SlideShare une entreprise Scribd logo
1  sur  44
1
Les circuits combinatoires
Chapitre 4
2
1. Les Circuits combinatoires
 Un circuit combinatoire est un circuit numérique dont
les sorties dépendent uniquement des entrées.
 Si=F(Ei)
 Si=F(E1,E2,….,En)
Circuit combinatoire
E1
E2
..
En
S1
S2
..
Sm
 C’est possible d’utiliser des circuits combinatoires pour réaliser
d’autres circuits plus complexes.
3
1.1 Exemple de Circuits combinatoires
 Demi Additionneur
 Additionneur complet
 Comparateur
 Multiplexeur
 Demultiplexeur
 Encodeur
 Décodeur
4
2. Demi Additionneur
 Le demi additionneur est un circuit combinatoire qui
permet de réaliser la somme arithmétique de deux
nombres A et B sur un bit.
 A la sotie on va avoir la somme S et la retenu R (
Carry).
DA
A
B
S
R
5
2.1Demi Additionneur : table de vérité
 En binaire l’addition sur un seul
bit se fait de la manière suivante:
 La table de vérité associée :
A B R S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0
B
A
B
A
B
A
S
B
A
R





.
.
.
6
2.2 Demi Additionneur : logigramme
7
3. L’additionneur complet
 En binaire lorsque on fait une addition il faut tenir en
compte de la retenue entrante.
r4 r3 r2 r1 r0= 0
+
a4 a3 a2 a1
b4 b3 b2 b1
r4 s4 s3 s2 s1
ri-1
ai
+ bi
ri si
8
3.1 Additionneur complet 1 bit
 L’additionneur complet un bit possède 3 entrées :
– ai : le premier nombre sur un bit.
– bi : le deuxième nombre sur un bit.
– ri-1 : le retenue entrante sur un bit.
 Il possède deux sorties :
– Si : la somme
– Ri la retenue sortante
Additionneur
complet
ai
bi
ri-1
Si
Ri
9
3.2 Additionneur complet : table de vérité
ai bi ri-1 ri si
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
)
.(
)
.
.
.(
.
1
1
1
1
1
1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
B
A
R
B
A
R
B
A
B
A
R
B
A
R
R
B
A
R
B
A
R
B
A
R
B
A
R
















1
1
1
1
1
1
1
1
1
1
1
)
.(
)
(
)
.
.
.(
)
.
.
.(
.
.
.
.
.
.
.
.


























i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
R
B
A
S
R
B
A
R
B
A
S
R
B
R
B
A
R
B
R
B
A
S
R
B
A
R
B
A
R
B
A
R
B
A
S
10
3.3 Schéma d’un additionneur complet
Si
Ri
ai
bi
ri-1
11
3.4 En utilisant des Demi
Additionneurs
1
1
1
1
.
)
.(
.

















i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
R
X
S
X
R
Y
R
B
A
Y
B
A
X
R
B
A
S
A
B
R
B
A
R
12
3.4 Additionneur 4 bits
r4 r3 r2 r1 r0= 0
+
a4 a3 a2 a1
b4 b3 b2 b1
r4 r4 s4 r3 s3 r2 s2 r1 s1
r4 s4 s3 s2 s1 Résultat final
13
3.4.1 Additionneur 4 bits ( schéma )
14
Exercice
 Soit une information binaire sur 5 bits ( i4i3i2i1i0).
Donner le circuit qui permet de calculer le nombre
de 1 dans l’information en entrée en utilisant
uniquement des additionneurs complets sur 1 bit?
15
4. Le Comparateur
 C’est un circuit combinatoire qui permet de comparer entre
deux nombres binaire A et B.
 Il possède 2 entrées :
– A : sur un bit
– B : sur un bit
 Il possède 3 sorties
– fe : égalité ( A=B)
– fi : inférieur ( A < B)
– fs : supérieur (A > B)
Comparateur
1 bit
A
B
fi
fe
fs
16
4.1 Comparateur sur un bit
A B fs fe fi
0 0 0 1 0
0 1 0 0 1
1 0 1 0 0
1 1 0 1 0
fi
fs
B
A
AB
B
A
fe
B
A
fi
B
A
fs







 .
17
4.2 Comparateur 2 bits
 Il permet de faire la comparaison entre deux
nombres A (a2a1) et B(b2b1) chacun sur deux bits.
Comparateur
2 bits
A1
A2
B1
B2
fi
fe
fs
18
4.2.1 Comparateur 2 bits (table de vérité)
)
1
1
).(
2
2
( B
A
B
A
fe 


)
1
.
1
).(
2
2
(
2
.
2 B
A
B
A
B
A
fs 


)
1
.
1
).(
2
2
(
2
.
2 B
A
B
A
B
A
fi 


A2 A1 B2 B1 fs fe fi
0 0 0 0 0 1 0
0 0 0 1 0 0 1
0 0 1 0 0 0 1
0 0 1 1 0 0 1
0 1 0 0 1 0 0
0 1 0 1 0 1 0
0 1 1 0 0 0 1
0 1 1 1 0 0 1
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 0 1 0
1 0 1 1 0 0 1
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 0 0
1 1 1 1 0 1 0
1. A=B si
A2=B2 et A1=B1
2. A>B si
A2 > B2 ou (A2=B2 et A1>B1)
3. A<B si
A2 < B2 ou (A2=B2 et A1<B1)
19
4.2.2 Comparateur 2 bits
avec des comparateurs 1 bit
•C’est possible de réaliser un comparateur 2 bits en utilisant des
comparateur 1 bit et des portes logiques.
•Il faut utiliser un comparateur pour comparer les bits du poids faible
et un autre pour comparer les bits du poids fort.
•Il faut combiner entre les sorties des deux comparateurs utilisés
pour réaliser les sorties du comparateur final.
Comparateur 1 bit
fs1 fe1 fi1
a1 b1
Comparateur 1 bit
fs2 fe2 fi2
a2 b2
20
4.2.2 Comparateur 2 bits
avec des comparateurs 1 bit
1
.
2
)
1
1
).(
2
2
( fe
fe
B
A
B
A
fe 



1
.
2
2
)
1
.
1
).(
2
2
(
2
.
2 fs
fe
fs
B
A
B
A
B
A
fs 




1
.
2
2
)
1
.
1
).(
2
2
(
2
.
2 fi
fe
fi
B
A
B
A
B
A
fi 




21
4.2.2 Comparateur 2 bits
avec des comparateurs 1 bit
fi
fs
a1 b1
a2 b2
Comparateur 1 bit
fs1 fe1 fi1
Comparateur 1 bit
fs2 fe2 fi2
fe
22
4.2.3 Comparateur avec des entrées de
mise en cascade
 On remarque que :
– Si A2 >B2 alors A > B
– Si A2<B2 alors A < B
 Par contre si A2=B2 alors il faut tenir en compte du résultat de
la comparaison des bits du poids faible.
 Pour cela on rajoute au comparateur des entrées qui nous
indique le résultat de la comparaison précédente.
 Ces entrées sont appelées des entrées de mise en cascade.
23
4.3 Comparateur avec des entrées en
cascade
Comp
fs fe fi
A2 B2
Es ( >)
Eg ( =)
Ei ( <)
A2 B2 Es Eg Ei fs fe fs
A2>B2
A2<B2
A2=B2
X X X 1 0 0
X X X 0 0 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
fs= (A2>B2)+(A2=B2).Es
fi= ( A2<B2)+ (A2=B2).Ei
fe=(A2=B2).Eg
24
4.3 Comparateur avec des entrées en
cascade
Comp
fs fe fi
A1 B1
es
eg
ei
Comp
fs fe fi
A2 B2
es
eg
ei
‘0’
‘1’
25
Exercice
 Réaliser un comparateur 4 bits en utilisant
des comparateurs 2 bits avec des entrées de
mise en cascade?
26
5. Le Multiplexeur
 Un multiplexeur est un circuit combinatoire qui permet de
sélectionner une information (1 bit) parmi 2n valeurs en entrée.
 Il possède :
– 2n entrées d’information
– Une seule sortie
– N entrées de sélection ( commandes)
Em ………....................... E3 E1 E0
C0
C1
Mux 2n 1
V
Cn-1 S
27
5.1 Multiplexeur 2 1
V C0 S
0 X 0
1 0 E0
1 1 E1
)
1
.
0
.
.( 0
0 E
C
E
C
V
S 

E1 E0
C0
Mux 2 1
S
V
28
5.2 Multiplexeur 4 1
C1 C0 S
0 0 E0
0 1 E1
1 0 E2
1 1 E3
E3 E2 E1 E0
C0
C1 Mux 4 1
S
)
3
.(
0
.
1
)
2
.(
0
.
1
)
1
.(
0
.
1
)
0
.(
0
.
1 E
C
C
E
C
C
E
C
C
E
C
C
S 



29
5.3 Multiplexeur 81
C2 C1 C0 S
0 0 0 E0
0 0 1 E1
0 1 0 E2
0 1 1 E3
1 0 0 E4
1 0 1 E5
1 1 0 E6
1 1 1 E7
E7 E6 E5 E4 E3 E2 E1 E0
C0
C1 Mux 8 1
C2
)
7
(
0
.
1
.
2
)
6
(
0
.
1
.
2
)
5
(
0
.
1
.
2
)
4
(
0
.
1
.
2
)
3
(
0
.
1
.
2
)
2
(
0
.
1
.
2
)
1
(
0
.
1
.
2
)
0
.(
0
.
1
.
2
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
S








30
Exemple : Réalisation d’un additionneur complet avec des
multiplexeurs 81
ai bi ri-1 ri
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
ai bi ri-1 Si
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1
•Nous avons besoin d’utiliser deux multiplexeurs :Le premier pour
réaliser la fonction de la somme et l’autres pour donner la retenue.
31
Réalisation de la fonction de la somme
)
7
(
0
.
1
.
2
)
6
(
0
.
1
.
2
)
5
(
0
.
1
.
2
)
4
(
0
.
1
.
2
)
3
(
0
.
1
.
2
)
2
(
0
.
1
.
2
)
1
(
0
.
1
.
2
)
0
.(
0
.
1
.
2
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
S








)
1
(
.
.
)
0
(
.
.
)
0
(
.
.
)
1
(
.
.
)
0
(
.
.
)
1
(
.
.
)
1
(
.
.
)
0
(
.
.
1
1
1
1
1
1
1
1
















i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
S
On pose :
C2=Ai
C1=Bi
C0=Ri-1
E0=0, E1=1, E2=1, E3=0, E4=1, E5=0, E6=0, E7=1
32
Réalisation de la fonction de la retenue
)
1
.(
)
1
.(
)
1
.(
)
0
.(
)
1
.(
)
0
.(
)
0
.(
)
0
.(
1
1
1
1
1
1
1
1
















i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
B
A
R
)
7
(
0
.
1
.
2
)
6
(
0
.
1
.
2
)
5
(
0
.
1
.
2
)
4
(
0
.
1
.
2
)
3
(
0
.
1
.
2
)
2
(
0
.
1
.
2
)
1
(
0
.
1
.
2
)
0
.(
0
.
1
.
2
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
E
C
C
C
S








On pose :
C2=Ai
C1=Bi
C0=Ri-1
E0=0, E1=0, E2=0, E3=1, E4=0, E5=1, E6=1, E7=1
33
E7 E6 E5 E4 E3 E2 E1 E0
C0
C1 Mux 8 1
C2
E7 E6 E5 E4 E3 E2 E1 E0
C0
C1 Mux 8 1
C2
Réalisation d’un additionneur complet avec des
multiplexeurs 81
‘1’
‘0’
‘1’
‘0’
ri-1
bi
ai
Si
Ri
ri-1
bi
ai
34
6. Demultiplexeurs
 Il joue le rôle inverse d’un multiplexeurs, il permet de faire
passer une information dans l’une des sorties selon les valeurs
des entrées de commandes.
 Il possède :
– une seule entrée
– 2n sorties
– N entrées de sélection ( commandes)
C0 DeMux 1 4
C1
S3 S2 S1 S0
I
35
6.1 Demultiplexeur 14
C1 C0 S3 S2 S1 S0
0 0 0 0 0 i
0 1 0 0 i 0
1 0 0 i 0 0
1 1 i 0 0 0
)
.(
0
.
1
3
)
.(
0
.
1
2
)
.(
0
.
1
1
)
.(
0
.
1
0
I
C
C
S
I
C
C
S
I
C
C
S
I
C
C
S




C0 DeMux 1 4
C1
S3 S2 S1 S0
I
36
Exercice
 Réaliser le circuit qui permet de trouver le maximum
entre deux nombres A et B sur un Bit en utilisant le
minimum de portes logiques et de circuits
combinatoires?
37
7. Le décodeur binaire
 C’est un circuit combinatoire qui est constitué de :
– N : entrées de données
– 2n sorties
– Pour chaque combinaison en entrée une seule sortie est
active à la fois
Un décodeur 38
S0
S1
S2
S3
S4
S5
S6
S7
A
B
C
V
38
Décodeur 24
V A B S0 S1 S2 S3
0 X X 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1
S0
S1
S2
S3
A
B
V
B
A
S
V
B
A
S
V
B
A
S
V
B
A
S
).
.
(
).
.
(
).
.
(
).
.
(
3
2
1
0




V
39
Décodeur 38
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
7
6
5
4
3
2
1
0








A B C S0 S1 S2 S3 S4 S5 S6 S7
0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0
0 1 1 0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 1 0 0 0
1 0 1 0 0 0 0 0 1 0 0
1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 1
S0
S1
S2
S3
S4
S5
S6
S7
A
B
C
V
40
8. L’encodeur binaire
 Il joue le rôle inverse d’un décodeur
– Il possède 2n entrées
– N sortie
– Pour chaque combinaison en entrée on va avoir sont
numéro ( en binaire) à la sortie.
I0
I1
I2
I3
x
y
Encodeur 42
41
L’encodeur binaire ( 42)
I0 I1 I2 I3 x y
0 0 0 0 0 0
1 x x x 0 0
0 1 x x 0 1
0 0 1 x 1 0
0 0 0 1 1 1
I0
I1
I2
I3
x
y
)
3
.
2
.
1
.(
0
)
3
2
.(
1
.
0
I
I
I
I
Y
I
I
I
I
X




42
9. Le transcodeur
 C’est un circuit combinatoire qui permet de transformer un code
X ( sur n bit) en entrée en un code Y ( sur m bit) en sortie.
transcodeur
E1
E2
..
En
S1
S2
..
Sm
43
Exemple : Transcodeur BCD/EXESS3
A B C D X Y Z T
0 0 0 0 0 0 1 1
0 0 0 1 0 1 0 0
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 0 0 0 1 1 1
0 1 0 1 1 0 0 0
0 1 1 0 1 0 0 1
0 1 1 1 1 0 1 0
1 0 0 0 1 0 1 1
1 0 0 1 1 1 0 0
1 0 1 0 x x x x
1 0 1 1 x x x x
1 1 0 0 x x x x
1 1 0 1 x x x x
1 1 1 0 x x x x
1 1 1 1 x x x x
44
Réalisation d’un additionneur complet
avec des décodeurs binaire 38
1
1
1
1 .
.
.
.
.
.
.
. 


 


 i
i
i
i
i
i
i
i
i
i
i
i
i R
B
A
R
B
A
R
B
A
R
B
A
S
1
1
1
1 . 


 


 i
i
i
i
i
i
i
i
i
i
i
i
i R
B
A
R
B
A
R
B
A
R
B
A
R
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
C
B
A
S
.
.
,
.
.
,
.
.
,
.
.
,
.
.
,
.
.
,
.
.
,
.
.
7
6
5
4
3
2
1
0








0 0 1 0 1 0 1 0 0 1 1 1
0 1 1 1 0 1 1 1 0 1 1 1
On pose A=Ai , B =Bi , C=Ri-1
7
6
5
3 S
S
S
S
Ri 



7
4
2
1 S
S
S
S
Si 




Contenu connexe

Tendances

Systèmes de logiques séquentielles-Bascules
Systèmes de logiques séquentielles-BasculesSystèmes de logiques séquentielles-Bascules
Systèmes de logiques séquentielles-BasculesHatem Jebali
 
Chapitre2 (les systèmes de numération)
Chapitre2 (les systèmes de numération)Chapitre2 (les systèmes de numération)
Chapitre2 (les systèmes de numération)killua zoldyck
 
124776153 td-automatique-1 a-jmd-2011
124776153 td-automatique-1 a-jmd-2011124776153 td-automatique-1 a-jmd-2011
124776153 td-automatique-1 a-jmd-2011sunprass
 
Systeme embarque td1
Systeme embarque td1Systeme embarque td1
Systeme embarque td1SinGuy
 
Automates programmables industriels
Automates programmables industrielsAutomates programmables industriels
Automates programmables industrielsHafsaELMessaoudi
 
Présentation de la robotique
Présentation de la robotiquePrésentation de la robotique
Présentation de la robotiqueLouise Roy
 
Tp n6 les compteurs
Tp n6 les compteursTp n6 les compteurs
Tp n6 les compteursHatem Jebali
 
TP Les bascules - logique combinatoire
TP Les bascules - logique combinatoire TP Les bascules - logique combinatoire
TP Les bascules - logique combinatoire bilal001
 
Microo exercices 16f877/877A
Microo exercices 16f877/877AMicroo exercices 16f877/877A
Microo exercices 16f877/877Aomar bllaouhamou
 
Télécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphaséTélécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphasémorin moli
 
Le microprocesseur
Le microprocesseurLe microprocesseur
Le microprocesseurISIG
 
Ch1 circuits logiques_p1_combinatoire-v4
Ch1 circuits logiques_p1_combinatoire-v4Ch1 circuits logiques_p1_combinatoire-v4
Ch1 circuits logiques_p1_combinatoire-v4linuxscout
 
TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire bilal001
 

Tendances (20)

Systèmes de logiques séquentielles-Bascules
Systèmes de logiques séquentielles-BasculesSystèmes de logiques séquentielles-Bascules
Systèmes de logiques séquentielles-Bascules
 
Chapitre2 (les systèmes de numération)
Chapitre2 (les systèmes de numération)Chapitre2 (les systèmes de numération)
Chapitre2 (les systèmes de numération)
 
124776153 td-automatique-1 a-jmd-2011
124776153 td-automatique-1 a-jmd-2011124776153 td-automatique-1 a-jmd-2011
124776153 td-automatique-1 a-jmd-2011
 
ROBOT à base d'Android - Rapport PFE
ROBOT à base d'Android - Rapport PFEROBOT à base d'Android - Rapport PFE
ROBOT à base d'Android - Rapport PFE
 
Notion de base
Notion de baseNotion de base
Notion de base
 
Systeme embarque td1
Systeme embarque td1Systeme embarque td1
Systeme embarque td1
 
Cours pics16 f877
Cours pics16 f877Cours pics16 f877
Cours pics16 f877
 
electronique.ppt
electronique.pptelectronique.ppt
electronique.ppt
 
Cours capteur final
Cours capteur finalCours capteur final
Cours capteur final
 
Automates programmables industriels
Automates programmables industrielsAutomates programmables industriels
Automates programmables industriels
 
Présentation de la robotique
Présentation de la robotiquePrésentation de la robotique
Présentation de la robotique
 
CODAGE.pptx
CODAGE.pptxCODAGE.pptx
CODAGE.pptx
 
Tp n6 les compteurs
Tp n6 les compteursTp n6 les compteurs
Tp n6 les compteurs
 
TP Les bascules - logique combinatoire
TP Les bascules - logique combinatoire TP Les bascules - logique combinatoire
TP Les bascules - logique combinatoire
 
Microo exercices 16f877/877A
Microo exercices 16f877/877AMicroo exercices 16f877/877A
Microo exercices 16f877/877A
 
Télécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphaséTélécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphasé
 
Le microprocesseur
Le microprocesseurLe microprocesseur
Le microprocesseur
 
Ch1 circuits logiques_p1_combinatoire-v4
Ch1 circuits logiques_p1_combinatoire-v4Ch1 circuits logiques_p1_combinatoire-v4
Ch1 circuits logiques_p1_combinatoire-v4
 
TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire
 
Grafcet
GrafcetGrafcet
Grafcet
 

Similaire à Les circuits combinatoires

ch4_circuitscombinatoires.ppt
ch4_circuitscombinatoires.pptch4_circuitscombinatoires.ppt
ch4_circuitscombinatoires.pptamine17157
 
Ch1 circuits logiques_p3_combinatoire-v1
Ch1 circuits logiques_p3_combinatoire-v1Ch1 circuits logiques_p3_combinatoire-v1
Ch1 circuits logiques_p3_combinatoire-v1linuxscout
 
Ch1 circuits logiques_p1_combinatoire-v3
Ch1 circuits logiques_p1_combinatoire-v3Ch1 circuits logiques_p1_combinatoire-v3
Ch1 circuits logiques_p1_combinatoire-v3linuxscout
 
Ch1 circuits logiques_p2_transcodeurs
Ch1 circuits logiques_p2_transcodeursCh1 circuits logiques_p2_transcodeurs
Ch1 circuits logiques_p2_transcodeurslinuxscout
 
Les symboles des portes logiques
Les symboles des portes logiquesLes symboles des portes logiques
Les symboles des portes logiquesmorin moli
 
Tp transcodage logique combinatoire
Tp transcodage logique combinatoireTp transcodage logique combinatoire
Tp transcodage logique combinatoirebilal001
 
Opérateurs logiques – Systèmes combinatoires et séquentiels
Opérateurs logiques – Systèmes combinatoires et séquentielsOpérateurs logiques – Systèmes combinatoires et séquentiels
Opérateurs logiques – Systèmes combinatoires et séquentielsPeronnin Eric
 
Electronique-Numérique-TD-7.pdf
Electronique-Numérique-TD-7.pdfElectronique-Numérique-TD-7.pdf
Electronique-Numérique-TD-7.pdfYassine Sabri
 
Les_portes_kjnnnnjjjjjjjygfrlogiques.pdf
Les_portes_kjnnnnjjjjjjjygfrlogiques.pdfLes_portes_kjnnnnjjjjjjjygfrlogiques.pdf
Les_portes_kjnnnnjjjjjjjygfrlogiques.pdfAliouDiallo24
 
architecture-des-ordinateurs.pdf
architecture-des-ordinateurs.pdfarchitecture-des-ordinateurs.pdf
architecture-des-ordinateurs.pdfRihabBENLAMINE
 
تمارين وحلول خاصة ببرمجة Ladder et instructions automates
تمارين وحلول خاصة ببرمجة Ladder et instructions automatesتمارين وحلول خاصة ببرمجة Ladder et instructions automates
تمارين وحلول خاصة ببرمجة Ladder et instructions automateselectrolouhla
 
Programmation En Langage Pl7 2
Programmation En Langage Pl7 2Programmation En Langage Pl7 2
Programmation En Langage Pl7 2youri59490
 
codeurs_de_positioncodeurs_de_position.ppt
codeurs_de_positioncodeurs_de_position.pptcodeurs_de_positioncodeurs_de_position.ppt
codeurs_de_positioncodeurs_de_position.pptStefTfh
 
Numeration et codage_de_linfo
Numeration et codage_de_linfoNumeration et codage_de_linfo
Numeration et codage_de_linfoyarsenv47
 

Similaire à Les circuits combinatoires (20)

ch4_circuitscombinatoires.ppt
ch4_circuitscombinatoires.pptch4_circuitscombinatoires.ppt
ch4_circuitscombinatoires.ppt
 
Ch1 circuits logiques_p3_combinatoire-v1
Ch1 circuits logiques_p3_combinatoire-v1Ch1 circuits logiques_p3_combinatoire-v1
Ch1 circuits logiques_p3_combinatoire-v1
 
Ch1 circuits logiques_p1_combinatoire-v3
Ch1 circuits logiques_p1_combinatoire-v3Ch1 circuits logiques_p1_combinatoire-v3
Ch1 circuits logiques_p1_combinatoire-v3
 
Ch1 circuits logiques_p2_transcodeurs
Ch1 circuits logiques_p2_transcodeursCh1 circuits logiques_p2_transcodeurs
Ch1 circuits logiques_p2_transcodeurs
 
Les symboles des portes logiques
Les symboles des portes logiquesLes symboles des portes logiques
Les symboles des portes logiques
 
Tp transcodage logique combinatoire
Tp transcodage logique combinatoireTp transcodage logique combinatoire
Tp transcodage logique combinatoire
 
Opérateurs logiques – Systèmes combinatoires et séquentiels
Opérateurs logiques – Systèmes combinatoires et séquentielsOpérateurs logiques – Systèmes combinatoires et séquentiels
Opérateurs logiques – Systèmes combinatoires et séquentiels
 
Codeur rizki
Codeur rizkiCodeur rizki
Codeur rizki
 
Td02
Td02Td02
Td02
 
Td logique
Td logiqueTd logique
Td logique
 
Electronique-Numérique-TD-7.pdf
Electronique-Numérique-TD-7.pdfElectronique-Numérique-TD-7.pdf
Electronique-Numérique-TD-7.pdf
 
Les_portes_kjnnnnjjjjjjjygfrlogiques.pdf
Les_portes_kjnnnnjjjjjjjygfrlogiques.pdfLes_portes_kjnnnnjjjjjjjygfrlogiques.pdf
Les_portes_kjnnnnjjjjjjjygfrlogiques.pdf
 
architecture-des-ordinateurs.pdf
architecture-des-ordinateurs.pdfarchitecture-des-ordinateurs.pdf
architecture-des-ordinateurs.pdf
 
Rapport de sujet BTS 1.0
Rapport de sujet BTS 1.0Rapport de sujet BTS 1.0
Rapport de sujet BTS 1.0
 
Logique
LogiqueLogique
Logique
 
Cours strm mme_touil_all
Cours strm mme_touil_allCours strm mme_touil_all
Cours strm mme_touil_all
 
تمارين وحلول خاصة ببرمجة Ladder et instructions automates
تمارين وحلول خاصة ببرمجة Ladder et instructions automatesتمارين وحلول خاصة ببرمجة Ladder et instructions automates
تمارين وحلول خاصة ببرمجة Ladder et instructions automates
 
Programmation En Langage Pl7 2
Programmation En Langage Pl7 2Programmation En Langage Pl7 2
Programmation En Langage Pl7 2
 
codeurs_de_positioncodeurs_de_position.ppt
codeurs_de_positioncodeurs_de_position.pptcodeurs_de_positioncodeurs_de_position.ppt
codeurs_de_positioncodeurs_de_position.ppt
 
Numeration et codage_de_linfo
Numeration et codage_de_linfoNumeration et codage_de_linfo
Numeration et codage_de_linfo
 

Plus de wafawafa52

515878259-Node-Group-Synch-Workshop.pptx
515878259-Node-Group-Synch-Workshop.pptx515878259-Node-Group-Synch-Workshop.pptx
515878259-Node-Group-Synch-Workshop.pptxwafawafa52
 
385288768-TD-Training-Modules-Mobilis.pptx
385288768-TD-Training-Modules-Mobilis.pptx385288768-TD-Training-Modules-Mobilis.pptx
385288768-TD-Training-Modules-Mobilis.pptxwafawafa52
 
Ericsson Microwave Products Overview.ppt
Ericsson Microwave Products Overview.pptEricsson Microwave Products Overview.ppt
Ericsson Microwave Products Overview.pptwafawafa52
 
BaseBand-6630-Moshell-Commands .pdf
BaseBand-6630-Moshell-Commands      .pdfBaseBand-6630-Moshell-Commands      .pdf
BaseBand-6630-Moshell-Commands .pdfwafawafa52
 
45555555555-4G-Training .pptx
45555555555-4G-Training            .pptx45555555555-4G-Training            .pptx
45555555555-4G-Training .pptxwafawafa52
 
5-LTE-IP-Troubleshooting .ppt
5-LTE-IP-Troubleshooting            .ppt5-LTE-IP-Troubleshooting            .ppt
5-LTE-IP-Troubleshooting .pptwafawafa52
 
Sharing-Knowledge-OAM-3G-Ericsson .ppt
Sharing-Knowledge-OAM-3G-Ericsson   .pptSharing-Knowledge-OAM-3G-Ericsson   .ppt
Sharing-Knowledge-OAM-3G-Ericsson .pptwafawafa52
 
LTE-BASICS-ppt .ppt
LTE-BASICS-ppt                      .pptLTE-BASICS-ppt                      .ppt
LTE-BASICS-ppt .pptwafawafa52
 
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdfran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdfwafawafa52
 
toaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdf
toaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdftoaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdf
toaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdfwafawafa52
 
mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...
mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...
mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...wafawafa52
 
FPGA_Logic.pdf
FPGA_Logic.pdfFPGA_Logic.pdf
FPGA_Logic.pdfwafawafa52
 
DWDM-Presentation.pdf
DWDM-Presentation.pdfDWDM-Presentation.pdf
DWDM-Presentation.pdfwafawafa52
 
Verilog HDL Design Examples ( PDFDrive ).pdf
Verilog HDL Design Examples ( PDFDrive ).pdfVerilog HDL Design Examples ( PDFDrive ).pdf
Verilog HDL Design Examples ( PDFDrive ).pdfwafawafa52
 
VHDL summary.pdf
VHDL summary.pdfVHDL summary.pdf
VHDL summary.pdfwafawafa52
 
ROM PAL PLA.ppt
ROM PAL PLA.pptROM PAL PLA.ppt
ROM PAL PLA.pptwafawafa52
 
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptxLecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptxwafawafa52
 
REVISION SYN3.pptx
REVISION SYN3.pptxREVISION SYN3.pptx
REVISION SYN3.pptxwafawafa52
 
INSTRUMENTATION.pptx
INSTRUMENTATION.pptxINSTRUMENTATION.pptx
INSTRUMENTATION.pptxwafawafa52
 

Plus de wafawafa52 (20)

515878259-Node-Group-Synch-Workshop.pptx
515878259-Node-Group-Synch-Workshop.pptx515878259-Node-Group-Synch-Workshop.pptx
515878259-Node-Group-Synch-Workshop.pptx
 
385288768-TD-Training-Modules-Mobilis.pptx
385288768-TD-Training-Modules-Mobilis.pptx385288768-TD-Training-Modules-Mobilis.pptx
385288768-TD-Training-Modules-Mobilis.pptx
 
Ericsson Microwave Products Overview.ppt
Ericsson Microwave Products Overview.pptEricsson Microwave Products Overview.ppt
Ericsson Microwave Products Overview.ppt
 
BaseBand-6630-Moshell-Commands .pdf
BaseBand-6630-Moshell-Commands      .pdfBaseBand-6630-Moshell-Commands      .pdf
BaseBand-6630-Moshell-Commands .pdf
 
45555555555-4G-Training .pptx
45555555555-4G-Training            .pptx45555555555-4G-Training            .pptx
45555555555-4G-Training .pptx
 
5-LTE-IP-Troubleshooting .ppt
5-LTE-IP-Troubleshooting            .ppt5-LTE-IP-Troubleshooting            .ppt
5-LTE-IP-Troubleshooting .ppt
 
Sharing-Knowledge-OAM-3G-Ericsson .ppt
Sharing-Knowledge-OAM-3G-Ericsson   .pptSharing-Knowledge-OAM-3G-Ericsson   .ppt
Sharing-Knowledge-OAM-3G-Ericsson .ppt
 
LTE-BASICS-ppt .ppt
LTE-BASICS-ppt                      .pptLTE-BASICS-ppt                      .ppt
LTE-BASICS-ppt .ppt
 
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdfran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
ran-introicbasictroubleshooting3-230122164831-426c58cd.pdf
 
toaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdf
toaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdftoaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdf
toaz.info-5g-solution-overview-pr_306866f43cebfb285586e3dd90989b89.pdf
 
mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...
mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...
mop-baseband-integration-xl-project-pa-1docxdocx-pr_299cefaa0fd3e32dd950c7218...
 
FPGA_Logic.pdf
FPGA_Logic.pdfFPGA_Logic.pdf
FPGA_Logic.pdf
 
DWDM-Presentation.pdf
DWDM-Presentation.pdfDWDM-Presentation.pdf
DWDM-Presentation.pdf
 
Verilog HDL Design Examples ( PDFDrive ).pdf
Verilog HDL Design Examples ( PDFDrive ).pdfVerilog HDL Design Examples ( PDFDrive ).pdf
Verilog HDL Design Examples ( PDFDrive ).pdf
 
VHDL summary.pdf
VHDL summary.pdfVHDL summary.pdf
VHDL summary.pdf
 
ROM PAL PLA.ppt
ROM PAL PLA.pptROM PAL PLA.ppt
ROM PAL PLA.ppt
 
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptxLecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
Lecture 16 RC Architecture Types & FPGA Interns Lecturer.pptx
 
exam.ppt
exam.pptexam.ppt
exam.ppt
 
REVISION SYN3.pptx
REVISION SYN3.pptxREVISION SYN3.pptx
REVISION SYN3.pptx
 
INSTRUMENTATION.pptx
INSTRUMENTATION.pptxINSTRUMENTATION.pptx
INSTRUMENTATION.pptx
 

Dernier

BOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chairBOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chairidelewebmestre
 
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleurBOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleuridelewebmestre
 
BOW 2024 - 3-2 - Stress thermique impact vaches laitières
BOW 2024 - 3-2 - Stress thermique impact vaches laitièresBOW 2024 - 3-2 - Stress thermique impact vaches laitières
BOW 2024 - 3-2 - Stress thermique impact vaches laitièresidelewebmestre
 
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...idelewebmestre
 
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitièresBOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitièresidelewebmestre
 
Cours polymère presentation powerpoint 46 pages
Cours polymère presentation powerpoint 46 pagesCours polymère presentation powerpoint 46 pages
Cours polymère presentation powerpoint 46 pagesPierreFournier32
 
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...idelewebmestre
 
BOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équine
BOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équineBOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équine
BOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équineidelewebmestre
 
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VLBOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VLidelewebmestre
 
BOW 2024 - Le bâtiment multicritère porcin
BOW 2024 - Le bâtiment multicritère porcinBOW 2024 - Le bâtiment multicritère porcin
BOW 2024 - Le bâtiment multicritère porcinidelewebmestre
 
BOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein airBOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein airidelewebmestre
 
BOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud PorcsBOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud Porcsidelewebmestre
 
La présentation du réseau téléinformatique
La présentation du réseau téléinformatiqueLa présentation du réseau téléinformatique
La présentation du réseau téléinformatiquesassarobertgina
 
BOW 2024-3-10 - Batcool Petits ruminants
BOW 2024-3-10 - Batcool Petits ruminantsBOW 2024-3-10 - Batcool Petits ruminants
BOW 2024-3-10 - Batcool Petits ruminantsidelewebmestre
 
Agrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en DordogneAgrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en Dordogneidelewebmestre
 
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdfSKennel
 
BOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pasBOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pasidelewebmestre
 
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatiqueBOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatiqueidelewebmestre
 

Dernier (20)

BOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chairBOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chair
 
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleurBOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
 
BOW 2024 - 3-2 - Stress thermique impact vaches laitières
BOW 2024 - 3-2 - Stress thermique impact vaches laitièresBOW 2024 - 3-2 - Stress thermique impact vaches laitières
BOW 2024 - 3-2 - Stress thermique impact vaches laitières
 
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...
 
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitièresBOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
 
Cours polymère presentation powerpoint 46 pages
Cours polymère presentation powerpoint 46 pagesCours polymère presentation powerpoint 46 pages
Cours polymère presentation powerpoint 46 pages
 
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
 
Webinaire lésions podales_04.04.2024.pptx
Webinaire lésions podales_04.04.2024.pptxWebinaire lésions podales_04.04.2024.pptx
Webinaire lésions podales_04.04.2024.pptx
 
BOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équine
BOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équineBOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équine
BOW 2024 - L'écurie ouverte : un concept inspirant pour la filière équine
 
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VLBOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
 
BOW 2024 - Le bâtiment multicritère porcin
BOW 2024 - Le bâtiment multicritère porcinBOW 2024 - Le bâtiment multicritère porcin
BOW 2024 - Le bâtiment multicritère porcin
 
BOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein airBOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein air
 
BOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud PorcsBOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud Porcs
 
La présentation du réseau téléinformatique
La présentation du réseau téléinformatiqueLa présentation du réseau téléinformatique
La présentation du réseau téléinformatique
 
BOW 2024-3-10 - Batcool Petits ruminants
BOW 2024-3-10 - Batcool Petits ruminantsBOW 2024-3-10 - Batcool Petits ruminants
BOW 2024-3-10 - Batcool Petits ruminants
 
Agrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en DordogneAgrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en Dordogne
 
Note agro-climatique n°2 - 17 Avril 2024
Note agro-climatique n°2 - 17 Avril 2024Note agro-climatique n°2 - 17 Avril 2024
Note agro-climatique n°2 - 17 Avril 2024
 
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdfSciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
SciencesPo_Aix_InnovationPédagogique_Atelier_APC.pdf
 
BOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pasBOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pas
 
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatiqueBOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
 

Les circuits combinatoires

  • 2. 2 1. Les Circuits combinatoires  Un circuit combinatoire est un circuit numérique dont les sorties dépendent uniquement des entrées.  Si=F(Ei)  Si=F(E1,E2,….,En) Circuit combinatoire E1 E2 .. En S1 S2 .. Sm  C’est possible d’utiliser des circuits combinatoires pour réaliser d’autres circuits plus complexes.
  • 3. 3 1.1 Exemple de Circuits combinatoires  Demi Additionneur  Additionneur complet  Comparateur  Multiplexeur  Demultiplexeur  Encodeur  Décodeur
  • 4. 4 2. Demi Additionneur  Le demi additionneur est un circuit combinatoire qui permet de réaliser la somme arithmétique de deux nombres A et B sur un bit.  A la sotie on va avoir la somme S et la retenu R ( Carry). DA A B S R
  • 5. 5 2.1Demi Additionneur : table de vérité  En binaire l’addition sur un seul bit se fait de la manière suivante:  La table de vérité associée : A B R S 0 0 0 0 0 1 0 1 1 0 0 1 1 1 1 0 B A B A B A S B A R      . . .
  • 6. 6 2.2 Demi Additionneur : logigramme
  • 7. 7 3. L’additionneur complet  En binaire lorsque on fait une addition il faut tenir en compte de la retenue entrante. r4 r3 r2 r1 r0= 0 + a4 a3 a2 a1 b4 b3 b2 b1 r4 s4 s3 s2 s1 ri-1 ai + bi ri si
  • 8. 8 3.1 Additionneur complet 1 bit  L’additionneur complet un bit possède 3 entrées : – ai : le premier nombre sur un bit. – bi : le deuxième nombre sur un bit. – ri-1 : le retenue entrante sur un bit.  Il possède deux sorties : – Si : la somme – Ri la retenue sortante Additionneur complet ai bi ri-1 Si Ri
  • 9. 9 3.2 Additionneur complet : table de vérité ai bi ri-1 ri si 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 ) .( ) . . .( . 1 1 1 1 1 1 i i i i i i i i i i i i i i i i i i i i i i i i i i i B A R B A R B A B A R B A R R B A R B A R B A R B A R                 1 1 1 1 1 1 1 1 1 1 1 ) .( ) ( ) . . .( ) . . .( . . . . . . . .                           i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i i R B A S R B A R B A S R B R B A R B R B A S R B A R B A R B A R B A S
  • 10. 10 3.3 Schéma d’un additionneur complet Si Ri ai bi ri-1
  • 11. 11 3.4 En utilisant des Demi Additionneurs 1 1 1 1 . ) .( .                  i i i i i i i i i i i i i i i i i i R X S X R Y R B A Y B A X R B A S A B R B A R
  • 12. 12 3.4 Additionneur 4 bits r4 r3 r2 r1 r0= 0 + a4 a3 a2 a1 b4 b3 b2 b1 r4 r4 s4 r3 s3 r2 s2 r1 s1 r4 s4 s3 s2 s1 Résultat final
  • 13. 13 3.4.1 Additionneur 4 bits ( schéma )
  • 14. 14 Exercice  Soit une information binaire sur 5 bits ( i4i3i2i1i0). Donner le circuit qui permet de calculer le nombre de 1 dans l’information en entrée en utilisant uniquement des additionneurs complets sur 1 bit?
  • 15. 15 4. Le Comparateur  C’est un circuit combinatoire qui permet de comparer entre deux nombres binaire A et B.  Il possède 2 entrées : – A : sur un bit – B : sur un bit  Il possède 3 sorties – fe : égalité ( A=B) – fi : inférieur ( A < B) – fs : supérieur (A > B) Comparateur 1 bit A B fi fe fs
  • 16. 16 4.1 Comparateur sur un bit A B fs fe fi 0 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 fi fs B A AB B A fe B A fi B A fs         .
  • 17. 17 4.2 Comparateur 2 bits  Il permet de faire la comparaison entre deux nombres A (a2a1) et B(b2b1) chacun sur deux bits. Comparateur 2 bits A1 A2 B1 B2 fi fe fs
  • 18. 18 4.2.1 Comparateur 2 bits (table de vérité) ) 1 1 ).( 2 2 ( B A B A fe    ) 1 . 1 ).( 2 2 ( 2 . 2 B A B A B A fs    ) 1 . 1 ).( 2 2 ( 2 . 2 B A B A B A fi    A2 A1 B2 B1 fs fe fi 0 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 1 1 0 0 0 1 0 0 1 0 0 1 1 0 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 0 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 1. A=B si A2=B2 et A1=B1 2. A>B si A2 > B2 ou (A2=B2 et A1>B1) 3. A<B si A2 < B2 ou (A2=B2 et A1<B1)
  • 19. 19 4.2.2 Comparateur 2 bits avec des comparateurs 1 bit •C’est possible de réaliser un comparateur 2 bits en utilisant des comparateur 1 bit et des portes logiques. •Il faut utiliser un comparateur pour comparer les bits du poids faible et un autre pour comparer les bits du poids fort. •Il faut combiner entre les sorties des deux comparateurs utilisés pour réaliser les sorties du comparateur final. Comparateur 1 bit fs1 fe1 fi1 a1 b1 Comparateur 1 bit fs2 fe2 fi2 a2 b2
  • 20. 20 4.2.2 Comparateur 2 bits avec des comparateurs 1 bit 1 . 2 ) 1 1 ).( 2 2 ( fe fe B A B A fe     1 . 2 2 ) 1 . 1 ).( 2 2 ( 2 . 2 fs fe fs B A B A B A fs      1 . 2 2 ) 1 . 1 ).( 2 2 ( 2 . 2 fi fe fi B A B A B A fi     
  • 21. 21 4.2.2 Comparateur 2 bits avec des comparateurs 1 bit fi fs a1 b1 a2 b2 Comparateur 1 bit fs1 fe1 fi1 Comparateur 1 bit fs2 fe2 fi2 fe
  • 22. 22 4.2.3 Comparateur avec des entrées de mise en cascade  On remarque que : – Si A2 >B2 alors A > B – Si A2<B2 alors A < B  Par contre si A2=B2 alors il faut tenir en compte du résultat de la comparaison des bits du poids faible.  Pour cela on rajoute au comparateur des entrées qui nous indique le résultat de la comparaison précédente.  Ces entrées sont appelées des entrées de mise en cascade.
  • 23. 23 4.3 Comparateur avec des entrées en cascade Comp fs fe fi A2 B2 Es ( >) Eg ( =) Ei ( <) A2 B2 Es Eg Ei fs fe fs A2>B2 A2<B2 A2=B2 X X X 1 0 0 X X X 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 fs= (A2>B2)+(A2=B2).Es fi= ( A2<B2)+ (A2=B2).Ei fe=(A2=B2).Eg
  • 24. 24 4.3 Comparateur avec des entrées en cascade Comp fs fe fi A1 B1 es eg ei Comp fs fe fi A2 B2 es eg ei ‘0’ ‘1’
  • 25. 25 Exercice  Réaliser un comparateur 4 bits en utilisant des comparateurs 2 bits avec des entrées de mise en cascade?
  • 26. 26 5. Le Multiplexeur  Un multiplexeur est un circuit combinatoire qui permet de sélectionner une information (1 bit) parmi 2n valeurs en entrée.  Il possède : – 2n entrées d’information – Une seule sortie – N entrées de sélection ( commandes) Em ………....................... E3 E1 E0 C0 C1 Mux 2n 1 V Cn-1 S
  • 27. 27 5.1 Multiplexeur 2 1 V C0 S 0 X 0 1 0 E0 1 1 E1 ) 1 . 0 . .( 0 0 E C E C V S   E1 E0 C0 Mux 2 1 S V
  • 28. 28 5.2 Multiplexeur 4 1 C1 C0 S 0 0 E0 0 1 E1 1 0 E2 1 1 E3 E3 E2 E1 E0 C0 C1 Mux 4 1 S ) 3 .( 0 . 1 ) 2 .( 0 . 1 ) 1 .( 0 . 1 ) 0 .( 0 . 1 E C C E C C E C C E C C S    
  • 29. 29 5.3 Multiplexeur 81 C2 C1 C0 S 0 0 0 E0 0 0 1 E1 0 1 0 E2 0 1 1 E3 1 0 0 E4 1 0 1 E5 1 1 0 E6 1 1 1 E7 E7 E6 E5 E4 E3 E2 E1 E0 C0 C1 Mux 8 1 C2 ) 7 ( 0 . 1 . 2 ) 6 ( 0 . 1 . 2 ) 5 ( 0 . 1 . 2 ) 4 ( 0 . 1 . 2 ) 3 ( 0 . 1 . 2 ) 2 ( 0 . 1 . 2 ) 1 ( 0 . 1 . 2 ) 0 .( 0 . 1 . 2 E C C C E C C C E C C C E C C C E C C C E C C C E C C C E C C C S        
  • 30. 30 Exemple : Réalisation d’un additionneur complet avec des multiplexeurs 81 ai bi ri-1 ri 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 ai bi ri-1 Si 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 1 1 0 0 1 1 1 1 •Nous avons besoin d’utiliser deux multiplexeurs :Le premier pour réaliser la fonction de la somme et l’autres pour donner la retenue.
  • 31. 31 Réalisation de la fonction de la somme ) 7 ( 0 . 1 . 2 ) 6 ( 0 . 1 . 2 ) 5 ( 0 . 1 . 2 ) 4 ( 0 . 1 . 2 ) 3 ( 0 . 1 . 2 ) 2 ( 0 . 1 . 2 ) 1 ( 0 . 1 . 2 ) 0 .( 0 . 1 . 2 E C C C E C C C E C C C E C C C E C C C E C C C E C C C E C C C S         ) 1 ( . . ) 0 ( . . ) 0 ( . . ) 1 ( . . ) 0 ( . . ) 1 ( . . ) 1 ( . . ) 0 ( . . 1 1 1 1 1 1 1 1                 i i i i i i i i i i i i i i i i i i i i i i i i i R B A R B A R B A R B A R B A R B A R B A R B A S On pose : C2=Ai C1=Bi C0=Ri-1 E0=0, E1=1, E2=1, E3=0, E4=1, E5=0, E6=0, E7=1
  • 32. 32 Réalisation de la fonction de la retenue ) 1 .( ) 1 .( ) 1 .( ) 0 .( ) 1 .( ) 0 .( ) 0 .( ) 0 .( 1 1 1 1 1 1 1 1                 i i i i i i i i i i i i i i i i i i i i i i i i i R B A R B A R B A R B A R B A R B A R B A R B A R ) 7 ( 0 . 1 . 2 ) 6 ( 0 . 1 . 2 ) 5 ( 0 . 1 . 2 ) 4 ( 0 . 1 . 2 ) 3 ( 0 . 1 . 2 ) 2 ( 0 . 1 . 2 ) 1 ( 0 . 1 . 2 ) 0 .( 0 . 1 . 2 E C C C E C C C E C C C E C C C E C C C E C C C E C C C E C C C S         On pose : C2=Ai C1=Bi C0=Ri-1 E0=0, E1=0, E2=0, E3=1, E4=0, E5=1, E6=1, E7=1
  • 33. 33 E7 E6 E5 E4 E3 E2 E1 E0 C0 C1 Mux 8 1 C2 E7 E6 E5 E4 E3 E2 E1 E0 C0 C1 Mux 8 1 C2 Réalisation d’un additionneur complet avec des multiplexeurs 81 ‘1’ ‘0’ ‘1’ ‘0’ ri-1 bi ai Si Ri ri-1 bi ai
  • 34. 34 6. Demultiplexeurs  Il joue le rôle inverse d’un multiplexeurs, il permet de faire passer une information dans l’une des sorties selon les valeurs des entrées de commandes.  Il possède : – une seule entrée – 2n sorties – N entrées de sélection ( commandes) C0 DeMux 1 4 C1 S3 S2 S1 S0 I
  • 35. 35 6.1 Demultiplexeur 14 C1 C0 S3 S2 S1 S0 0 0 0 0 0 i 0 1 0 0 i 0 1 0 0 i 0 0 1 1 i 0 0 0 ) .( 0 . 1 3 ) .( 0 . 1 2 ) .( 0 . 1 1 ) .( 0 . 1 0 I C C S I C C S I C C S I C C S     C0 DeMux 1 4 C1 S3 S2 S1 S0 I
  • 36. 36 Exercice  Réaliser le circuit qui permet de trouver le maximum entre deux nombres A et B sur un Bit en utilisant le minimum de portes logiques et de circuits combinatoires?
  • 37. 37 7. Le décodeur binaire  C’est un circuit combinatoire qui est constitué de : – N : entrées de données – 2n sorties – Pour chaque combinaison en entrée une seule sortie est active à la fois Un décodeur 38 S0 S1 S2 S3 S4 S5 S6 S7 A B C V
  • 38. 38 Décodeur 24 V A B S0 S1 S2 S3 0 X X 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 S0 S1 S2 S3 A B V B A S V B A S V B A S V B A S ). . ( ). . ( ). . ( ). . ( 3 2 1 0     V
  • 39. 39 Décodeur 38 C B A S C B A S C B A S C B A S C B A S C B A S C B A S C B A S . . . . . . . . . . . . . . . . 7 6 5 4 3 2 1 0         A B C S0 S1 S2 S3 S4 S5 S6 S7 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0 1 S0 S1 S2 S3 S4 S5 S6 S7 A B C V
  • 40. 40 8. L’encodeur binaire  Il joue le rôle inverse d’un décodeur – Il possède 2n entrées – N sortie – Pour chaque combinaison en entrée on va avoir sont numéro ( en binaire) à la sortie. I0 I1 I2 I3 x y Encodeur 42
  • 41. 41 L’encodeur binaire ( 42) I0 I1 I2 I3 x y 0 0 0 0 0 0 1 x x x 0 0 0 1 x x 0 1 0 0 1 x 1 0 0 0 0 1 1 1 I0 I1 I2 I3 x y ) 3 . 2 . 1 .( 0 ) 3 2 .( 1 . 0 I I I I Y I I I I X    
  • 42. 42 9. Le transcodeur  C’est un circuit combinatoire qui permet de transformer un code X ( sur n bit) en entrée en un code Y ( sur m bit) en sortie. transcodeur E1 E2 .. En S1 S2 .. Sm
  • 43. 43 Exemple : Transcodeur BCD/EXESS3 A B C D X Y Z T 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 0 1 1 1 0 0 1 0 1 0 x x x x 1 0 1 1 x x x x 1 1 0 0 x x x x 1 1 0 1 x x x x 1 1 1 0 x x x x 1 1 1 1 x x x x
  • 44. 44 Réalisation d’un additionneur complet avec des décodeurs binaire 38 1 1 1 1 . . . . . . . .         i i i i i i i i i i i i i R B A R B A R B A R B A S 1 1 1 1 .         i i i i i i i i i i i i i R B A R B A R B A R B A R C B A S C B A S C B A S C B A S C B A S C B A S C B A S C B A S . . , . . , . . , . . , . . , . . , . . , . . 7 6 5 4 3 2 1 0         0 0 1 0 1 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 On pose A=Ai , B =Bi , C=Ri-1 7 6 5 3 S S S S Ri     7 4 2 1 S S S S Si    