SlideShare une entreprise Scribd logo
1  sur  3
Télécharger pour lire hors ligne
1
LIMITES
Soient P et Q deux fonctions polynôme de degré n et m et du monôme de plus haut degré anxn et bnxm
respectivement alors
=
+∞→
)x(Plim
x
n
n
x
xalim
+∞→
; =
−∞→
)x(Plim
x
n
n
x
xalim
−∞→
=
+∞→ )x(Q
)x(P
lim
x m
m
n
n
x xb
xa
lim
+∞→
; =
−∞→ )x(Q
)x(P
lim
x m
m
n
n
x xb
xa
lim
−∞→
Exemple :
1x5x
1xx2x2
lim 2
43
x −+
−+−
−∞→
= 2
4
x x
x2
lim
−
−∞→
= 2
x
x2lim −
−∞→
= −∞
Limites trigonométries
1
x
)xsin(
lim
0x
=
→
; 1
x
)xtan(
lim
0x
=
→
;
2
1
x
)xcos(1
lim 20x
=
−
→
; 0
x
)xcos(1
lim
0x
=
−
→
a
x
)axsin(
lim
0x
=
→
; 1
x
)axtan(
lim
0x
=
→
;
2
a
x
)axcos(1
lim
2
20x
=
−
→
; 0
x
)axcos(1
lim
0x
=
−
→
Exemple :
)xsin(.x
)xcos(1
lim
0x
−
→
=
²x
)xsin(.x
²x
)xcos(1
lim
0x
−
→
=
x
)xsin(
²x
)xcos(1
lim
0x
−
→
=
2
1
1
2
1
=
Théorème d’encadrement
Soit f , g et h trois fonctions telles que :
Si




∈==
≤≤
)Rl(lglimflim
xdesinvoixpour)x(g)x(h)x(f
00 xx
0
alors lhlim
0x
= ( x0 fini on infini )
Exemple : 





+
→ x
1
sinxlim
0x
On a : 1
x
1
sin1 ≤





≤− alors pour tout 0x > : x
x
1
sinxx ≤





≤−
Alors on a :





==−
≤





≤−
++
0xlim)x(lim
0desinvoixpourx
x
1
sin.xx
00
alors 





+
→ x
1
sinxlim
0x
=0
Théorème de comparaison
Soit f et g deux fonctions telles que :
Si




+∞=
≥
glim
xdesinvoixpour)x(g)x(f
0x
0
alors +∞=flim
0x
Si




−∞=
≤
glim
xdesinvoixpour)x(g)x(f
0x
0
alors −∞=flim
0x
( x0 fini on infini )
Exemple : Soit f(x) = x².(2+cos(x) ). Calculer )x(flim
x +∞→
On a : 2 + cosx ≥ 2 + -1 alors 2 + cosx ≥ 1 ainsi f(x) ≥ x²
On a alors




+∞=
≥
∞+
²xlim
xdesinvoixpourx)x(f 0
2
alors )x(flim
x +∞→
= +∞
Théorème ; fonction composé
Soit f et g deux fonctions telles que :
yflim
0x
= et zglim
y
= alors zfglim
0x
= ( x0 , y et z finis ou infinis )
Exemple : 




 +
+∞→ x2
x1
sinlim
x
π
On peut écrire h = fg avec f : x
x2
x1 π+
֏ et g )xsin(֏ et h(x) 




 +
=
x2
x1
sin
π
Fiche de cours 4ème Maths
Continuite et limitesContinuite et limitesContinuite et limitesContinuite et limites
Maths au lyceeMaths au lyceeMaths au lyceeMaths au lycee *** Ali AKIRAli AKIRAli AKIRAli AKIR
Site Web : http://maths-akir.midiblogs.com/
2
On a : =
+∞→
)x(flim
x x2
x1
lim
x
π+
+∞→
=
x2
x
lim
x
π
+∞→
=
22
lim
x
ππ
=
+∞→
et 1)x(glim
2
x
=
→
π
alors =
+∞→
)x(hlim
x
1
ASYMPTOTE
?)x(flim
x
=
∞→
b)x(flim
x
=
∞→
∞=
∞→
)x(flim
x
by:∆ = est un
asymptote
horizontale
?
x
)x(f
lim
x
=
∞→
a
x
)x(f
lim
x
=
∞→
∞=
∞→ x
)x(f
lim
x
0
x
)x(f
lim
x
=
∞→
( ) ?ax)x(flim
x
=−
∞→
Branche
parabolique
de directeur
(y’y)
Branche
parabolique
de directeur
(x’x)
( ) bax)x(flim
x
=−
∞→
( ) ∞=−
∞→
ax)x(flim
x
baxy:∆ += est
un asymptote
oblique
Branche
parabolique de
cœfficient
directeur a.
FONCTION CONTINUE
Définition 1 :
Une fonction f est continue en un point a si )a(f)x(flim
ax
=
→
Définition 2 :
Une fonction f est continue sur un intervalle I, si elle est définie sur cet intervalle et si : pour tout réel a de I
)a(f)x(flim
ax
=
→
La fonction partie entière
*) La fonction Partie entière qui à tout réel x associe le plus grand entier relatif
inférieur à x , noté E(x) , est représentée ci-dessous.
Pour tout réel x , on a 1)x(Ex)x(E +<≤
par exemple : 2)2,2(E = et 3)2,2(E −=−
E est-elle continue en 2 ?
Pour [ [2,1x ∈ , E(x) = 1donc 1)x(Elim
2x
=−
→
Pour [ [3,2x ∈ , E(x)=2 donc 2)x(Elim
2x
=+
→
Ces limites étant différentes, la fonction E n’admet pas de limite en 2.
Donc E n’est pas continue en 2.
*) la fonction Partie entière n’est pas continue sur R. Elle est continue sur
tout intervalle du type [ [1n,n + , où n est un entier relatif quelconque.
3
Théorème
*)L’image d’un intervalle par une fonction continue est un intervalle.
*)les fonctions polynômes sont continues sur R .
*)les fonctions rationnelles sont continues sur leur domaine de définition c’est à dire en tout point où le
dénominateur ne s’annule pas.
*)Si f est continue en x0 et g est continue en f(x0), alors fg est continue en x0
Théorème :
*) Soit f une fonction f définie sur un intervalle de type [ [b,a ( b finie ou infini)
Si la fonction f est croissante et majorée alors f possède une limite finie en b.
Si la fonction f est croissante et non majorée alors f tend vers +∞ en b.
*) Soit f une fonction f définie sur un intervalle de type ] ]b,a (a finie ou infini)
Si la fonction f est décroissante et minorée alors f possède une limite finie en a.
Si la fonction f est décroissante et non minorée alors f tend vers −∞ en a .
Théorème de la valeur intermédiaire
Si f est une fonction continue sur un intervalle [a,b], alors pour tout réel c compris entre f (a) et f (b) , l’équation
f (x) = c admet aux moins une solution α∈ [a,b].
Corollaire 1 de TVI
Si f est continue sur I = [a,b] et telle que f(a) × f(b) < 0 alors il existe au moins un réel x0∈]a,b[ tel que f(x0) = 0 .
Et si de plus f est strictement monotone sur I alors il existe un unique réel x0∈]a,b[ tel que f(x0) = 0 .
Corollaire 2 de TVI
Si f est continue sur I = [a,b] et ne s’annule pas alors elle garde un signe constante sur I
Exemple : I=[1,2] et f(x) = x3 + x – 3
f est dérivable sur I et on a : f’(x) = 3x² +1 0>
f(1)=-1 et f(2)=7
Alors on a : f est continue sur I , f(1) × f(2) < 0 et f est strictement croissante sur I
Alors il existe un unique réel x0∈]1,2[ tel que f(x0) = 0 .
Illustrations graphiques
f est continue et strictement croissante sur
l’intervalle [ a ; b ].
L’équation f (x) = c admet une solution unique.
f est continue et strictement décroissante sur
l’intervalle [ a ; b ] .
L’équation f (x) = c admet une solution unique .
f est continue mais n’est pas monotone sur
l’intervalle [ a ; b ] .
L’équation f (x) = c peut avoir plusieurs solutions
f n’est pas continue sur l’intervalle [ a ; b ] .
L’équation f (x) = c peut ne pas avoir de solutions.
a b
f ( a)
f ( b)
c
y = c
Oa α 1 b
f ( a)
f ( b)
c
y = c
α 2 α 3O
a α b
f ( a)
f ( b)
c
y = c
O
a α b
f ( a)
f ( b)
c y = c
O

Contenu connexe

Tendances

Les algorithmes d’approximation
Les algorithmes d’approximationLes algorithmes d’approximation
Les algorithmes d’approximationWael Ismail
 
Devoir surveille 1 2 bac pc 2019
Devoir surveille 1  2 bac pc 2019Devoir surveille 1  2 bac pc 2019
Devoir surveille 1 2 bac pc 2019AHMED ENNAJI
 
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTITD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTIsoufiane merabti
 
202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotes202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotesEttaoufik Elayedi
 
Programmation lineaire algorithme_du_simplexe
Programmation lineaire algorithme_du_simplexeProgrammation lineaire algorithme_du_simplexe
Programmation lineaire algorithme_du_simplexeJiijishady
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproquesYessin Abdelhedi
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinatemath267
 
Exercices sur la méthode de déplacement
Exercices sur la méthode de déplacementExercices sur la méthode de déplacement
Exercices sur la méthode de déplacementm.a bensaaoud
 
Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexesOmar Ramzaoui
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinatesmath266
 
Chap 1: Algèbre de bool
Chap 1:  Algèbre de boolChap 1:  Algèbre de bool
Chap 1: Algèbre de boolEPST_INFO
 
Devoir surveille 1 semestre2
Devoir surveille 1 semestre2Devoir surveille 1 semestre2
Devoir surveille 1 semestre2AHMED ENNAJI
 
Chapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court cheminChapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court cheminSana Aroussi
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...tawfik-masrour
 
Les Discriminations Envers Les HandicapéS
Les Discriminations Envers Les HandicapéSLes Discriminations Envers Les HandicapéS
Les Discriminations Envers Les HandicapéSGéraldine Duboz
 
Cours vibration 2016 prat
Cours vibration 2016 pratCours vibration 2016 prat
Cours vibration 2016 pratOumaimaBenSaid
 

Tendances (20)

Derivate
DerivateDerivate
Derivate
 
Les algorithmes d’approximation
Les algorithmes d’approximationLes algorithmes d’approximation
Les algorithmes d’approximation
 
Devoir surveille 1 2 bac pc 2019
Devoir surveille 1  2 bac pc 2019Devoir surveille 1  2 bac pc 2019
Devoir surveille 1 2 bac pc 2019
 
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTITD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
 
202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotes202017370 es-maths-cned-sequence-03-limites-et-asymptotes
202017370 es-maths-cned-sequence-03-limites-et-asymptotes
 
Funciones1
Funciones1Funciones1
Funciones1
 
Programmation lineaire algorithme_du_simplexe
Programmation lineaire algorithme_du_simplexeProgrammation lineaire algorithme_du_simplexe
Programmation lineaire algorithme_du_simplexe
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
 
24 double integral over polar coordinate
24 double integral over polar coordinate24 double integral over polar coordinate
24 double integral over polar coordinate
 
Exercices sur la méthode de déplacement
Exercices sur la méthode de déplacementExercices sur la méthode de déplacement
Exercices sur la méthode de déplacement
 
Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexes
 
35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates35 tangent and arc length in polar coordinates
35 tangent and arc length in polar coordinates
 
Cours dérivabilité
Cours dérivabilitéCours dérivabilité
Cours dérivabilité
 
Chap 1: Algèbre de bool
Chap 1:  Algèbre de boolChap 1:  Algèbre de bool
Chap 1: Algèbre de bool
 
Memento technique
Memento techniqueMemento technique
Memento technique
 
Devoir surveille 1 semestre2
Devoir surveille 1 semestre2Devoir surveille 1 semestre2
Devoir surveille 1 semestre2
 
Chapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court cheminChapitre 2 problème de plus court chemin
Chapitre 2 problème de plus court chemin
 
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
T. Masrour - cours dynamique des systèmes - vibrations - chapitre1-1ddl chapi...
 
Les Discriminations Envers Les HandicapéS
Les Discriminations Envers Les HandicapéSLes Discriminations Envers Les HandicapéS
Les Discriminations Envers Les HandicapéS
 
Cours vibration 2016 prat
Cours vibration 2016 pratCours vibration 2016 prat
Cours vibration 2016 prat
 

Similaire à Cours continuité et limites

Mathématiques 1-Gestion.pdf
Mathématiques 1-Gestion.pdfMathématiques 1-Gestion.pdf
Mathématiques 1-Gestion.pdfsassbo_123
 
Cours fonctions réciproques
Cours fonctions réciproquesCours fonctions réciproques
Cours fonctions réciproquesYessin Abdelhedi
 
Cours fourier
Cours fourier Cours fourier
Cours fourier Raed Ammar
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limiteshassan1488
 
M1_exercices_corriges.pdf
M1_exercices_corriges.pdfM1_exercices_corriges.pdf
M1_exercices_corriges.pdfDurelDonfack
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiaresbilal001
 
Généralités sur les fonctions
Généralités sur les fonctionsGénéralités sur les fonctions
Généralités sur les fonctionsĂmîʼndǿ TrànCè
 
Limites de fonctions et de suites
Limites de fonctions et de suitesLimites de fonctions et de suites
Limites de fonctions et de suitesĂmîʼndǿ TrànCè
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourierismailkziadi
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourierMehdi Maroun
 
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdfFonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdfetude-generale
 
Exercices fonctions numériques
Exercices fonctions numériquesExercices fonctions numériques
Exercices fonctions numériquesabyssou
 
Courschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegreCourschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegrevauzelle
 
Courschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegreCourschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegrevauzelle
 

Similaire à Cours continuité et limites (20)

Mathématiques 1-Gestion.pdf
Mathématiques 1-Gestion.pdfMathématiques 1-Gestion.pdf
Mathématiques 1-Gestion.pdf
 
Cours fonctions réciproques
Cours fonctions réciproquesCours fonctions réciproques
Cours fonctions réciproques
 
Cours fourier
Cours fourier Cours fourier
Cours fourier
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limites
 
05 exos fonction_exponentielle
05 exos fonction_exponentielle05 exos fonction_exponentielle
05 exos fonction_exponentielle
 
sol_TD4.pdf
sol_TD4.pdfsol_TD4.pdf
sol_TD4.pdf
 
M1_exercices_corriges.pdf
M1_exercices_corriges.pdfM1_exercices_corriges.pdf
M1_exercices_corriges.pdf
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiares
 
Généralités sur les fonctions
Généralités sur les fonctionsGénéralités sur les fonctions
Généralités sur les fonctions
 
Limites de fonctions et de suites
Limites de fonctions et de suitesLimites de fonctions et de suites
Limites de fonctions et de suites
 
cours2.pdf
cours2.pdfcours2.pdf
cours2.pdf
 
01 lois-à-densité
01 lois-à-densité01 lois-à-densité
01 lois-à-densité
 
Exercice primitives
Exercice primitivesExercice primitives
Exercice primitives
 
Exercice logarithme
Exercice logarithmeExercice logarithme
Exercice logarithme
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdfFonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
Fonction-Logarithme-2eme-BAC-PC-1--www.etude-generale.com.pdf
 
Exercices fonctions numériques
Exercices fonctions numériquesExercices fonctions numériques
Exercices fonctions numériques
 
Courschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegreCourschapitre3complete trinome2nddegre
Courschapitre3complete trinome2nddegre
 
Courschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegreCourschapitre3 trinome2nddegre
Courschapitre3 trinome2nddegre
 

Plus de Yessin Abdelhedi (20)

Statistiques
StatistiquesStatistiques
Statistiques
 
Similitudes
SimilitudesSimilitudes
Similitudes
 
Série+probabilites++2013
Série+probabilites++2013Série+probabilites++2013
Série+probabilites++2013
 
Exercice suites réelles
Exercice suites réellesExercice suites réelles
Exercice suites réelles
 
Exercice similitudes
Exercice similitudesExercice similitudes
Exercice similitudes
 
Exercice probabilités
Exercice probabilitésExercice probabilités
Exercice probabilités
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexes
 
Exercice isometrie du plan
Exercice isometrie du planExercice isometrie du plan
Exercice isometrie du plan
 
Exercice intégrales
Exercice intégralesExercice intégrales
Exercice intégrales
 
Exercice exponontielle
Exercice exponontielleExercice exponontielle
Exercice exponontielle
 
Exercice espace
Exercice espaceExercice espace
Exercice espace
 
Exercice dérivabilité
Exercice dérivabilitéExercice dérivabilité
Exercice dérivabilité
 
Exercice coniques
Exercice coniquesExercice coniques
Exercice coniques
 
Exercice arithmétiques
Exercice arithmétiquesExercice arithmétiques
Exercice arithmétiques
 
Espace
EspaceEspace
Espace
 
Divisibilité+
Divisibilité+Divisibilité+
Divisibilité+
 
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
 
Cours suites réelles
Cours suites réellesCours suites réelles
Cours suites réelles
 
Cours similitudes
Cours similitudesCours similitudes
Cours similitudes
 
Cours probabilités
Cours probabilitésCours probabilités
Cours probabilités
 

Dernier

SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptxSUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptxssuserbd075f
 
gestion des conflits dans les entreprises
gestion des  conflits dans les entreprisesgestion des  conflits dans les entreprises
gestion des conflits dans les entreprisesMajdaKtiri2
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfabatanebureau
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxRayane619450
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.Txaruka
 
Bolero. pptx . Film de A nnne Fontaine
Bolero. pptx . Film   de  A nnne FontaineBolero. pptx . Film   de  A nnne Fontaine
Bolero. pptx . Film de A nnne FontaineTxaruka
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfachrafbrahimi1
 
Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film françaisTxaruka
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film françaisTxaruka
 

Dernier (10)

SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptxSUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
SUPPORT DE SUR COURS_GOUVERNANCE_SI_M2.pptx
 
gestion des conflits dans les entreprises
gestion des  conflits dans les entreprisesgestion des  conflits dans les entreprises
gestion des conflits dans les entreprises
 
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdfCOURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
COURS SVT 3 EME ANNEE COLLEGE 2EME SEM.pdf
 
Computer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptxComputer Parts in French - Les parties de l'ordinateur.pptx
Computer Parts in French - Les parties de l'ordinateur.pptx
 
Boléro. pptx Film français réalisé par une femme.
Boléro.  pptx   Film   français   réalisé  par une  femme.Boléro.  pptx   Film   français   réalisé  par une  femme.
Boléro. pptx Film français réalisé par une femme.
 
Bolero. pptx . Film de A nnne Fontaine
Bolero. pptx . Film   de  A nnne FontaineBolero. pptx . Film   de  A nnne Fontaine
Bolero. pptx . Film de A nnne Fontaine
 
Evaluación Alumnos de Ecole Victor Hugo
Evaluación Alumnos de Ecole  Victor HugoEvaluación Alumnos de Ecole  Victor Hugo
Evaluación Alumnos de Ecole Victor Hugo
 
Cours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdfCours ofppt du Trade-Marketing-Présentation.pdf
Cours ofppt du Trade-Marketing-Présentation.pdf
 
Sidonie au Japon . pptx Un film français
Sidonie    au   Japon  .  pptx  Un film françaisSidonie    au   Japon  .  pptx  Un film français
Sidonie au Japon . pptx Un film français
 
La nouvelle femme . pptx Film français
La   nouvelle   femme  . pptx  Film françaisLa   nouvelle   femme  . pptx  Film français
La nouvelle femme . pptx Film français
 

Cours continuité et limites

  • 1. 1 LIMITES Soient P et Q deux fonctions polynôme de degré n et m et du monôme de plus haut degré anxn et bnxm respectivement alors = +∞→ )x(Plim x n n x xalim +∞→ ; = −∞→ )x(Plim x n n x xalim −∞→ = +∞→ )x(Q )x(P lim x m m n n x xb xa lim +∞→ ; = −∞→ )x(Q )x(P lim x m m n n x xb xa lim −∞→ Exemple : 1x5x 1xx2x2 lim 2 43 x −+ −+− −∞→ = 2 4 x x x2 lim − −∞→ = 2 x x2lim − −∞→ = −∞ Limites trigonométries 1 x )xsin( lim 0x = → ; 1 x )xtan( lim 0x = → ; 2 1 x )xcos(1 lim 20x = − → ; 0 x )xcos(1 lim 0x = − → a x )axsin( lim 0x = → ; 1 x )axtan( lim 0x = → ; 2 a x )axcos(1 lim 2 20x = − → ; 0 x )axcos(1 lim 0x = − → Exemple : )xsin(.x )xcos(1 lim 0x − → = ²x )xsin(.x ²x )xcos(1 lim 0x − → = x )xsin( ²x )xcos(1 lim 0x − → = 2 1 1 2 1 = Théorème d’encadrement Soit f , g et h trois fonctions telles que : Si     ∈== ≤≤ )Rl(lglimflim xdesinvoixpour)x(g)x(h)x(f 00 xx 0 alors lhlim 0x = ( x0 fini on infini ) Exemple :       + → x 1 sinxlim 0x On a : 1 x 1 sin1 ≤      ≤− alors pour tout 0x > : x x 1 sinxx ≤      ≤− Alors on a :      ==− ≤      ≤− ++ 0xlim)x(lim 0desinvoixpourx x 1 sin.xx 00 alors       + → x 1 sinxlim 0x =0 Théorème de comparaison Soit f et g deux fonctions telles que : Si     +∞= ≥ glim xdesinvoixpour)x(g)x(f 0x 0 alors +∞=flim 0x Si     −∞= ≤ glim xdesinvoixpour)x(g)x(f 0x 0 alors −∞=flim 0x ( x0 fini on infini ) Exemple : Soit f(x) = x².(2+cos(x) ). Calculer )x(flim x +∞→ On a : 2 + cosx ≥ 2 + -1 alors 2 + cosx ≥ 1 ainsi f(x) ≥ x² On a alors     +∞= ≥ ∞+ ²xlim xdesinvoixpourx)x(f 0 2 alors )x(flim x +∞→ = +∞ Théorème ; fonction composé Soit f et g deux fonctions telles que : yflim 0x = et zglim y = alors zfglim 0x = ( x0 , y et z finis ou infinis ) Exemple :       + +∞→ x2 x1 sinlim x π On peut écrire h = fg avec f : x x2 x1 π+ ֏ et g )xsin(֏ et h(x)       + = x2 x1 sin π Fiche de cours 4ème Maths Continuite et limitesContinuite et limitesContinuite et limitesContinuite et limites Maths au lyceeMaths au lyceeMaths au lyceeMaths au lycee *** Ali AKIRAli AKIRAli AKIRAli AKIR Site Web : http://maths-akir.midiblogs.com/
  • 2. 2 On a : = +∞→ )x(flim x x2 x1 lim x π+ +∞→ = x2 x lim x π +∞→ = 22 lim x ππ = +∞→ et 1)x(glim 2 x = → π alors = +∞→ )x(hlim x 1 ASYMPTOTE ?)x(flim x = ∞→ b)x(flim x = ∞→ ∞= ∞→ )x(flim x by:∆ = est un asymptote horizontale ? x )x(f lim x = ∞→ a x )x(f lim x = ∞→ ∞= ∞→ x )x(f lim x 0 x )x(f lim x = ∞→ ( ) ?ax)x(flim x =− ∞→ Branche parabolique de directeur (y’y) Branche parabolique de directeur (x’x) ( ) bax)x(flim x =− ∞→ ( ) ∞=− ∞→ ax)x(flim x baxy:∆ += est un asymptote oblique Branche parabolique de cœfficient directeur a. FONCTION CONTINUE Définition 1 : Une fonction f est continue en un point a si )a(f)x(flim ax = → Définition 2 : Une fonction f est continue sur un intervalle I, si elle est définie sur cet intervalle et si : pour tout réel a de I )a(f)x(flim ax = → La fonction partie entière *) La fonction Partie entière qui à tout réel x associe le plus grand entier relatif inférieur à x , noté E(x) , est représentée ci-dessous. Pour tout réel x , on a 1)x(Ex)x(E +<≤ par exemple : 2)2,2(E = et 3)2,2(E −=− E est-elle continue en 2 ? Pour [ [2,1x ∈ , E(x) = 1donc 1)x(Elim 2x =− → Pour [ [3,2x ∈ , E(x)=2 donc 2)x(Elim 2x =+ → Ces limites étant différentes, la fonction E n’admet pas de limite en 2. Donc E n’est pas continue en 2. *) la fonction Partie entière n’est pas continue sur R. Elle est continue sur tout intervalle du type [ [1n,n + , où n est un entier relatif quelconque.
  • 3. 3 Théorème *)L’image d’un intervalle par une fonction continue est un intervalle. *)les fonctions polynômes sont continues sur R . *)les fonctions rationnelles sont continues sur leur domaine de définition c’est à dire en tout point où le dénominateur ne s’annule pas. *)Si f est continue en x0 et g est continue en f(x0), alors fg est continue en x0 Théorème : *) Soit f une fonction f définie sur un intervalle de type [ [b,a ( b finie ou infini) Si la fonction f est croissante et majorée alors f possède une limite finie en b. Si la fonction f est croissante et non majorée alors f tend vers +∞ en b. *) Soit f une fonction f définie sur un intervalle de type ] ]b,a (a finie ou infini) Si la fonction f est décroissante et minorée alors f possède une limite finie en a. Si la fonction f est décroissante et non minorée alors f tend vers −∞ en a . Théorème de la valeur intermédiaire Si f est une fonction continue sur un intervalle [a,b], alors pour tout réel c compris entre f (a) et f (b) , l’équation f (x) = c admet aux moins une solution α∈ [a,b]. Corollaire 1 de TVI Si f est continue sur I = [a,b] et telle que f(a) × f(b) < 0 alors il existe au moins un réel x0∈]a,b[ tel que f(x0) = 0 . Et si de plus f est strictement monotone sur I alors il existe un unique réel x0∈]a,b[ tel que f(x0) = 0 . Corollaire 2 de TVI Si f est continue sur I = [a,b] et ne s’annule pas alors elle garde un signe constante sur I Exemple : I=[1,2] et f(x) = x3 + x – 3 f est dérivable sur I et on a : f’(x) = 3x² +1 0> f(1)=-1 et f(2)=7 Alors on a : f est continue sur I , f(1) × f(2) < 0 et f est strictement croissante sur I Alors il existe un unique réel x0∈]1,2[ tel que f(x0) = 0 . Illustrations graphiques f est continue et strictement croissante sur l’intervalle [ a ; b ]. L’équation f (x) = c admet une solution unique. f est continue et strictement décroissante sur l’intervalle [ a ; b ] . L’équation f (x) = c admet une solution unique . f est continue mais n’est pas monotone sur l’intervalle [ a ; b ] . L’équation f (x) = c peut avoir plusieurs solutions f n’est pas continue sur l’intervalle [ a ; b ] . L’équation f (x) = c peut ne pas avoir de solutions. a b f ( a) f ( b) c y = c Oa α 1 b f ( a) f ( b) c y = c α 2 α 3O a α b f ( a) f ( b) c y = c O a α b f ( a) f ( b) c y = c O