SlideShare une entreprise Scribd logo
1  sur  57
Télécharger pour lire hors ligne
Les équations différentielles
Equations du premier ordre et définitions
Christophe Palermo
IUT de Montpellier
Département Mesures Physiques
&
Institut d’Electronique du Sud
Université Montpellier 2
Web : http://palermo.wordpress.com
e-mail : cpalermo@um2.fr
Cours du 25 novembre 2010
MONTPELLIER
Plan
1 Définitions générales
Équations ordinaires
Solutions de l’équation
Solution générale
Terme perturbateur
Solution particulière
2 Equations différentielles du premier ordre
Définitions
Variables séparées
Linéarité
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 2
Définitions générales
Plan
1 Définitions générales
Équations ordinaires
Solutions de l’équation
Solution générale
Terme perturbateur
Solution particulière
2 Equations différentielles du premier ordre
Définitions
Variables séparées
Linéarité
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 3
Définitions générales Équations ordinaires
Les équations ordinaires
Équation différentielle d’ordre n
On appelle équation différentielle (ordinaire) d’ordre n (n ∈ N) de y en
t, toute relation de la forme
F

t,y,
dy
dt
,...,
dny
dtn

= 0 = F

t,y,ẏ,...,y(n)

(1)
entre la variable t, et tout ou partie de la fonction y et de ses dérivées
successives jusqu’à l’ordre n.
L’ordre de l’équation différentielle est l’ordre de la plus haute dérivée
qui apparaît.
Le degré de l’équation différentielle est le degré de la plus grande
puissance de y ou de ses dérivées.
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 4
Définitions générales Équations ordinaires
Exemple
Soit :
ÿ + 3ẏ4
+ ty − t6
= 0
Ordre :
Degré :
Question subsidiaire : y’a-t-il un second membre ?
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 5
Définitions générales Équations ordinaires
Exemple
Soit :
ÿ + 3ẏ4
+ ty − t6
= 0
Ordre : 2
Degré : 4
Question subsidiaire : y’a-t-il un second membre ? t6
Attention
t6 est une perturbation ! Donc t6est un second membre qu’il convient
d’appeler plutôt terme perturbateur !
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 5
Définitions générales Solutions de l’équation
Solutions
Solution de l’équation différentielle
On appelle solution ou intégrale d’une équation différentielle
F

t,y,
dy
dt
,...,
dny
dtn

= 0 = F

t,y,y0
,...,y(n)

sur un intervalle I
toute fonction y(t) qui vérifie cette équation sur I.
La courbe représentative des solutions est appelée courbe intégrale
Une solution d’une équation différentielle d’ordre n comporte n
paramètres libres, qui sont des constantes d’intégration
Donc, quel que soit l’ordre d’une équation différentielle, elle admet
une infinité de solutions
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 6
Définitions générales Solutions de l’équation
Exemples
ẏ = 0 admet comme solutions :
1, 2, 3, etc.,
{y(t) = r/r ∈ R}
une infinité de solutions
ẏ = t admet comme solutions :

y(t) =
t2
2
+ r/r ∈ R

une infinité de solutions
ÿ = t admet comme solutions :

y(t) =
t3
6
+ rt + s/ r,s ∈ R

une infinité de solutions
Vrai avec ou sans terme perturbateur
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 7
Définitions générales Solutions de l’équation
Vocabulaire de la résolution
Résolution d’une équation différentielle
Résoudre une équation différentielle, c’est trouver l’ensemble de toutes
ses solutions
Il n’y a que deux types de fonctions
Celles qui sont des solutions de l’équation différentielle
Celles qui ne sont pas solutions de l’équation différentielle
Pourtant nous distinguerons solution générale et solution particulière
Nous verrons que l’on parle de la même chose !
C’est juste une question de dénomination
Parmi l’infinité des solutions se trouve LA solution du problème
physique
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 8
Définitions générales Solution générale
La solution générale
Solution générale
On appelle solution générale d’une équation différentielle d’ordre n
l’expression de la solution contenant n paramètres libres (c’est à dire les n
constantes d’intégration).
La solution générale est un ensemble de fonctions
La solution générale regroupe une infinité de solutions
Constantes d’intégration : déterminées au dernier moment
La solution du problème :
détermination de toutes les constantes d’intégration
dépend des conditions du problème physique !
conditions initiales ou conditions aux limites
autant de conditions que de constantes d’intégration !
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 9
Définitions générales Solution générale
Exemple de la chute d’un corps
Chute d’un corps sans forces de frottement :
ḧ =
d2h
dt2
= −g
Solution générale : deux intégrations successives
dh
dt
= −gt + v0 /v0 ∈ R
puis
h(t) = −
1
2
gt2
+ v0t + h0 /v0,h0 ∈ R
h(t) est la solution générale = infinité de solutions
LA solution du problème dépend de v0 et h0
h
h0
0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 10
Définitions générales Solution générale
Remarque sur la solution d’un problème
Un problème physique implique :
Des phénomènes (forces, pressions, etc.) qui obéissent à des lois
Des conditions particulières (position, vitesse, température, etc.)
La mise en équation : phénomènes uniquement
Résolution d’une équa. diff. 6= la solution du problème
Equation
différentielle
Solution générale La solution
du problème
Problème physique
Loi ou principe
Grandeurs physiques
1ère étape
Outil math.
Conditions initiales
ou aux limites
2ème étape
Outil math.
Equations différentielles et physique
Pour résoudre un problème physique impliquant une équation différentielle,
il faut l’équation différentielle et les conditions (initiales ou aux limites)
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 11
Définitions générales Terme perturbateur
Le terme perturbateur
Définition
On appelle terme perturbateur p(t) de l’équation différentielle l’ensemble
des termes qui ne contiennent ni y ni aucune de ses dérivées ẏ, ÿ, · · · , y(n)
Le terme perturbateur est aussi appelé second membre
Lorsque le terme perturbateur est identiquement nul (p(t) = 0 ∀t)
alors l’équation est dite homogène. On notera l’équation (H)
Lorsque le terme perturbateur n’est pas nul, alors l’équation est dite
inhomogène. On notera l’équation (I)
Remarque importante : le terme perturbateur peut être une fonction
du temps ou bien une constante
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 12
Définitions générales Terme perturbateur
Convention
Où se trouve le terme perturbateur ?
N’importe où !
au second membre mais aussi au premier membre /
Dans ce cours : nous n’emploierons pas la dénomination “second
membre”
Notation du terme perturbateur :
il vaut −p(t) quand il est dans le même membre que y et ses dérivées
il vaut p(t) quand il est isolé dans l’autre membre (d’où son autre
nom...)
Dans ce cours... et les autres :
“équation sans second membre” ⇔ “équation homogène”
“équation avec second membre” ⇔ “équation inhomogène”
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 13
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0
ÿ − tẏ − t = 0
ẏ = 3
t2ÿ + cos(ωt) = 0
t2ÿ + y cos(ωt) = 0
u̇ +
u
RC
− E = 0
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0
ẏ = 3
t2ÿ + cos(ωt) = 0
t2ÿ + y cos(ωt) = 0
u̇ +
u
RC
− E = 0
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3
t2ÿ + cos(ωt) = 0
t2ÿ + y cos(ωt) = 0
u̇ +
u
RC
− E = 0
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3 =⇒ inhomogène, p(t) = 3
t2ÿ + cos(ωt) = 0
t2ÿ + y cos(ωt) = 0
u̇ +
u
RC
− E = 0
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3 =⇒ inhomogène, p(t) = 3
t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt)
t2ÿ + y cos(ωt) = 0
u̇ +
u
RC
− E = 0
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3 =⇒ inhomogène, p(t) = 3
t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt)
t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0
u̇ +
u
RC
− E = 0
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3 =⇒ inhomogène, p(t) = 3
t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt)
t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0
u̇ +
u
RC
− E = 0 =⇒ inhomogène, p(t) = E
dN
dt
+ λ · N = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3 =⇒ inhomogène, p(t) = 3
t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt)
t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0
u̇ +
u
RC
− E = 0 =⇒ inhomogène, p(t) = E
dN
dt
+ λ · N = 0 =⇒ homogène, p(t) = 0
ḧ +
f
m
ḣ + g = 0
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Quelques exemples physiques et moins physiques
ÿ − tẏ = 0 =⇒ homogène, p(t) = 0
ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t
ẏ = 3 =⇒ inhomogène, p(t) = 3
t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt)
t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0
u̇ +
u
RC
− E = 0 =⇒ inhomogène, p(t) = E
dN
dt
+ λ · N = 0 =⇒ homogène, p(t) = 0
ḧ +
f
m
ḣ + g = 0 =⇒ inhomogène, p(t) = −g
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
Définitions générales Terme perturbateur
Influence du terme perturbateur
x
m k
0
ẍ +
f
m
ẋ +
k
m
x = 0
x
m
k
0
x0
ẍ +
f
m
ẋ +
k
m
x = −g
x
m
k
0
x0
ẍ +
f
m
ẋ +
k
m
x =
A
m
cos(ωt + ϕ) − g
La position d’équilibre est modifiée par la pesanteur !
La position devient une fonction harmonique en présence de la
contrainte
Présence d’un terme perturbateur =⇒ modification de la solution
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 15
Définitions générales Terme perturbateur
Influence du terme perturbateur
x
m k
0
ẍ +
f
m
ẋ +
k
m
x = 0
x
m
k
0
x0
ẍ +
f
m
ẋ +
k
m
x = −g
x
m
k
0
x0
ẍ +
f
m
ẋ +
k
m
x =
A
m
cos(ωt + ϕ) − g
La position d’équilibre est modifiée par la pesanteur !
La position devient une fonction harmonique en présence de la
contrainte
Présence d’un terme perturbateur =⇒ modification de la solution
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 15
Définitions générales Terme perturbateur
Effets du terme perturbateur : un exemple
“Le terme perturbateur modifie la solution” : exemples chiffrés
ẏ = 0
solutions (solution générale) :
y = r , r ∈ R
ÿ = 0
solutions (solution générale) :
y = rt + s , r,s ∈ R
ẏ = 2
solutions (solution générale) :
y = 2t + r , r ∈ R
ÿ = 2
solutions (solution générale) :
y = t2 + rt + s , r,s ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 16
Définitions générales Terme perturbateur
Effets du terme perturbateur : un exemple
“Le terme perturbateur modifie la solution” : exemples chiffrés
ẏ = 0
solutions (solution générale) :
y = r , r ∈ R
ÿ = 0
solutions (solution générale) :
y = rt + s , r,s ∈ R
ẏ = 2
solutions (solution générale) :
y = 2t + r , r ∈ R
ÿ = 2
solutions (solution générale) :
y = t2 + rt + s , r,s ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 16
Définitions générales Terme perturbateur
Effets du terme perturbateur : un exemple
“Le terme perturbateur modifie la solution” : exemples chiffrés
ẏ = 0
solutions (solution générale) :
y = r , r ∈ R
ÿ = 0
solutions (solution générale) :
y = rt + s , r,s ∈ R
ẏ = 2
solutions (solution générale) :
y = 2t + r , r ∈ R
ÿ = 2
solutions (solution générale) :
y = t2 + rt + s , r,s ∈ R
le terme perturbateur :
modifie la solution générale
“ajoute quelque chose à la solution générale”
MAIS la solution reste une solution générale !
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 16
Définitions générales Solution particulière
Solution particulière : introduction
La solution générale de ẏ = 2 est une somme
y = 2t + r
la solution générale de ẏ = 0
une solution particulière de ẏ = 2
avec constante d’intégration nulle
La solution générale de ÿ = 2 est une somme
y = t2
+ rt + s
la solution générale de ÿ = 0
une solution particulière de ÿ = 2
avec constante d’intégration nulle
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 17
Définitions générales Solution particulière
Solution particulière : introduction
La solution générale de ẏ = 2 est une somme
y = 2t + r
la solution générale de ẏ = 0
une solution particulière de ẏ = 2
avec constante d’intégration nulle
La solution générale de ÿ = 2 est une somme
y = t2
+ rt + s
la solution générale de ÿ = 0
une solution particulière de ÿ = 2
avec constante d’intégration nulle
Nous reviendrons sur cet aspect de somme bien vite !
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 17
Définitions générales Solution particulière
La solution particulière
Définition de la solution générale : une équation différentielle
inhomogène admet une infinité de solutions
Si l’on fixe les constantes d’intégration : une solution en particulier
Chacune de ces solutions est une solution particulière
Définition
Une solution particulière d’une équation différentielle inhomogène (I) de
y en t est une fonction y(t) (c’est à dire ne contenant pas de constante
d’intégration, par opposition à la solution générale) vérifiant (I).
Dans la pratique : on choisira la solution particulière la plus concise
(avec le plus de constantes nulles)
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 18
Définitions générales Solution particulière
Conséquence
Autres définitions possibles
La solution générale d’une équation différentielle (E) est l’ensemble de
toutes les solutions particulières de (E)
Il n’y a pas plusieurs types de solutions
Une solution bien précise : une solution particulière
Le groupe entier : la solution générale
Distinction nécessaire pour comprendre une phrase du type “La
solution est constituée de la somme de la solution générale de (H) et
d’une solution particulière de (I)”
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 19
Définitions générales Solution particulière
Exemple de solutions particulières
ÿ = 2
Solution générale y = t2 + rt + s avec r,s ∈ R
Solutions particulières :
y(t) = t2
+ t + 7
y(t) = t2
+ 2t − 4
y(t) = t2
− 12t + 254
· · ·
Mais surtout : y(t) = t2 (plus concise)
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 20
Equations différentielles du premier ordre
Plan
1 Définitions générales
Équations ordinaires
Solutions de l’équation
Solution générale
Terme perturbateur
Solution particulière
2 Equations différentielles du premier ordre
Définitions
Variables séparées
Linéarité
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 21
Equations différentielles du premier ordre Définitions
Equation différentielle du premier ordre
Définition
On appelle équation différentielle de y en t du premier ordre une équation
de la forme :
F

t,y,
dy
dt

= F(t,y,ẏ) = 0
La solution générale d’une équation différentielle du premier ordre
contient ... constante(s) d’intégration(s).
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 22
Equations différentielles du premier ordre Définitions
Equation différentielle du premier ordre
Définition
On appelle équation différentielle de y en t du premier ordre une équation
de la forme :
F

t,y,
dy
dt

= F(t,y,ẏ) = 0
La solution générale d’une équation différentielle du premier ordre
contient 1 constante d’intégration.
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 22
Equations différentielles du premier ordre Variables séparées
Equation à variable séparées
En général, difficile à résoudre
Sauf si : équations à variables séparées (ou séparables)
Définition
Une équation différentielle du premier ordre s’écrivant sous la forme
ẏ =
dy
dt
= f (t) · g(y)
où f est une fonction de t uniquement, et g une fonction de y uniquement
est dite à variables séparées.
Dans ce cas : Z
dy
g(y)
=
Z
f (t) · dt
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 23
Equations différentielles du premier ordre Variables séparées
Exemple d’équation à variables séparées
Trouver la solution de :
ẏ − 3ty2
= 0
Équation différentielle
du premier ordre
du second degré
homogène
et à variables séparées :
dy
y2
= 3t · dt
Ce que l’on nous demande :
non pas une solution en particulier (il n’y a pas de condition fixée)
mais l’ensemble de toutes les solutions, la solution en général : la
solution générale =⇒ 1 constante d’intégration
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 24
Equations différentielles du premier ordre Variables séparées
Résolution
Intégrons :
Z
dy
y2
=
Z
3t · dt
On remarque que :
d
dt

−
1
y

=
dy
dt
·

1
y2

et donc
dy
y2
= d

−
1
y

On réécrit alors l’équation comme
Z
d

−
1
y

=
Z
3t · dt
Donc −
1
y
+ K1 =
3
2
t2
+ K2 avec K1,K2 ∈ R
K = K2 − K1 =⇒ −
1
y
=
3
2
t2
+ K avec K ∈ R
Solution générale :
y(t) = −
1
3
2
t2
+ K
avec K ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
Equations différentielles du premier ordre Variables séparées
Résolution
Intégrons :
Z
dy
y2
=
Z
3t · dt
On remarque que :
d
dt

−
1
y

=
dy
dt
·

1
y2

et donc
dy
y2
= d

−
1
y

On réécrit alors l’équation comme
Z
d

−
1
y

=
Z
3t · dt
Donc −
1
y
+ K1 =
3
2
t2
+ K2 avec K1,K2 ∈ R
K = K2 − K1 =⇒ −
1
y
=
3
2
t2
+ K avec K ∈ R
Solution générale :
y(t) = −
1
3
2
t2
+ K
avec K ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
Equations différentielles du premier ordre Variables séparées
Résolution
Intégrons :
Z
dy
y2
=
Z
3t · dt
On remarque que :
d
dt

−
1
y

=
dy
dt
·

1
y2

et donc
dy
y2
= d

−
1
y

On réécrit alors l’équation comme
Z
d

−
1
y

=
Z
3t · dt
Donc −
1
y
+ K1 =
3
2
t2
+ K2 avec K1,K2 ∈ R
K = K2 − K1 =⇒ −
1
y
=
3
2
t2
+ K avec K ∈ R
Solution générale :
y(t) = −
1
3
2
t2
+ K
avec K ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
Equations différentielles du premier ordre Variables séparées
Résolution
Intégrons :
Z
dy
y2
=
Z
3t · dt
On remarque que :
d
dt

−
1
y

=
dy
dt
·

1
y2

et donc
dy
y2
= d

−
1
y

On réécrit alors l’équation comme
Z
d

−
1
y

=
Z
3t · dt
Donc −
1
y
+ K1 =
3
2
t2
+ K2 avec K1,K2 ∈ R
K = K2 − K1 =⇒ −
1
y
=
3
2
t2
+ K avec K ∈ R
Solution générale :
y(t) = −
1
3
2
t2
+ K
avec K ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
Equations différentielles du premier ordre Variables séparées
Résolution
Intégrons :
Z
dy
y2
=
Z
3t · dt
On remarque que :
d
dt

−
1
y

=
dy
dt
·

1
y2

et donc
dy
y2
= d

−
1
y

On réécrit alors l’équation comme
Z
d

−
1
y

=
Z
3t · dt
Donc −
1
y
+ K1 =
3
2
t2
+ K2 avec K1,K2 ∈ R
K = K2 − K1 =⇒ −
1
y
=
3
2
t2
+ K avec K ∈ R
Solution générale :
y(t) = −
1
3
2
t2
+ K
avec K ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
Equations différentielles du premier ordre Variables séparées
Résolution
Intégrons :
Z
dy
y2
=
Z
3t · dt
On remarque que :
d
dt

−
1
y

=
dy
dt
·

1
y2

et donc
dy
y2
= d

−
1
y

On réécrit alors l’équation comme
Z
d

−
1
y

=
Z
3t · dt
Donc −
1
y
+ K1 =
3
2
t2
+ K2 avec K1,K2 ∈ R
K = K2 − K1 =⇒ −
1
y
=
3
2
t2
+ K avec K ∈ R
Solution générale :
y(t) = −
1
3
2
t2
+ K
avec K ∈ R
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
Equations différentielles du premier ordre Linéarité
Linéarité en quelques mots
Cette dernière équation est non-linéaire !
Linéarité : concept très important en physique
Nombreuses propriétés
Nombreux outils mathématiques disponibles
Cas simplifié
Dans la pratique :
Soit le système est linéaire
Soit un cherche à s’y ramener par des approximations (sin x ≈ x si x
petit)
Mais qu’est-ce que c’est ?
En quelques mots :
On dit qu’un système est linéaire si, à la somme de deux excitations,
correspond la somme des deux réponses correspondantes.
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 26
Equations différentielles du premier ordre Linéarité
Linéarité avec une image
Système linéaire
Système physique : une excitation entraîne une réponse
Système non-linéaire
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 27
Equations différentielles du premier ordre Linéarité
...et dans les équations différentielles ?
Pour regarder le système correspondant à l’équation, isolons p(t)
F(t,y,ẏ) = 0 ⇐⇒ G(t,y,ẏ) = p(t)
où G est une application qui transforme une fonction en une autre.
s
olutions de l’éq
u
a
t
i
o
n
a
u
t
r
es fonctions
application
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 28
Equations différentielles du premier ordre Linéarité
Condition de linéarité
A quelle condition une équation du premier ordre sera linéaire ?
si je peux remplacer les a · y par des a · (y1 + y2)
si je peux remplacer les b · ẏ par des b · (ẏ1 + ẏ2)
si les y et ẏ sont dans des fonctions linéaires :
pas de y × ẏ
pas de cos(y) ni de ln(y) “ni quelque autre fonction non-polynôme”
pas de y ni de ẏ “à la puissance quelque chose”
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 29
Equations différentielles du premier ordre Linéarité
Condition de linéarité
A quelle condition une équation du premier ordre sera linéaire ?
si je peux remplacer les a · y par des a · (y1 + y2)
si je peux remplacer les b · ẏ par des b · (ẏ1 + ẏ2)
si les y et ẏ sont dans des fonctions linéaires :
pas de y × ẏ
pas de cos(y) ni de ln(y) “ni quelque autre fonction non-polynôme”
pas de y ni de ẏ “à la puissance quelque chose”
Définition
Une équation différentielle du premier ordre est dite linéaire lorsque la
fonction y et sa dérivée ẏ apparaissent linéairement, c’est à dire lorsque
l’équation peut être écrite sous la forme :
a(t) · ẏ + b(t) · y = p(t)
où a(t) et b(t) sont des fonctions quelconques de t et où p(t) est un
terme perturbateur.
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 29
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est
ẏ + t · y3
= t2
est
ẏ · y = t2
est
ẏ + y · cos(t) = t · sin(t) est
ẏ + cos(y · t) = t · sin(t) est
ẏ + cos(y · t) = 0 est
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est
ẏ · y = t2
est
ẏ + y · cos(t) = t · sin(t) est
ẏ + cos(y · t) = t · sin(t) est
ẏ + cos(y · t) = 0 est
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est inhomogène et non-linéaire car de degré 3
ẏ · y = t2
est
ẏ + y · cos(t) = t · sin(t) est
ẏ + cos(y · t) = t · sin(t) est
ẏ + cos(y · t) = 0 est
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est inhomogène et non-linéaire car de degré 3
ẏ · y = t2
est inhomogène et non-linéaire à cause du produit
ẏ + y · cos(t) = t · sin(t) est
ẏ + cos(y · t) = t · sin(t) est
ẏ + cos(y · t) = 0 est
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est inhomogène et non-linéaire car de degré 3
ẏ · y = t2
est inhomogène et non-linéaire à cause du produit
ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1)
ẏ + cos(y · t) = t · sin(t) est
ẏ + cos(y · t) = 0 est
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est inhomogène et non-linéaire car de degré 3
ẏ · y = t2
est inhomogène et non-linéaire à cause du produit
ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1)
ẏ + cos(y · t) = t · sin(t) est inhomogène et non-linéaire car y est
dans un cos
ẏ + cos(y · t) = 0 est
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est inhomogène et non-linéaire car de degré 3
ẏ · y = t2
est inhomogène et non-linéaire à cause du produit
ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1)
ẏ + cos(y · t) = t · sin(t) est inhomogène et non-linéaire car y est
dans un cos
ẏ + cos(y · t) = 0 est homogène et non-linéaire toujours à cause du
cos
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
Equations différentielles du premier ordre Linéarité
Quelques exemples
ẏ + t3
· y = t2
est inhomogène et linéaire (degré 1)
ẏ + t · y3
= t2
est inhomogène et non-linéaire car de degré 3
ẏ · y = t2
est inhomogène et non-linéaire à cause du produit
ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1)
ẏ + cos(y · t) = t · sin(t) est inhomogène et non-linéaire car y est
dans un cos
ẏ + cos(y · t) = 0 est homogène et non-linéaire toujours à cause du
cos
ln(t) · et2
· ẏ +
√
t + 2 · y = cos(t2
) + 9 est inhomogène et linéaire
(degré 1)
IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30

Contenu connexe

Tendances

Correction td chariot chargement de sable
Correction td chariot chargement de sableCorrection td chariot chargement de sable
Correction td chariot chargement de sablesarah Benmerzouk
 
Matlab Travaux Pratique
Matlab Travaux Pratique Matlab Travaux Pratique
Matlab Travaux Pratique Smee Kaem Chann
 
Cours8 Introduction à la représentation d'état
Cours8 Introduction à la représentation d'étatCours8 Introduction à la représentation d'état
Cours8 Introduction à la représentation d'étatsarah Benmerzouk
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...tawfik-masrour
 
Cours9 ch2 Réponse temporelle: solution de l'équation d'état
Cours9 ch2 Réponse temporelle: solution de l'équation d'étatCours9 ch2 Réponse temporelle: solution de l'équation d'état
Cours9 ch2 Réponse temporelle: solution de l'équation d'étatsarah Benmerzouk
 
Cours electronique puissance
Cours electronique puissanceCours electronique puissance
Cours electronique puissanceJoseph Elhou
 
Corrigé de l’examen de passage à la 2 ème année 2007 TS ESA Théorique
Corrigé de l’examen de passage à la 2 ème année 2007 TS ESA ThéoriqueCorrigé de l’examen de passage à la 2 ème année 2007 TS ESA Théorique
Corrigé de l’examen de passage à la 2 ème année 2007 TS ESA ThéoriqueRAMZI EL IDRISSI
 
Chapitre 2 electrotech mli
Chapitre 2 electrotech mliChapitre 2 electrotech mli
Chapitre 2 electrotech mliOUAJJI Hassan
 
Exercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COM
Exercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COMExercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COM
Exercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COMjamal yasser
 
Cours7 Correction des systèmes linéaires continus asservis (2)
Cours7 Correction des systèmes linéaires continus asservis (2)Cours7 Correction des systèmes linéaires continus asservis (2)
Cours7 Correction des systèmes linéaires continus asservis (2)sarah Benmerzouk
 
Formulaire
Formulaire Formulaire
Formulaire toumed
 
Cours maths s1.by m.e.goultine
Cours maths s1.by m.e.goultineCours maths s1.by m.e.goultine
Cours maths s1.by m.e.goultineAbdel Hakim
 

Tendances (20)

Correction td chariot chargement de sable
Correction td chariot chargement de sableCorrection td chariot chargement de sable
Correction td chariot chargement de sable
 
Le triphase
Le triphaseLe triphase
Le triphase
 
Systemes triphases
Systemes triphasesSystemes triphases
Systemes triphases
 
Redresseurs
RedresseursRedresseurs
Redresseurs
 
Matlab Travaux Pratique
Matlab Travaux Pratique Matlab Travaux Pratique
Matlab Travaux Pratique
 
Cours8 Introduction à la représentation d'état
Cours8 Introduction à la représentation d'étatCours8 Introduction à la représentation d'état
Cours8 Introduction à la représentation d'état
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
 
Cours9 ch2 Réponse temporelle: solution de l'équation d'état
Cours9 ch2 Réponse temporelle: solution de l'équation d'étatCours9 ch2 Réponse temporelle: solution de l'équation d'état
Cours9 ch2 Réponse temporelle: solution de l'équation d'état
 
Commande pwm moteurs
Commande pwm moteursCommande pwm moteurs
Commande pwm moteurs
 
Cours electronique puissance
Cours electronique puissanceCours electronique puissance
Cours electronique puissance
 
Td triphasé
Td triphaséTd triphasé
Td triphasé
 
Corrigé de l’examen de passage à la 2 ème année 2007 TS ESA Théorique
Corrigé de l’examen de passage à la 2 ème année 2007 TS ESA ThéoriqueCorrigé de l’examen de passage à la 2 ème année 2007 TS ESA Théorique
Corrigé de l’examen de passage à la 2 ème année 2007 TS ESA Théorique
 
Chapitre 2 electrotech mli
Chapitre 2 electrotech mliChapitre 2 electrotech mli
Chapitre 2 electrotech mli
 
Mcc geii 2
Mcc geii 2Mcc geii 2
Mcc geii 2
 
Exercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COM
Exercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COMExercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COM
Exercices moteur asynchrone WWW.OFPPT-INFO.BLOGSPOT.COM
 
Fisica I
Fisica IFisica I
Fisica I
 
13749324.ppt
13749324.ppt13749324.ppt
13749324.ppt
 
Cours7 Correction des systèmes linéaires continus asservis (2)
Cours7 Correction des systèmes linéaires continus asservis (2)Cours7 Correction des systèmes linéaires continus asservis (2)
Cours7 Correction des systèmes linéaires continus asservis (2)
 
Formulaire
Formulaire Formulaire
Formulaire
 
Cours maths s1.by m.e.goultine
Cours maths s1.by m.e.goultineCours maths s1.by m.e.goultine
Cours maths s1.by m.e.goultine
 

En vedette

Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5Christophe Palermo
 
Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Christophe Palermo
 
Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4Christophe Palermo
 
Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)Christophe Palermo
 

En vedette (6)

Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5Equations différentielles, DUT MP, CM 5
Equations différentielles, DUT MP, CM 5
 
Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3
 
Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4Equations différentielles, DUT MP, CM 4
Equations différentielles, DUT MP, CM 4
 
Securite electrique
Securite electriqueSecurite electrique
Securite electrique
 
Le moteur asynchrone
Le moteur asynchroneLe moteur asynchrone
Le moteur asynchrone
 
Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)Electricité : sécurité électrique (CM1)
Electricité : sécurité électrique (CM1)
 

Similaire à Equations différentielles, DUT MP, CM 2

Calcul scientifique IVP
Calcul scientifique IVPCalcul scientifique IVP
Calcul scientifique IVPMouhamed Ndao
 
L'entropie existe et est utile !
L'entropie existe et est utile !L'entropie existe et est utile !
L'entropie existe et est utile !Maurice Maeck
 
Discrimination et régression pour des dérivées : un résultat de consistance p...
Discrimination et régression pour des dérivées : un résultat de consistance p...Discrimination et régression pour des dérivées : un résultat de consistance p...
Discrimination et régression pour des dérivées : un résultat de consistance p...tuxette
 
Cours_3_0910_2.pdf
Cours_3_0910_2.pdfCours_3_0910_2.pdf
Cours_3_0910_2.pdfSongSonfack
 
Thermo dynamique l3 v2
Thermo dynamique  l3 v2Thermo dynamique  l3 v2
Thermo dynamique l3 v2RachidFade
 
traitement de signal cours
traitement de signal cours traitement de signal cours
traitement de signal cours sarah Benmerzouk
 
Partie i vibrations et oscillateurs
Partie i   vibrations et oscillateursPartie i   vibrations et oscillateurs
Partie i vibrations et oscillateursOumaimaBenSaid
 
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmcT. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmctawfik-masrour
 
Econométrie appliquée--stationarité.pptx
Econométrie appliquée--stationarité.pptxEconométrie appliquée--stationarité.pptx
Econométrie appliquée--stationarité.pptxwidedbenmoussa2021
 
Le formulaire bcpst 1re et 2e années
Le formulaire bcpst 1re et 2e annéesLe formulaire bcpst 1re et 2e années
Le formulaire bcpst 1re et 2e annéeszahir66
 

Similaire à Equations différentielles, DUT MP, CM 2 (20)

Td 1 edo
Td 1 edoTd 1 edo
Td 1 edo
 
Calcul scientifique IVP
Calcul scientifique IVPCalcul scientifique IVP
Calcul scientifique IVP
 
Chapitre1.pdf
Chapitre1.pdfChapitre1.pdf
Chapitre1.pdf
 
L'entropie existe et est utile !
L'entropie existe et est utile !L'entropie existe et est utile !
L'entropie existe et est utile !
 
Discrimination et régression pour des dérivées : un résultat de consistance p...
Discrimination et régression pour des dérivées : un résultat de consistance p...Discrimination et régression pour des dérivées : un résultat de consistance p...
Discrimination et régression pour des dérivées : un résultat de consistance p...
 
Cours_3_0910_2.pdf
Cours_3_0910_2.pdfCours_3_0910_2.pdf
Cours_3_0910_2.pdf
 
Cours_3_0910.pdf
Cours_3_0910.pdfCours_3_0910.pdf
Cours_3_0910.pdf
 
Thermo dynamique l3 v2
Thermo dynamique  l3 v2Thermo dynamique  l3 v2
Thermo dynamique l3 v2
 
Sol td 1 edo
Sol td 1 edoSol td 1 edo
Sol td 1 edo
 
Sol td 1 edo
Sol td 1 edoSol td 1 edo
Sol td 1 edo
 
2015 bio4221rk
2015 bio4221rk2015 bio4221rk
2015 bio4221rk
 
Slides ensae-2016-3
Slides ensae-2016-3Slides ensae-2016-3
Slides ensae-2016-3
 
Slides ensae 4
Slides ensae 4Slides ensae 4
Slides ensae 4
 
Slides ensae 3
Slides ensae 3Slides ensae 3
Slides ensae 3
 
traitement de signal cours
traitement de signal cours traitement de signal cours
traitement de signal cours
 
Partie i vibrations et oscillateurs
Partie i   vibrations et oscillateursPartie i   vibrations et oscillateurs
Partie i vibrations et oscillateurs
 
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmcT. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
T. Masrour - cours dynamique des systèmes - vibrations -chapitre3-mmc
 
notes_HF.pdf
notes_HF.pdfnotes_HF.pdf
notes_HF.pdf
 
Econométrie appliquée--stationarité.pptx
Econométrie appliquée--stationarité.pptxEconométrie appliquée--stationarité.pptx
Econométrie appliquée--stationarité.pptx
 
Le formulaire bcpst 1re et 2e années
Le formulaire bcpst 1re et 2e annéesLe formulaire bcpst 1re et 2e années
Le formulaire bcpst 1re et 2e années
 

Dernier

Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetJeanYvesMoine
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film françaisTxaruka
 
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKRAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKNassimaMdh
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxikospam0
 
L'expression du but : fiche et exercices niveau C1 FLE
L'expression du but : fiche et exercices  niveau C1 FLEL'expression du but : fiche et exercices  niveau C1 FLE
L'expression du but : fiche et exercices niveau C1 FLElebaobabbleu
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.Txaruka
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...Nguyen Thanh Tu Collection
 
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxIntégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxabdououanighd
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaireTxaruka
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxrajaakiass01
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfachrafbrahimi1
 
Chapitre 2 du cours de JavaScript. Bon Cours
Chapitre 2 du cours de JavaScript. Bon CoursChapitre 2 du cours de JavaScript. Bon Cours
Chapitre 2 du cours de JavaScript. Bon Coursebenezerngoran
 
les_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkles_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkRefRama
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxRayane619450
 
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...Universidad Complutense de Madrid
 
Cours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfCours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfssuserc72852
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfAmgdoulHatim
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Technologia Formation
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxhamzagame
 
La mondialisation avantages et inconvénients
La mondialisation avantages et inconvénientsLa mondialisation avantages et inconvénients
La mondialisation avantages et inconvénientsJaouadMhirach
 

Dernier (20)

Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film français
 
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKRAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
 
L'expression du but : fiche et exercices niveau C1 FLE
L'expression du but : fiche et exercices  niveau C1 FLEL'expression du but : fiche et exercices  niveau C1 FLE
L'expression du but : fiche et exercices niveau C1 FLE
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
 
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxIntégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaire
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptx
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdf
 
Chapitre 2 du cours de JavaScript. Bon Cours
Chapitre 2 du cours de JavaScript. Bon CoursChapitre 2 du cours de JavaScript. Bon Cours
Chapitre 2 du cours de JavaScript. Bon Cours
 
les_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkles_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhk
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptx
 
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
 
Cours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdfCours Préparation à l’ISO 27001 version 2022.pdf
Cours Préparation à l’ISO 27001 version 2022.pdf
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptx
 
La mondialisation avantages et inconvénients
La mondialisation avantages et inconvénientsLa mondialisation avantages et inconvénients
La mondialisation avantages et inconvénients
 

Equations différentielles, DUT MP, CM 2

  • 1. Les équations différentielles Equations du premier ordre et définitions Christophe Palermo IUT de Montpellier Département Mesures Physiques & Institut d’Electronique du Sud Université Montpellier 2 Web : http://palermo.wordpress.com e-mail : cpalermo@um2.fr Cours du 25 novembre 2010 MONTPELLIER
  • 2. Plan 1 Définitions générales Équations ordinaires Solutions de l’équation Solution générale Terme perturbateur Solution particulière 2 Equations différentielles du premier ordre Définitions Variables séparées Linéarité IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 2
  • 3. Définitions générales Plan 1 Définitions générales Équations ordinaires Solutions de l’équation Solution générale Terme perturbateur Solution particulière 2 Equations différentielles du premier ordre Définitions Variables séparées Linéarité IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 3
  • 4. Définitions générales Équations ordinaires Les équations ordinaires Équation différentielle d’ordre n On appelle équation différentielle (ordinaire) d’ordre n (n ∈ N) de y en t, toute relation de la forme F t,y, dy dt ,..., dny dtn = 0 = F t,y,ẏ,...,y(n) (1) entre la variable t, et tout ou partie de la fonction y et de ses dérivées successives jusqu’à l’ordre n. L’ordre de l’équation différentielle est l’ordre de la plus haute dérivée qui apparaît. Le degré de l’équation différentielle est le degré de la plus grande puissance de y ou de ses dérivées. IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 4
  • 5. Définitions générales Équations ordinaires Exemple Soit : ÿ + 3ẏ4 + ty − t6 = 0 Ordre : Degré : Question subsidiaire : y’a-t-il un second membre ? IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 5
  • 6. Définitions générales Équations ordinaires Exemple Soit : ÿ + 3ẏ4 + ty − t6 = 0 Ordre : 2 Degré : 4 Question subsidiaire : y’a-t-il un second membre ? t6 Attention t6 est une perturbation ! Donc t6est un second membre qu’il convient d’appeler plutôt terme perturbateur ! IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 5
  • 7. Définitions générales Solutions de l’équation Solutions Solution de l’équation différentielle On appelle solution ou intégrale d’une équation différentielle F t,y, dy dt ,..., dny dtn = 0 = F t,y,y0 ,...,y(n) sur un intervalle I toute fonction y(t) qui vérifie cette équation sur I. La courbe représentative des solutions est appelée courbe intégrale Une solution d’une équation différentielle d’ordre n comporte n paramètres libres, qui sont des constantes d’intégration Donc, quel que soit l’ordre d’une équation différentielle, elle admet une infinité de solutions IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 6
  • 8. Définitions générales Solutions de l’équation Exemples ẏ = 0 admet comme solutions : 1, 2, 3, etc., {y(t) = r/r ∈ R} une infinité de solutions ẏ = t admet comme solutions : y(t) = t2 2 + r/r ∈ R une infinité de solutions ÿ = t admet comme solutions : y(t) = t3 6 + rt + s/ r,s ∈ R une infinité de solutions Vrai avec ou sans terme perturbateur IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 7
  • 9. Définitions générales Solutions de l’équation Vocabulaire de la résolution Résolution d’une équation différentielle Résoudre une équation différentielle, c’est trouver l’ensemble de toutes ses solutions Il n’y a que deux types de fonctions Celles qui sont des solutions de l’équation différentielle Celles qui ne sont pas solutions de l’équation différentielle Pourtant nous distinguerons solution générale et solution particulière Nous verrons que l’on parle de la même chose ! C’est juste une question de dénomination Parmi l’infinité des solutions se trouve LA solution du problème physique IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 8
  • 10. Définitions générales Solution générale La solution générale Solution générale On appelle solution générale d’une équation différentielle d’ordre n l’expression de la solution contenant n paramètres libres (c’est à dire les n constantes d’intégration). La solution générale est un ensemble de fonctions La solution générale regroupe une infinité de solutions Constantes d’intégration : déterminées au dernier moment La solution du problème : détermination de toutes les constantes d’intégration dépend des conditions du problème physique ! conditions initiales ou conditions aux limites autant de conditions que de constantes d’intégration ! IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 9
  • 11. Définitions générales Solution générale Exemple de la chute d’un corps Chute d’un corps sans forces de frottement : ḧ = d2h dt2 = −g Solution générale : deux intégrations successives dh dt = −gt + v0 /v0 ∈ R puis h(t) = − 1 2 gt2 + v0t + h0 /v0,h0 ∈ R h(t) est la solution générale = infinité de solutions LA solution du problème dépend de v0 et h0 h h0 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 10
  • 12. Définitions générales Solution générale Remarque sur la solution d’un problème Un problème physique implique : Des phénomènes (forces, pressions, etc.) qui obéissent à des lois Des conditions particulières (position, vitesse, température, etc.) La mise en équation : phénomènes uniquement Résolution d’une équa. diff. 6= la solution du problème Equation différentielle Solution générale La solution du problème Problème physique Loi ou principe Grandeurs physiques 1ère étape Outil math. Conditions initiales ou aux limites 2ème étape Outil math. Equations différentielles et physique Pour résoudre un problème physique impliquant une équation différentielle, il faut l’équation différentielle et les conditions (initiales ou aux limites) IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 11
  • 13. Définitions générales Terme perturbateur Le terme perturbateur Définition On appelle terme perturbateur p(t) de l’équation différentielle l’ensemble des termes qui ne contiennent ni y ni aucune de ses dérivées ẏ, ÿ, · · · , y(n) Le terme perturbateur est aussi appelé second membre Lorsque le terme perturbateur est identiquement nul (p(t) = 0 ∀t) alors l’équation est dite homogène. On notera l’équation (H) Lorsque le terme perturbateur n’est pas nul, alors l’équation est dite inhomogène. On notera l’équation (I) Remarque importante : le terme perturbateur peut être une fonction du temps ou bien une constante IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 12
  • 14. Définitions générales Terme perturbateur Convention Où se trouve le terme perturbateur ? N’importe où ! au second membre mais aussi au premier membre / Dans ce cours : nous n’emploierons pas la dénomination “second membre” Notation du terme perturbateur : il vaut −p(t) quand il est dans le même membre que y et ses dérivées il vaut p(t) quand il est isolé dans l’autre membre (d’où son autre nom...) Dans ce cours... et les autres : “équation sans second membre” ⇔ “équation homogène” “équation avec second membre” ⇔ “équation inhomogène” IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 13
  • 15. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 ÿ − tẏ − t = 0 ẏ = 3 t2ÿ + cos(ωt) = 0 t2ÿ + y cos(ωt) = 0 u̇ + u RC − E = 0 dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 16. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 ẏ = 3 t2ÿ + cos(ωt) = 0 t2ÿ + y cos(ωt) = 0 u̇ + u RC − E = 0 dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 17. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 t2ÿ + cos(ωt) = 0 t2ÿ + y cos(ωt) = 0 u̇ + u RC − E = 0 dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 18. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 =⇒ inhomogène, p(t) = 3 t2ÿ + cos(ωt) = 0 t2ÿ + y cos(ωt) = 0 u̇ + u RC − E = 0 dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 19. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 =⇒ inhomogène, p(t) = 3 t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt) t2ÿ + y cos(ωt) = 0 u̇ + u RC − E = 0 dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 20. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 =⇒ inhomogène, p(t) = 3 t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt) t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0 u̇ + u RC − E = 0 dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 21. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 =⇒ inhomogène, p(t) = 3 t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt) t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0 u̇ + u RC − E = 0 =⇒ inhomogène, p(t) = E dN dt + λ · N = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 22. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 =⇒ inhomogène, p(t) = 3 t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt) t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0 u̇ + u RC − E = 0 =⇒ inhomogène, p(t) = E dN dt + λ · N = 0 =⇒ homogène, p(t) = 0 ḧ + f m ḣ + g = 0 IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 23. Définitions générales Terme perturbateur Quelques exemples physiques et moins physiques ÿ − tẏ = 0 =⇒ homogène, p(t) = 0 ÿ − tẏ − t = 0 =⇒ inhomogène, p(t) = t ẏ = 3 =⇒ inhomogène, p(t) = 3 t2ÿ + cos(ωt) = 0 =⇒ inhomogène, p(t) = − cos(ωt) t2ÿ + y cos(ωt) = 0 =⇒ homogène, p(t) = 0 u̇ + u RC − E = 0 =⇒ inhomogène, p(t) = E dN dt + λ · N = 0 =⇒ homogène, p(t) = 0 ḧ + f m ḣ + g = 0 =⇒ inhomogène, p(t) = −g IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 14
  • 24. Définitions générales Terme perturbateur Influence du terme perturbateur x m k 0 ẍ + f m ẋ + k m x = 0 x m k 0 x0 ẍ + f m ẋ + k m x = −g x m k 0 x0 ẍ + f m ẋ + k m x = A m cos(ωt + ϕ) − g La position d’équilibre est modifiée par la pesanteur ! La position devient une fonction harmonique en présence de la contrainte Présence d’un terme perturbateur =⇒ modification de la solution IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 15
  • 25. Définitions générales Terme perturbateur Influence du terme perturbateur x m k 0 ẍ + f m ẋ + k m x = 0 x m k 0 x0 ẍ + f m ẋ + k m x = −g x m k 0 x0 ẍ + f m ẋ + k m x = A m cos(ωt + ϕ) − g La position d’équilibre est modifiée par la pesanteur ! La position devient une fonction harmonique en présence de la contrainte Présence d’un terme perturbateur =⇒ modification de la solution IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 15
  • 26. Définitions générales Terme perturbateur Effets du terme perturbateur : un exemple “Le terme perturbateur modifie la solution” : exemples chiffrés ẏ = 0 solutions (solution générale) : y = r , r ∈ R ÿ = 0 solutions (solution générale) : y = rt + s , r,s ∈ R ẏ = 2 solutions (solution générale) : y = 2t + r , r ∈ R ÿ = 2 solutions (solution générale) : y = t2 + rt + s , r,s ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 16
  • 27. Définitions générales Terme perturbateur Effets du terme perturbateur : un exemple “Le terme perturbateur modifie la solution” : exemples chiffrés ẏ = 0 solutions (solution générale) : y = r , r ∈ R ÿ = 0 solutions (solution générale) : y = rt + s , r,s ∈ R ẏ = 2 solutions (solution générale) : y = 2t + r , r ∈ R ÿ = 2 solutions (solution générale) : y = t2 + rt + s , r,s ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 16
  • 28. Définitions générales Terme perturbateur Effets du terme perturbateur : un exemple “Le terme perturbateur modifie la solution” : exemples chiffrés ẏ = 0 solutions (solution générale) : y = r , r ∈ R ÿ = 0 solutions (solution générale) : y = rt + s , r,s ∈ R ẏ = 2 solutions (solution générale) : y = 2t + r , r ∈ R ÿ = 2 solutions (solution générale) : y = t2 + rt + s , r,s ∈ R le terme perturbateur : modifie la solution générale “ajoute quelque chose à la solution générale” MAIS la solution reste une solution générale ! IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 16
  • 29. Définitions générales Solution particulière Solution particulière : introduction La solution générale de ẏ = 2 est une somme y = 2t + r la solution générale de ẏ = 0 une solution particulière de ẏ = 2 avec constante d’intégration nulle La solution générale de ÿ = 2 est une somme y = t2 + rt + s la solution générale de ÿ = 0 une solution particulière de ÿ = 2 avec constante d’intégration nulle IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 17
  • 30. Définitions générales Solution particulière Solution particulière : introduction La solution générale de ẏ = 2 est une somme y = 2t + r la solution générale de ẏ = 0 une solution particulière de ẏ = 2 avec constante d’intégration nulle La solution générale de ÿ = 2 est une somme y = t2 + rt + s la solution générale de ÿ = 0 une solution particulière de ÿ = 2 avec constante d’intégration nulle Nous reviendrons sur cet aspect de somme bien vite ! IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 17
  • 31. Définitions générales Solution particulière La solution particulière Définition de la solution générale : une équation différentielle inhomogène admet une infinité de solutions Si l’on fixe les constantes d’intégration : une solution en particulier Chacune de ces solutions est une solution particulière Définition Une solution particulière d’une équation différentielle inhomogène (I) de y en t est une fonction y(t) (c’est à dire ne contenant pas de constante d’intégration, par opposition à la solution générale) vérifiant (I). Dans la pratique : on choisira la solution particulière la plus concise (avec le plus de constantes nulles) IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 18
  • 32. Définitions générales Solution particulière Conséquence Autres définitions possibles La solution générale d’une équation différentielle (E) est l’ensemble de toutes les solutions particulières de (E) Il n’y a pas plusieurs types de solutions Une solution bien précise : une solution particulière Le groupe entier : la solution générale Distinction nécessaire pour comprendre une phrase du type “La solution est constituée de la somme de la solution générale de (H) et d’une solution particulière de (I)” IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 19
  • 33. Définitions générales Solution particulière Exemple de solutions particulières ÿ = 2 Solution générale y = t2 + rt + s avec r,s ∈ R Solutions particulières : y(t) = t2 + t + 7 y(t) = t2 + 2t − 4 y(t) = t2 − 12t + 254 · · · Mais surtout : y(t) = t2 (plus concise) IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 20
  • 34. Equations différentielles du premier ordre Plan 1 Définitions générales Équations ordinaires Solutions de l’équation Solution générale Terme perturbateur Solution particulière 2 Equations différentielles du premier ordre Définitions Variables séparées Linéarité IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 21
  • 35. Equations différentielles du premier ordre Définitions Equation différentielle du premier ordre Définition On appelle équation différentielle de y en t du premier ordre une équation de la forme : F t,y, dy dt = F(t,y,ẏ) = 0 La solution générale d’une équation différentielle du premier ordre contient ... constante(s) d’intégration(s). IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 22
  • 36. Equations différentielles du premier ordre Définitions Equation différentielle du premier ordre Définition On appelle équation différentielle de y en t du premier ordre une équation de la forme : F t,y, dy dt = F(t,y,ẏ) = 0 La solution générale d’une équation différentielle du premier ordre contient 1 constante d’intégration. IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 22
  • 37. Equations différentielles du premier ordre Variables séparées Equation à variable séparées En général, difficile à résoudre Sauf si : équations à variables séparées (ou séparables) Définition Une équation différentielle du premier ordre s’écrivant sous la forme ẏ = dy dt = f (t) · g(y) où f est une fonction de t uniquement, et g une fonction de y uniquement est dite à variables séparées. Dans ce cas : Z dy g(y) = Z f (t) · dt IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 23
  • 38. Equations différentielles du premier ordre Variables séparées Exemple d’équation à variables séparées Trouver la solution de : ẏ − 3ty2 = 0 Équation différentielle du premier ordre du second degré homogène et à variables séparées : dy y2 = 3t · dt Ce que l’on nous demande : non pas une solution en particulier (il n’y a pas de condition fixée) mais l’ensemble de toutes les solutions, la solution en général : la solution générale =⇒ 1 constante d’intégration IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 24
  • 39. Equations différentielles du premier ordre Variables séparées Résolution Intégrons : Z dy y2 = Z 3t · dt On remarque que : d dt − 1 y = dy dt · 1 y2 et donc dy y2 = d − 1 y On réécrit alors l’équation comme Z d − 1 y = Z 3t · dt Donc − 1 y + K1 = 3 2 t2 + K2 avec K1,K2 ∈ R K = K2 − K1 =⇒ − 1 y = 3 2 t2 + K avec K ∈ R Solution générale : y(t) = − 1 3 2 t2 + K avec K ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
  • 40. Equations différentielles du premier ordre Variables séparées Résolution Intégrons : Z dy y2 = Z 3t · dt On remarque que : d dt − 1 y = dy dt · 1 y2 et donc dy y2 = d − 1 y On réécrit alors l’équation comme Z d − 1 y = Z 3t · dt Donc − 1 y + K1 = 3 2 t2 + K2 avec K1,K2 ∈ R K = K2 − K1 =⇒ − 1 y = 3 2 t2 + K avec K ∈ R Solution générale : y(t) = − 1 3 2 t2 + K avec K ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
  • 41. Equations différentielles du premier ordre Variables séparées Résolution Intégrons : Z dy y2 = Z 3t · dt On remarque que : d dt − 1 y = dy dt · 1 y2 et donc dy y2 = d − 1 y On réécrit alors l’équation comme Z d − 1 y = Z 3t · dt Donc − 1 y + K1 = 3 2 t2 + K2 avec K1,K2 ∈ R K = K2 − K1 =⇒ − 1 y = 3 2 t2 + K avec K ∈ R Solution générale : y(t) = − 1 3 2 t2 + K avec K ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
  • 42. Equations différentielles du premier ordre Variables séparées Résolution Intégrons : Z dy y2 = Z 3t · dt On remarque que : d dt − 1 y = dy dt · 1 y2 et donc dy y2 = d − 1 y On réécrit alors l’équation comme Z d − 1 y = Z 3t · dt Donc − 1 y + K1 = 3 2 t2 + K2 avec K1,K2 ∈ R K = K2 − K1 =⇒ − 1 y = 3 2 t2 + K avec K ∈ R Solution générale : y(t) = − 1 3 2 t2 + K avec K ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
  • 43. Equations différentielles du premier ordre Variables séparées Résolution Intégrons : Z dy y2 = Z 3t · dt On remarque que : d dt − 1 y = dy dt · 1 y2 et donc dy y2 = d − 1 y On réécrit alors l’équation comme Z d − 1 y = Z 3t · dt Donc − 1 y + K1 = 3 2 t2 + K2 avec K1,K2 ∈ R K = K2 − K1 =⇒ − 1 y = 3 2 t2 + K avec K ∈ R Solution générale : y(t) = − 1 3 2 t2 + K avec K ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
  • 44. Equations différentielles du premier ordre Variables séparées Résolution Intégrons : Z dy y2 = Z 3t · dt On remarque que : d dt − 1 y = dy dt · 1 y2 et donc dy y2 = d − 1 y On réécrit alors l’équation comme Z d − 1 y = Z 3t · dt Donc − 1 y + K1 = 3 2 t2 + K2 avec K1,K2 ∈ R K = K2 − K1 =⇒ − 1 y = 3 2 t2 + K avec K ∈ R Solution générale : y(t) = − 1 3 2 t2 + K avec K ∈ R IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 25
  • 45. Equations différentielles du premier ordre Linéarité Linéarité en quelques mots Cette dernière équation est non-linéaire ! Linéarité : concept très important en physique Nombreuses propriétés Nombreux outils mathématiques disponibles Cas simplifié Dans la pratique : Soit le système est linéaire Soit un cherche à s’y ramener par des approximations (sin x ≈ x si x petit) Mais qu’est-ce que c’est ? En quelques mots : On dit qu’un système est linéaire si, à la somme de deux excitations, correspond la somme des deux réponses correspondantes. IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 26
  • 46. Equations différentielles du premier ordre Linéarité Linéarité avec une image Système linéaire Système physique : une excitation entraîne une réponse Système non-linéaire IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 27
  • 47. Equations différentielles du premier ordre Linéarité ...et dans les équations différentielles ? Pour regarder le système correspondant à l’équation, isolons p(t) F(t,y,ẏ) = 0 ⇐⇒ G(t,y,ẏ) = p(t) où G est une application qui transforme une fonction en une autre. s olutions de l’éq u a t i o n a u t r es fonctions application IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 28
  • 48. Equations différentielles du premier ordre Linéarité Condition de linéarité A quelle condition une équation du premier ordre sera linéaire ? si je peux remplacer les a · y par des a · (y1 + y2) si je peux remplacer les b · ẏ par des b · (ẏ1 + ẏ2) si les y et ẏ sont dans des fonctions linéaires : pas de y × ẏ pas de cos(y) ni de ln(y) “ni quelque autre fonction non-polynôme” pas de y ni de ẏ “à la puissance quelque chose” IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 29
  • 49. Equations différentielles du premier ordre Linéarité Condition de linéarité A quelle condition une équation du premier ordre sera linéaire ? si je peux remplacer les a · y par des a · (y1 + y2) si je peux remplacer les b · ẏ par des b · (ẏ1 + ẏ2) si les y et ẏ sont dans des fonctions linéaires : pas de y × ẏ pas de cos(y) ni de ln(y) “ni quelque autre fonction non-polynôme” pas de y ni de ẏ “à la puissance quelque chose” Définition Une équation différentielle du premier ordre est dite linéaire lorsque la fonction y et sa dérivée ẏ apparaissent linéairement, c’est à dire lorsque l’équation peut être écrite sous la forme : a(t) · ẏ + b(t) · y = p(t) où a(t) et b(t) sont des fonctions quelconques de t et où p(t) est un terme perturbateur. IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 29
  • 50. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est ẏ + t · y3 = t2 est ẏ · y = t2 est ẏ + y · cos(t) = t · sin(t) est ẏ + cos(y · t) = t · sin(t) est ẏ + cos(y · t) = 0 est ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 51. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est ẏ · y = t2 est ẏ + y · cos(t) = t · sin(t) est ẏ + cos(y · t) = t · sin(t) est ẏ + cos(y · t) = 0 est ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 52. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est inhomogène et non-linéaire car de degré 3 ẏ · y = t2 est ẏ + y · cos(t) = t · sin(t) est ẏ + cos(y · t) = t · sin(t) est ẏ + cos(y · t) = 0 est ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 53. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est inhomogène et non-linéaire car de degré 3 ẏ · y = t2 est inhomogène et non-linéaire à cause du produit ẏ + y · cos(t) = t · sin(t) est ẏ + cos(y · t) = t · sin(t) est ẏ + cos(y · t) = 0 est ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 54. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est inhomogène et non-linéaire car de degré 3 ẏ · y = t2 est inhomogène et non-linéaire à cause du produit ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1) ẏ + cos(y · t) = t · sin(t) est ẏ + cos(y · t) = 0 est ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 55. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est inhomogène et non-linéaire car de degré 3 ẏ · y = t2 est inhomogène et non-linéaire à cause du produit ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1) ẏ + cos(y · t) = t · sin(t) est inhomogène et non-linéaire car y est dans un cos ẏ + cos(y · t) = 0 est ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 56. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est inhomogène et non-linéaire car de degré 3 ẏ · y = t2 est inhomogène et non-linéaire à cause du produit ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1) ẏ + cos(y · t) = t · sin(t) est inhomogène et non-linéaire car y est dans un cos ẏ + cos(y · t) = 0 est homogène et non-linéaire toujours à cause du cos ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30
  • 57. Equations différentielles du premier ordre Linéarité Quelques exemples ẏ + t3 · y = t2 est inhomogène et linéaire (degré 1) ẏ + t · y3 = t2 est inhomogène et non-linéaire car de degré 3 ẏ · y = t2 est inhomogène et non-linéaire à cause du produit ẏ + y · cos(t) = t · sin(t) est inhomogène et linéaire (degré 1) ẏ + cos(y · t) = t · sin(t) est inhomogène et non-linéaire car y est dans un cos ẏ + cos(y · t) = 0 est homogène et non-linéaire toujours à cause du cos ln(t) · et2 · ẏ + √ t + 2 · y = cos(t2 ) + 9 est inhomogène et linéaire (degré 1) IUT de Montpellier (Mesures Physiques) Les équations différentielles Nov. 2010 30