Liaisons & libertés




E. Bugnet
Pour une meilleur lisibilité,
              passez en plein écran !




E. Bugnet
Définitions
Définitions
Degré de liberté :
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :
  ● 3 composantes de translation : Tx, Ty, Tz

  ● 3 composantes de rotation : Rx, Ry, Rz
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :                                   Dans le plan :
  ● 3 composantes de translation : Tx, Ty, Tz       ● 2 composantes de translation : Tx, Ty

  ● 3 composantes de rotation : Rx, Ry, Rz          ● 1 composante de rotation : Rz
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :                                   Dans le plan :
  ● 3 composantes de translation : Tx, Ty, Tz       ● 2 composantes de translation : Tx, Ty

  ● 3 composantes de rotation : Rx, Ry, Rz          ● 1 composante de rotation : Rz




Degré de liaison :
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :                                   Dans le plan :
  ● 3 composantes de translation : Tx, Ty, Tz       ● 2 composantes de translation : Tx, Ty

  ● 3 composantes de rotation : Rx, Ry, Rz          ● 1 composante de rotation : Rz




Degré de liaison :
 Une liaison est la suppression d'un degré de liberté.
 On appelle degré de liaison le nombre de degrés de liberté supprimés.
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :                                   Dans le plan :
  ● 3 composantes de translation : Tx, Ty, Tz       ● 2 composantes de translation : Tx, Ty

  ● 3 composantes de rotation : Rx, Ry, Rz          ● 1 composante de rotation : Rz




Degré de liaison :
 Une liaison est la suppression d'un degré de liberté.
 On appelle degré de liaison le nombre de degrés de liberté supprimés.

                     d liaison =6−∑ d liberté
                      °                 °
 Dans l'espace :
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :                                      Dans le plan :
  ● 3 composantes de translation : Tx, Ty, Tz          ● 2 composantes de translation : Tx, Ty

  ● 3 composantes de rotation : Rx, Ry, Rz             ● 1 composante de rotation : Rz




Degré de liaison :
 Une liaison est la suppression d'un degré de liberté.
 On appelle degré de liaison le nombre de degrés de liberté supprimés.

                                                                                     =3−∑ d
                                                                           °                  °
                                   =6−∑ d
                         °                  °
 Dans l'espace :     d   liaison            liberté   Dans le plan :   d   liaison            liberté
Définitions
Degré de liberté :
 On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre
 de composantes de déplacement indépendantes et non nulles.

 Dans l'espace :                                      Dans le plan :
  ● 3 composantes de translation : Tx, Ty, Tz          ● 2 composantes de translation : Tx, Ty

  ● 3 composantes de rotation : Rx, Ry, Rz             ● 1 composante de rotation : Rz




Degré de liaison :
 Une liaison est la suppression d'un degré de liberté.
 On appelle degré de liaison le nombre de degrés de liberté supprimés.

                                                                                     =3−∑ d
                                                                           °                  °
                                   =6−∑ d
                         °                  °
 Dans l'espace :     d   liaison            liberté   Dans le plan :   d   liaison            liberté

  ●   Une force supprime une composante de translation
  ●   Un moment supprime une composante de rotation
1/4


Tableau de liaisons
2/4


Tableau de liaisons
3/4


Tableau de liaisons
4/4


Tableau de liaisons
Liaisons dans le plan
                Encastrement   Articulation   Appui simple   Glissière



  Schéma



 Actions de
   liaison



Inconnues de
    calcul



Déplacements
   relatifs
Liaisons dans le plan
                Encastrement   Articulation   Appui simple   Glissière



  Schéma



 Actions de
   liaison



Inconnues de
    calcul



Déplacements
   relatifs
Liaisons dans le plan
                Encastrement   Articulation   Appui simple   Glissière



  Schéma



 Actions de
   liaison



Inconnues de
    calcul



Déplacements
   relatifs
Liaisons dans le plan
                Encastrement   Articulation   Appui simple   Glissière



  Schéma



 Actions de
   liaison



Inconnues de
    calcul



Déplacements
   relatifs
Liaisons dans le plan
                Encastrement   Articulation   Appui simple   Glissière



  Schéma



 Actions de
   liaison



Inconnues de
    calcul



Déplacements
   relatifs
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma



 Actions de
   liaison



Inconnues de
    calcul



Déplacements
   relatifs
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx
 Actions de
   liaison
                    Fy
                    Mz

Inconnues de
    calcul



Déplacements
   relatifs
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx
 Actions de
   liaison
                    Fy
                    Mz

Inconnues de
    calcul



Déplacements
   relatifs
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx
 Actions de
   liaison
                    Fy
                    Mz

Inconnues de
    calcul           3

Déplacements
   relatifs
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx
 Actions de
   liaison
                    Fy
                    Mz

Inconnues de
    calcul           3

Déplacements
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                    Mz

Inconnues de
    calcul           3

Déplacements
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                    Mz

Inconnues de
    calcul           3

Déplacements
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                    Mz

Inconnues de
    calcul           3              2


Déplacements
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                    Mz

Inconnues de
    calcul           3              2


Déplacements                      Rz
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                                                  Fy
                    Mz

Inconnues de
    calcul           3              2


Déplacements                      Rz
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                                                  Fy
                    Mz

Inconnues de
    calcul           3              2


Déplacements                      Rz
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                                                  Fy
                    Mz

Inconnues de
    calcul           3              2              1


Déplacements                      Rz
   relatifs
                  Aucun
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx
 Actions de
   liaison
                    Fy             Fy
                                                  Fy
                    Mz

Inconnues de
    calcul           3              2              1


Déplacements                                     Tx
   relatifs
                  Aucun           Rz             Rz
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx                            Fy
 Actions de
   liaison
                    Fy             Fy
                                                  Fy             Mz
                    Mz

Inconnues de
    calcul           3              2              1


Déplacements                                     Tx
   relatifs
                  Aucun           Rz             Rz
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx                            Fy
 Actions de
   liaison
                    Fy             Fy
                                                  Fy             Mz
                    Mz

Inconnues de
    calcul           3              2              1


Déplacements                                     Tx
   relatifs
                  Aucun           Rz             Rz
y
                                                                  Repère

               Liaisons dans le plan                                de
                                                                 référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx                            Fy
 Actions de
   liaison
                    Fy             Fy
                                                  Fy             Mz
                    Mz

Inconnues de
    calcul           3              2              1             2


Déplacements                                     Tx
   relatifs
                  Aucun           Rz             Rz
y
                                                                   Repère

               Liaisons dans le plan                                 de
                                                                  référence   x


                Encastrement   Articulation   Appui simple   Glissière



  Schéma


                    Fx             Fx                            Fy
 Actions de
   liaison
                    Fy             Fy
                                                  Fy             Mz
                    Mz

Inconnues de
    calcul           3              2              1             2


Déplacements                                     Tx
                  Aucun           Rz                             Tx
   relatifs                                      Rz
Remarque 1
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ




          Nds déplaçables
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ




          Nds déplaçables
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ




          Nds déplaçables
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω




          Nds déplaçables
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω




          Nds déplaçables                  Nds fixes
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω




          Nds déplaçables                  Nds fixes
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω




          Nds déplaçables                  Nds fixes
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω                                ω




          Nds déplaçables                  Nds fixes
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω                                ω




          Nds déplaçables                  Nds fixes                            Nds fixes
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω                                ω




          Nds déplaçables                  Nds fixes                            Nds fixes




Cette notion est fondamentale pour l'analyse du comportement des structures.
Remarque 1
Les déplacements (translation et rotation) cités précédemment sont des déplacements
relatifs entre les deux éléments assemblés.
Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut
légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette
structure.
Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
D’où une première classification des structures :
  ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater

  ● Structure à nœuds fixes : les nœuds ne peuvent que tourner


     ωδ                            ω                                ω




          Nds déplaçables                  Nds fixes                            Nds fixes




Cette notion est fondamentale pour l'analyse du comportement des structures.
Elle a une influence sur les phénomènes d'instabilité des éléments, sur l'évolution, sur la
conception, sur le dimensionnement…
Exemple : détermination des longueurs de flambement des barres comprimées…
Remarque 2
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau

                                                         Aucun déplacement relatif entre
                                                         les deux éléments, ni par rapport
                                                         au repère global.
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau

                                                         Aucun déplacement relatif entre
                                                         les deux éléments, ni par rapport
                                                         au repère global.



Encastrement relatif : par exemple jarret de portique
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau

                                                         Aucun déplacement relatif entre
                                                         les deux éléments, ni par rapport
                                                         au repère global.



Encastrement relatif : par exemple jarret de portique

                                     A
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau

                                                         Aucun déplacement relatif entre
                                                         les deux éléments, ni par rapport
                                                         au repère global.



Encastrement relatif : par exemple jarret de portique

                                 F   A
Remarque 2
De la remarque précédente découle la notion d'encastrement parfait et d'encastrement
mutuel.

Encastrement parfait : par exemple pied de poteau

                                                              Aucun déplacement relatif entre
                                                              les deux éléments, ni par rapport
                                                              au repère global.



Encastrement relatif : par exemple jarret de portique

                                 F    A      A
                                                              Déplacement des nœuds par
                                                              rapport au repère global.



         Sous l'effet d'une force, le point A a subit une translation et une rotation.
Remarque 3
Remarque 3
Le règlement Eurocodes 3 introduit la notion d'assemblages semi-rigides.
Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et
l'encastrement.
Remarque 3
Le règlement Eurocodes 3 introduit la notion d'assemblages semi-rigides.
Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et
l'encastrement.

En effet, certains assemblages courants utilisés en charpente et autrefois considérés
comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre
un moment, et modifient donc la distribution des efforts dans les éléments de la structure.
Remarque 3
Le règlement Eurocodes 3 introduit la notion d'assemblages semi-rigides.
Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et
l'encastrement.

En effet, certains assemblages courants utilisés en charpente et autrefois considérés
comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre
un moment, et modifient donc la distribution des efforts dans les éléments de la structure.

Inversement, certains assemblages ne sont pas suffisamment rigides pour être
valablement considérés comme des encastrements.
Remarque 3
Le règlement Eurocodes 3 introduit la notion d'assemblages semi-rigides.
Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et
l'encastrement.

En effet, certains assemblages courants utilisés en charpente et autrefois considérés
comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre
un moment, et modifient donc la distribution des efforts dans les éléments de la structure.

Inversement, certains assemblages ne sont pas suffisamment rigides pour être
valablement considérés comme des encastrements.

Cette notion de comportement est caractérisée par le diagramme de comportement
moment / rotation.
Remarque 3
Le règlement Eurocodes 3 introduit la notion d'assemblages semi-rigides.
Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et
l'encastrement.

En effet, certains assemblages courants utilisés en charpente et autrefois considérés
comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre
un moment, et modifient donc la distribution des efforts dans les éléments de la structure.

Inversement, certains assemblages ne sont pas suffisamment rigides pour être
valablement considérés comme des encastrements.

Cette notion de comportement est caractérisée par le diagramme de comportement
moment / rotation.
      L'encastrement parfait sans
      aucune rotation n'existe pas.
          Il existe toujours une
      déformation dépendant de la
        rigidité de l'assemblage.
Remarque 3
Le règlement Eurocodes 3 introduit la notion d'assemblages semi-rigides.
Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et
l'encastrement.

En effet, certains assemblages courants utilisés en charpente et autrefois considérés
comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre
un moment, et modifient donc la distribution des efforts dans les éléments de la structure.

Inversement, certains assemblages ne sont pas suffisamment rigides pour être
valablement considérés comme des encastrements.

Cette notion de comportement est caractérisée par le diagramme de comportement
moment / rotation.
      L'encastrement parfait sans
      aucune rotation n'existe pas.
          Il existe toujours une
      déformation dépendant de la
        rigidité de l'assemblage.
                                                                L'articulation parfaite sans
                                                            aucune résistance n'existe pas.
                                                            Il existe toujours une résistance
                                                                dépendant de la rigidité de
                                                                       l'assemblage.
The end !




E. Bugnet

Bases - Liaisons - liberté

  • 1.
  • 2.
    Pour une meilleurlisibilité, passez en plein écran ! E. Bugnet
  • 3.
  • 4.
  • 5.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles.
  • 6.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : ● 3 composantes de translation : Tx, Ty, Tz ● 3 composantes de rotation : Rx, Ry, Rz
  • 7.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : Dans le plan : ● 3 composantes de translation : Tx, Ty, Tz ● 2 composantes de translation : Tx, Ty ● 3 composantes de rotation : Rx, Ry, Rz ● 1 composante de rotation : Rz
  • 8.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : Dans le plan : ● 3 composantes de translation : Tx, Ty, Tz ● 2 composantes de translation : Tx, Ty ● 3 composantes de rotation : Rx, Ry, Rz ● 1 composante de rotation : Rz Degré de liaison :
  • 9.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : Dans le plan : ● 3 composantes de translation : Tx, Ty, Tz ● 2 composantes de translation : Tx, Ty ● 3 composantes de rotation : Rx, Ry, Rz ● 1 composante de rotation : Rz Degré de liaison : Une liaison est la suppression d'un degré de liberté. On appelle degré de liaison le nombre de degrés de liberté supprimés.
  • 10.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : Dans le plan : ● 3 composantes de translation : Tx, Ty, Tz ● 2 composantes de translation : Tx, Ty ● 3 composantes de rotation : Rx, Ry, Rz ● 1 composante de rotation : Rz Degré de liaison : Une liaison est la suppression d'un degré de liberté. On appelle degré de liaison le nombre de degrés de liberté supprimés. d liaison =6−∑ d liberté ° ° Dans l'espace :
  • 11.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : Dans le plan : ● 3 composantes de translation : Tx, Ty, Tz ● 2 composantes de translation : Tx, Ty ● 3 composantes de rotation : Rx, Ry, Rz ● 1 composante de rotation : Rz Degré de liaison : Une liaison est la suppression d'un degré de liberté. On appelle degré de liaison le nombre de degrés de liberté supprimés. =3−∑ d ° ° =6−∑ d ° ° Dans l'espace : d liaison liberté Dans le plan : d liaison liberté
  • 12.
    Définitions Degré de liberté: On appelle degré de liberté d'un solide II par rapport à un solide I de référence, le nombre de composantes de déplacement indépendantes et non nulles. Dans l'espace : Dans le plan : ● 3 composantes de translation : Tx, Ty, Tz ● 2 composantes de translation : Tx, Ty ● 3 composantes de rotation : Rx, Ry, Rz ● 1 composante de rotation : Rz Degré de liaison : Une liaison est la suppression d'un degré de liberté. On appelle degré de liaison le nombre de degrés de liberté supprimés. =3−∑ d ° ° =6−∑ d ° ° Dans l'espace : d liaison liberté Dans le plan : d liaison liberté ● Une force supprime une composante de translation ● Un moment supprime une composante de rotation
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
    Liaisons dans leplan Encastrement Articulation Appui simple Glissière Schéma Actions de liaison Inconnues de calcul Déplacements relatifs
  • 18.
    Liaisons dans leplan Encastrement Articulation Appui simple Glissière Schéma Actions de liaison Inconnues de calcul Déplacements relatifs
  • 19.
    Liaisons dans leplan Encastrement Articulation Appui simple Glissière Schéma Actions de liaison Inconnues de calcul Déplacements relatifs
  • 20.
    Liaisons dans leplan Encastrement Articulation Appui simple Glissière Schéma Actions de liaison Inconnues de calcul Déplacements relatifs
  • 21.
    Liaisons dans leplan Encastrement Articulation Appui simple Glissière Schéma Actions de liaison Inconnues de calcul Déplacements relatifs
  • 22.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Actions de liaison Inconnues de calcul Déplacements relatifs
  • 23.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Actions de liaison Fy Mz Inconnues de calcul Déplacements relatifs
  • 24.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Actions de liaison Fy Mz Inconnues de calcul Déplacements relatifs
  • 25.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Actions de liaison Fy Mz Inconnues de calcul 3 Déplacements relatifs
  • 26.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Actions de liaison Fy Mz Inconnues de calcul 3 Déplacements relatifs Aucun
  • 27.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Mz Inconnues de calcul 3 Déplacements relatifs Aucun
  • 28.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Mz Inconnues de calcul 3 Déplacements relatifs Aucun
  • 29.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Mz Inconnues de calcul 3 2 Déplacements relatifs Aucun
  • 30.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Mz Inconnues de calcul 3 2 Déplacements Rz relatifs Aucun
  • 31.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Fy Mz Inconnues de calcul 3 2 Déplacements Rz relatifs Aucun
  • 32.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Fy Mz Inconnues de calcul 3 2 Déplacements Rz relatifs Aucun
  • 33.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Fy Mz Inconnues de calcul 3 2 1 Déplacements Rz relatifs Aucun
  • 34.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Actions de liaison Fy Fy Fy Mz Inconnues de calcul 3 2 1 Déplacements Tx relatifs Aucun Rz Rz
  • 35.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Fy Actions de liaison Fy Fy Fy Mz Mz Inconnues de calcul 3 2 1 Déplacements Tx relatifs Aucun Rz Rz
  • 36.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Fy Actions de liaison Fy Fy Fy Mz Mz Inconnues de calcul 3 2 1 Déplacements Tx relatifs Aucun Rz Rz
  • 37.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Fy Actions de liaison Fy Fy Fy Mz Mz Inconnues de calcul 3 2 1 2 Déplacements Tx relatifs Aucun Rz Rz
  • 38.
    y Repère Liaisons dans le plan de référence x Encastrement Articulation Appui simple Glissière Schéma Fx Fx Fy Actions de liaison Fy Fy Fy Mz Mz Inconnues de calcul 3 2 1 2 Déplacements Tx Aucun Rz Tx relatifs Rz
  • 39.
  • 40.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés.
  • 41.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure.
  • 42.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure.
  • 43.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner
  • 44.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner
  • 45.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner
  • 46.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ
  • 47.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ Nds déplaçables
  • 48.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ Nds déplaçables
  • 49.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ Nds déplaçables
  • 50.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω Nds déplaçables
  • 51.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω Nds déplaçables Nds fixes
  • 52.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω Nds déplaçables Nds fixes
  • 53.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω Nds déplaçables Nds fixes
  • 54.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω ω Nds déplaçables Nds fixes
  • 55.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω ω Nds déplaçables Nds fixes Nds fixes
  • 56.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω ω Nds déplaçables Nds fixes Nds fixes Cette notion est fondamentale pour l'analyse du comportement des structures.
  • 57.
    Remarque 1 Les déplacements(translation et rotation) cités précédemment sont des déplacements relatifs entre les deux éléments assemblés. Par contre, lors de la déformation de la structure, le centre de gravité de la liaison peut légèrement se déplacer dans le plan de la structure par rapport au repère global lié à cette structure. Apparaît donc ici la notion de possibilité de déplacements des nœuds d'une structure. D’où une première classification des structures : ● Structure à nœuds déplaçables : les nœuds peuvent tourner et translater ● Structure à nœuds fixes : les nœuds ne peuvent que tourner ωδ ω ω Nds déplaçables Nds fixes Nds fixes Cette notion est fondamentale pour l'analyse du comportement des structures. Elle a une influence sur les phénomènes d'instabilité des éléments, sur l'évolution, sur la conception, sur le dimensionnement… Exemple : détermination des longueurs de flambement des barres comprimées…
  • 58.
  • 59.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel.
  • 60.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau
  • 61.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau
  • 62.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau Aucun déplacement relatif entre les deux éléments, ni par rapport au repère global.
  • 63.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau Aucun déplacement relatif entre les deux éléments, ni par rapport au repère global. Encastrement relatif : par exemple jarret de portique
  • 64.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau Aucun déplacement relatif entre les deux éléments, ni par rapport au repère global. Encastrement relatif : par exemple jarret de portique A
  • 65.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau Aucun déplacement relatif entre les deux éléments, ni par rapport au repère global. Encastrement relatif : par exemple jarret de portique F A
  • 66.
    Remarque 2 De laremarque précédente découle la notion d'encastrement parfait et d'encastrement mutuel. Encastrement parfait : par exemple pied de poteau Aucun déplacement relatif entre les deux éléments, ni par rapport au repère global. Encastrement relatif : par exemple jarret de portique F A A Déplacement des nœuds par rapport au repère global. Sous l'effet d'une force, le point A a subit une translation et une rotation.
  • 67.
  • 68.
    Remarque 3 Le règlementEurocodes 3 introduit la notion d'assemblages semi-rigides. Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et l'encastrement.
  • 69.
    Remarque 3 Le règlementEurocodes 3 introduit la notion d'assemblages semi-rigides. Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et l'encastrement. En effet, certains assemblages courants utilisés en charpente et autrefois considérés comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre un moment, et modifient donc la distribution des efforts dans les éléments de la structure.
  • 70.
    Remarque 3 Le règlementEurocodes 3 introduit la notion d'assemblages semi-rigides. Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et l'encastrement. En effet, certains assemblages courants utilisés en charpente et autrefois considérés comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre un moment, et modifient donc la distribution des efforts dans les éléments de la structure. Inversement, certains assemblages ne sont pas suffisamment rigides pour être valablement considérés comme des encastrements.
  • 71.
    Remarque 3 Le règlementEurocodes 3 introduit la notion d'assemblages semi-rigides. Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et l'encastrement. En effet, certains assemblages courants utilisés en charpente et autrefois considérés comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre un moment, et modifient donc la distribution des efforts dans les éléments de la structure. Inversement, certains assemblages ne sont pas suffisamment rigides pour être valablement considérés comme des encastrements. Cette notion de comportement est caractérisée par le diagramme de comportement moment / rotation.
  • 72.
    Remarque 3 Le règlementEurocodes 3 introduit la notion d'assemblages semi-rigides. Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et l'encastrement. En effet, certains assemblages courants utilisés en charpente et autrefois considérés comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre un moment, et modifient donc la distribution des efforts dans les éléments de la structure. Inversement, certains assemblages ne sont pas suffisamment rigides pour être valablement considérés comme des encastrements. Cette notion de comportement est caractérisée par le diagramme de comportement moment / rotation. L'encastrement parfait sans aucune rotation n'existe pas. Il existe toujours une déformation dépendant de la rigidité de l'assemblage.
  • 73.
    Remarque 3 Le règlementEurocodes 3 introduit la notion d'assemblages semi-rigides. Ces assemblages ont un comportement intermédiaire entre l'articulation parfaite et l'encastrement. En effet, certains assemblages courants utilisés en charpente et autrefois considérés comme des articulations, possèdent une certaine rigidité et peuvent de ce fait transmettre un moment, et modifient donc la distribution des efforts dans les éléments de la structure. Inversement, certains assemblages ne sont pas suffisamment rigides pour être valablement considérés comme des encastrements. Cette notion de comportement est caractérisée par le diagramme de comportement moment / rotation. L'encastrement parfait sans aucune rotation n'existe pas. Il existe toujours une déformation dépendant de la rigidité de l'assemblage. L'articulation parfaite sans aucune résistance n'existe pas. Il existe toujours une résistance dépendant de la rigidité de l'assemblage.
  • 74.