• Télécharger
Calcul Des Structures Portiques   Methode Des Deplacements Jexpoz
Prochain SlideShare
Loading in...5
×

Vous aimez ? Partagez donc ce contenu avec votre réseau

Partager

Calcul Des Structures Portiques Methode Des Deplacements Jexpoz

  • 23,129 vues
Uploaded on

exposé sur le calcul des portiques

exposé sur le calcul des portiques

  • Full Name Full Name Comment goes here.
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
  • Sil vous plait permettez de telechager ce fichier, merci d'avance
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
  • permettez moi s'il vous de télécharger ce fichier, merci d'avance
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
  • Merci!!!
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
  • merci
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
  • JE M'INTERESSE AU GENIE CIVIL
    JE VOUDRAIS DES DOCUMENTS DE DDS ET RDM ET MDS
    MERCI
    Êtes-vous sûr de vouloir
    Votre message apparaîtra ici
No Downloads

Vues

Total des vues
23,129
Sur Slideshare
18,227
From Embeds
4,902
Nombre d'ajouts
6

Actions

Partages
Téléchargements
0
Commentaires
5
J'aime
5

Ajouts 4,902

http://www.jexpoz.com 4,831
http://www.slideshare.net 61
http://www.slideee.com 5
http://www.google.fr 2
http://jexpoz.power3w.com 2
http://www.google.ca 1

Signaler un contenu

Signalé comme inapproprié Signaler comme inapproprié
Signaler comme inapproprié

Indiquez la raison pour laquelle vous avez signalé cette présentation comme n'étant pas appropriée.

Annuler
    No notes for slide

Transcript

  • 1.  
  • 2. CHAPITRE II CALCUL DES PORTIQUES PAR LA MÉTHODE DES DÉPLACEMENTS HEI 4 BTP Hautes Etudes d’Ingénieur 13, rue de Toul 59046 Lille Cedex
  • 3.
    • Un portique est un assemblage de poutres dont les lignes moyennes appartiennent à un plan (Oxy) et qui sont chargées dans ce plan.
    • Le point d’assemblage de plusieurs poutres s’appelle un nœud.
    • Les poutres sont considérées comme encastrées aux nœuds, on dit ainsi que les nœuds sont rigides.
    I. Définitions II. Conventions de signes sur les éléments poutres II.1 Déplacements des nœuds En un nœud i d’une poutre, le déplacement  i à 3 composantes (ou 3 degrés de liberté) u 2 v 2  2 u 1 v 1  1
  • 4. II. Conventions de signes sur les éléments poutres
    • II.3 Forces extérieures
    II.2 Eléments de réduction Chaque section droite est sollicitée par un effort normal N, un effort tranchant T et un moment fléchissant µ. Dans les sections extrêmes, les sens positifs sont les suivants: N 2 T 2 µ 2 N 1 T 1 µ 1 X 2 Y 2 M 2 X 1 Y 1 M 1
  • 5. III. Définition des vecteurs force et déplacement nodaux Pour une poutre 1-2, les vecteurs force {F} et déplacement {  } s’écriront: Notre objectif est d’établir la relation de rigidité d’un élément poutre, c’est-à-dire:  dimension 6x6
  • 6. IV. Détermination de la matrice de rigidité élémentaire
    • IV.1 En repère local
    • Matrice de rigidité due aux efforts selon x * (cf chapitre précédent)
    Soit:
  • 7. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local b) Matrice de rigidité due aux efforts selon z * On impose une rotation  1 au nœud 1 en bloquant les autres déplacements Le moment M 1 nécessaire pour produire  1 est (p 21) :  Mt /1=0  M 1 +M 2 +Y 2 L=0  De plus, on a Y 1 +Y 2 =0  Les variations de longueur étant négligeables, on X 1 =X 2 =0 Il produit un moment M 2 au nœud 2 : M 2 M 1 1 2  1 1 2 Y 1 Y 2
  • 8. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local b) Matrice de rigidité due aux efforts selon z * De même, on impose une rotation  2 au nœud 2 en bloquant les autres déplacements Le moment M 2 nécessaire pour produire  2 est :  Mt /2=0  M 1 +M 2 -Y 1 L=0  De plus, on a Y 1 +Y 2 =0  Les variations de longueur étant négligeables, on X 1 =X 2 =0 Il produit un moment M 1 au nœud 1 : M 2 M 1 2 1  2 2 1 Y 1 Y 2
  • 9. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local b) Matrice de rigidité due aux efforts selon z * En superposant les deux cas, on obtient:
  • 10. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local c) Matrice de rigidité due aux efforts selon y * On impose un déplacement v 1 au nœud 1 et on bloque tous les autres déplacements Nous avons des moments (2.4 p 23)  Mt /2=0  M 1 +M 2 -Y 1 L=0  De plus, on a Y 1 +Y 2 =0  Les variations de longueur étant négligeables, on X 1 =X 2 =0 1 2 v 1 M 2 M 1 1 2 Y 1 Y 2
  • 11. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local c) Matrice de rigidité due aux efforts selon y * De même, on impose un déplacement v 2 au nœud 2 et on bloque tous les autres déplacements Nous avons des moments  Mt /1=0  M 1 +M 2 +Y 2 L=0  De plus, on a Y 1 +Y 2 =0  Les variations de longueur étant négligeables, on X 1 =X 2 =0 2 1 v 2 M 2 M 1 2 1 Y 1 Y 2
  • 12. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local c) Matrice de rigidité due aux efforts selon y * En superposant les deux cas, on obtient:
  • 13. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local Conclusion : La matrice de rigidité de l’élément poutre en repère local est obtenue en superposant les cas a), b) et c):
  • 14. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère local Cas particuliers : La poutre est rigide-articulée ou articulée-rigide (p 63-65) IV.2 En repère global La matrice de rotation est la suivante: Au nœud 1 (par exemple), nous avons les relations:
  • 15. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère global Pour la poutre 1-2, on peut donc écrire : De même, on a : En repère local, la relation de rigidité s’écrit : On cherche à établir la relation de rigidité en repère global, soit :
  • 16. IV. Détermination de la matrice de rigidité élémentaire IV.1 En repère global On a la relation de rigidité en repère local : et : De plus : La relation de rigidité en repère global s’écrit :   Ou encore : Comme on a :
  • 17. V. Transformation des chargements en forces nodales La relation {F}=[K e ].{  } qu’on doit résoudre n’est valable que lorsque les forces {F} sont appliquées aux nœuds. Une charge répartie ou concentrée (en travée) doit donc être décomposée en forces nodales appelées forces de blocage . On cherche donc à déterminer  i et  j qui correspondent aux réactions des nœuds au chargement considéré (p 71 à 75). M 2 M 1 Y 1 Y 2 p 2 1 l M 2 M 1 Y 1 Y 2 p 2 1 l
  • 18. VI. Equation d’équilibre d’un élément poutre Les équations d’équilibre d’un élément poutre chargé entre les nœuds s’écriront: Où  i et  j sont les systèmes de forces extérieures qui sollicitent directement les nœuds i et j : Forces de blocage Forces de raideur
  • 19. VII. Effet thermique sur les poutres Les expressions en repère local des forces de blocage sont les suivantes : La relation de rigidité avec effet thermique dans les poutres s'écrit alors :
  • 20. VIII. Tableau de localisation … . … . … . … . … . … . … . … . … . … .    4EI/L 6EI/L 2 12EI/L 3 EA/L j i e
  • 21.