans un repère (O ; I,J), on considère le cercle trigonométrique et 2 vecteurs ⃗u et ⃗v non nuls. On considère A' et B' les points définis par ⃗OA' = ⃗u et ⃗OB ' = ⃗v . Les demi-droites [OA') et [OB') coupent le cercle trigonométrique respectivement en A et B. Les vecteurs ⃗OA et ⃗OB sont unitaires et sont respectivement colinéaires à ⃗u et ⃗v , de même sens. Définition : Les mesures en radians de l'angle orienté de vecteurs ( ⃗u , ⃗v ) sont celles de l'angle orienté de vecteurs unitaires ( ⃗OA , ⃗OB ). Si x est une mesure de ( ⃗u , ⃗v ), alors toutes les mesures de ( ⃗u , ⃗v ) sont de la forme x+2k π , avec k un entier relatif. Exemple : ( ⃗u , ⃗v ) = π 2 signifie qu'une mesure de l'angle orienté de vecteurs ( ⃗u , ⃗v ) est égale à π 2 . Toutes les mesures de l'angle ( ⃗u , ⃗v ) sont de la forme (⃗u ,⃗v )= π 2 +2kπ , k∈ℤ. On peut aussi écrire ( ⃗u , ⃗v ) = π 2 ( 2π ). On lit : π 2 modulo 2π . Définition : Une seule des mesures de l'angle orienté de vecteurs ( ⃗u , ⃗v ) appartient à ] –π ; π ]. Cette mesure est la mesure principale de l'angle orienté de vecteurs ( ⃗u , ⃗v ). 2) Propriétés Propriété : Soit ⃗u et ⃗v deux vecteurs non nuls. • Dire que ⃗u et ⃗v sont colinéaires revient à dire que la mesure principale de ( ⃗u , ⃗v ) est égale à 0 ( ⃗u et ⃗v sont de même sens) ou π ( ⃗u et ⃗v sont de sens opposés). • Dire que ⃗u et ⃗v sont orthogonaux revient à dire que la mesure principale de ( ⃗u , ⃗v ) est égale à π 2 ou −π 2 . Remarque : Pour tout vecteur ⃗u non nul, ( ⃗u , ⃗u ) = 0+2k π et ( ⃗u ,- ⃗u ) = π+2k π Relation de Chasles pour les angles orientés : Soient ⃗u , ⃗v , ⃗w , trois vecteurs non nuls. On a alors : ( ⃗u , ⃗w ) = ( ⃗u , ⃗v )+( ⃗v , ⃗w )+ 2k π 1S Chapitre 4– page 2/3
  • 3. Propriétés : Soient ⃗u et ⃗v , deux vecteurs non nuls, k et k' deux réels non nuls. 1. ( ⃗v , ⃗u ) = -( ⃗u , ⃗v )+ 2k π 2. ( ⃗u , −⃗v ) = (⃗u ,⃗v )+π + 2k π 3. ( −⃗u , ⃗v ) = (⃗u ,⃗v )+π + 2k π 4. ( −⃗u , −⃗v ) = (⃗u ,⃗v ) + 2k π 5. Si k et k' sont de même signe, ( k ⃗u , k ' ⃗v ) = (⃗u ,⃗v ) + 2k π 6. Si k et k' sont de signes contraires, ( k ⃗u , k ' ⃗v ) = (⃗u ,⃗v )+π + 2k π Ces propriétés se déduisent de la relation de Chasles Démonstration : • Certaines sont démontrées au niveau du ROC 74 p 209. • Manuel page 196 (bas) • Vidéo de démonstration : https://lc.cx/ZtQF III. Calculs trigonométriques 1) Cosinus et sinus d'un nombre réel Définition : Soit x , un nombre réel et M, son image sur le cercle trigonométrique. Dans un repère (O ; I,J), on appelle : • cosinus du réel x , noté cos( x ), l'abscisse du point M. • sinus du réel x , noté sin( x ), l'ordonnée du point M. 2) Propriétés algébriques Propriétés : • Pour tout réel t, on a : −1⩽cos(t)⩽1 et −1⩽sin(t )⩽1 . • Pour tout réel t et tout entier k, on a : cos(t+2k π ) = cos(t) et sin(t+2k π ) = sin(t). • Pour tout réel t, cos²(t) + sin²(t) = 1. Ces propriétés se démontrent à partir du cercle trigonométrique. 3) Angles associés Propriétés : Pour tout réel t, on a : 1. cos(-t) = cos(t) 2. sin(-t) = - sin(t) 3. cos( π -t) = - cos(t) 4. sin( π -t) = sin(t) 5. cos( π +t) = - cos(t) 6. sin( π -t) = - sin(t) 7.cos( π 2 −t )=sin(t ) 8.sin(π 2 −t )=cos(t ) 9.cos( π 2 +t )=−sin(t ) 10.sin( π 2 +t)=cos(t ) Démonstration : Par symétrie, sur le cercle trigonométrique. 4) Résolution des équations cos(x) = cos(a) et sin(x) = sin(a) Propriété Soient x et a deux nombres réels. • cos(x) = cos(a) ⇔ x=a+2k π ou x=−a+2k π , k étant entier relatif. • sin(x) = sin(a) ⇔ x=a+2k π ou x=π−a+2 k π , k étant entier relatif. Démonstration : A partir des propriétés du 3). 1S Chapitre 4– page 3/3