On considère l’application f définie de 3
IR vers 3
IR par : ),,()),,(( zzxzyzyxf +−=
1) Montrer que l’application f est linéaire.
2) Calculer ff o et en déduire que f est un automorphisme.
3) Déterminer )( fKer et )Im( f .
Exercice 2
1) On considère l’application linéaire f définie de 3
IR vers 4
IR par :
),,,()),,((:),,( 3
zyxxzzyyxzyxfIRzyx +++++=∈∀
a) Calculer l’image de la base canonique de 3
IR par f .
b) En déduire une base de )Im( f et le rang de f ( ))( frg .
c) Déterminer le noyau de f ( ))( fKer et en déduire le rang de f ( ))( frg .
2) Mêmes questions pour l’application linéaire g définie de 3
IR vers 4
IR par :
),,,()),,((:),,( 3
zyxzyxzyxzyxzyxgIRzyx −+−+−−+−−+=∈∀
1) Déterminer une base de )Im( f et une base de )( fKer pour chacune des applications
linéaires.
a) f définie de
3
IR vers
2
IR par : ),(),,( zyxzyxzyxf −−+−=
b) f définie de
3
IR vers
2
IR par : ),(),,( xzyzyxzyxf −+−−=
c) f définie de
2
IR vers
3
IR par : ),,(),( yxxyyxyxf −+−=
d) f définie de
3
IR vers
3
IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++=
e) f définie de
3
IR vers
3
IR par : ),,(),,( zyxzyxzyxzyxf −++−++=
2) Déterminer
1−
f si elle existe.
Dans 3
IR , on considère le sous espace vectoriel V défini par { }0/),,( 3
=−∈= zxIRzyxV .
1) Donner une base B du sous espace vectoriel V .
2) On considère l’application linéaire g définie de V vers 2
IR par :
),()),,(( yxyxzyxg −+=
a) Calculer l’image de la base B par f et en déduire une base de )Im(g .
b) Montrer que g est un isomorphisme de V vers 2
IR et déterminer
1−
g .
Série 2: Applications linéaires
Exercice 1
Exercice 3
Exercice 4
E-mail:djeddi.kamel@gmail.com
2015
Correction de l’exercice 1
1) Montrons que l’application f est linéaire.
♦ Soit ( )23
),( IRyx ∈ : ),,( 321 xxxx = et ),,( 321 yyyy =
On vérifie que 2
),( IR∈∀ βα , on a : ( ) ( )yfxfyxf ..)..( βαβα +=+
♦ L’application f est alors linéaire.
2)
♦ Calcul de l’application ff o .
( )( ) ( )( ) ( )zzxzyfzyxffzyxffzzxzyzyxf ,,,,,,),,()),,(( +−==⇒+−= o
( )( ) ( ) ( ) ),,(,)(,)(,,,, zyxzzzyzzxzzxzyzyxff =+−−+=+−=⇒ o
⇒ 3
IR
Idff =o
♦ f est un automorphisme :
L’application f est linéaire.
L’application f est bijective et ff =−1
: 3
IR
Idff =o
3) Déterminons )( fKer et )Im( f .
♦ Déterminons )( fKer : { })0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
)(),,( fKerzyx ∈ ssi )0,0,0(),,( =+− zzxzy
ssi





=
=+
=−
0
0
0
z
zx
zy
ssi





=
=−=
==
0
0
0
z
zx
zy
{ })0,0,0()( =fKer
♦ Déterminons )Im( f : >=< )(),(),(Im 321 efefeff , { }321 ,, eee une base de 3
IR
{ }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e





−==
==
==
)1,1,1()(
)0,0,1()(
)0,1,0()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
On pose { }321 ,, uuuS = : >=< 321 ,,Im uuuf
Corrections
E-mail:djeddi.kamel@gmail.com
Correction de l’exercice 2
1) ),,,()),,(( zyxxzzyyxzyxf +++++=
a) Calculons l’image de la base canonique { }321 ,, eee de 3
IR par f .





=
=
=
⇒





=
=
=
)1,1,1,0()(
)1,0,1,1()(
)1,1,0,1()(
)1,0,0(
)0,1,0(
)0,0,1(
3
2
1
3
2
1
ef
ef
ef
e
e
e
b) Déduisons en une base de )Im( f et ( ))( frg
♦ Déterminons une base de )Im( f
>>=<=< 321321 ,,)(),(),(Im uuuefefeff avec :





=
=
=
)1,1,1,0(
)1,0,1,1(
)1,1,0,1(
3
2
1
u
u
u
Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
0
00
0
0
0
)0,0,0,0(... 321
321
213
23
21
321
31
32
21
332211 ===⇒







=++
=−=
−=
−=
⇒







=++
=+
=+
=+
⇒=++ ααα
ααα
ααα
αα
αα
ααα
αα
αα
αα
ααα uuu
Le système { }321 ,, uuuS = est alors libre 3)( =⇒ Srg
♦ { }321 ,, uuu est alors une base de fIm :
3
Im IRf =
♦ ⇒== 3)dim(Im)( ffrg 3)( =frg
c) Déterminons une base de )( fKer et ( ))( frg
♦ Déterminons une base de )( fKer : { })0,0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
Déterminons le rang du système 321 ,, uuuS = : 3)(1 ≤≤ Srg
o Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
o )0,0,0(.. 332211 =++ uuu ααα
o )0,0,0()1,1,1.()0,0,1.()1,0,1.( 321 =−++⇒ ααα
)(),,( fKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx
ssi







=++
=+
=+
=+
0
0
0
0
zyx
zx
zy
yx
ssi







−−=
−=
=−=
−=
zxy
xz
xyz
yx
ssi 0=== zyx
♦ Donc : { })0,0,0()( =fKer , ( ) 0)(dim =fKer
♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3
fKerfrgIRfKerfrg 3)( =frg
2) ),,,()),,(( zyxzyxzyxzyxzyxg −+−+−−+−−+=
a) Calculons l’image de la base canonique { }321 ,, eee de 3
IR par g .





−−=
−−=
−−=
⇒





=
=
=
)1,1,1,1()(
)1,1,1,1()(
)1,1,1,1()(
)1,0,0(
)0,1,0(
)0,0,1(
3
2
1
3
2
1
eg
eg
eg
e
e
e
b) Déduisons en une base de )Im(g et ( ))(grg
♦ Déterminons une base de )Im(g
>>=<=< 321321 ,,)(),(),(Im uuuegegegf avec :





−−=
−−=
−−=
)1,1,1,1(
)1,1,1,1(
)1,1,1,1(
3
2
1
u
u
u
Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 23 uu −= 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }21,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg
♦ { }21,uu et { }31,uu sont deux base de gIm : >>=<=< 3121 ,,Im uuuug
♦ ⇒== 2)dim(Im)( ggrg 2)( =grg
c) Déterminons une base de )(gKer et ( ))(grg
♦ Déterminons une base de )(gKer :
{ })0,0,0,0(),,(/),,()( 3
=∈= zyxgIRzyxgKer
)(),,( gKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx
ssi







=−+−
=+−−
=+−
=−+
0
0
0
0
)4(
)3(
)2(
)1(
zyx
zyx
zyx
zyx
ssi



+−
=−+
zyx
zyx 0
)2(
)1(
ssi



=
=
−
+
zy
x 0
)2()1(
)2()1(
ssi )1,1,0.(),,0(),,( yyyzyx == , ( )IRy ∈
♦ Donc : >=< )1,1,0()(gKer , ( ) 1)(dim =gKer
♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3
gKergrgIRgKergrg 2)( =grg
Correction de l’exercice 3
1) Déterminons )( fKer et )Im( f .
a. ),(),,( zyxzyxzyxf −−+−=
Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0(),( =−−+− zyxzyx
o ssi



=−−
=+−
0
0
zyx
zyx
ssi



−=
=−
yxz
yx 0
ssi



=
=
0z
yx
o >=< )0,1,1()( fKer , { })0,1,1( est une base de )( fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
−−==
==
)1,1()(
)1,1()(
)1,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 12 uu −= 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }32,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg
o { }32,uu et { }31,uu sont deux base de fIm
o >>=<=< 3132 ,,Im uuuuf ,
2
Im IRf =
b. ),(),,( xzyzyxzyxf −+−−=
Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0(),( =++−−− zyxzyx
o ssi



=++−
=−−
0
0
zyx
zyx
ssi 0=−− zyx ssi zyx += , ( )IRzy ∈,
o ssi )1,0,1.()0,1,1.(),,(),,( zyzyzyzyx +=+= , ( )IRzy ∈,
o Donc : >=< )1,0,1(),0,1,1()( fKer , { })1,0,1(),0,1,1( est une base de )( fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
−==
−==
)1,1()(
)1,1()(
)1,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 123 uuu −== 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }21,uu est lié car 12 uu −=
Le système { }31,uu est lié car 13 uu −=
Le système { }32,uu est lié car 23 uu =
• 2)( <⇒ Srg
o Le système { }1u est libre 1)( =⇒ Srg
o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf
c. ),,(),( yxxyyxyxf −+−=
Déterminons une base de )( fKer : { })0,0,0(),(/),()( 2
=∈= yxfIRyxfKer
o )(),( fKeryx ∈ ssi )0,0,0(),,( =−+− yxxyyx
o ssi



=+
=−
0
0
yx
yx
ssi



−=
=
yx
yx
ssi 0== yx
o Donc : { })0,0()( =fKer
Déterminons une base de )Im( f : >=< )(),(Im 21 efeff
o { }21,ee la base canonique de 2
IR : )0,1(1 =e , )1,0(2 =e
o On pose { }21,uuS = , avec



−−==
==
)1,1,1()(
)1,1,1()(
22
11
efu
efu
: >=< 21,Im uuf
o Déterminons le rang du système { }21,uuS = : 2)(1 ≤≤ Srg
• Cherchons si 2)( =Srg : { }21,uuS = est-il libre ? { }21,uuS = est libre (calcul)
o 2)( <⇒ Srg
o { }21,uuS = est alors une base de fIm : >=< 21,Im uuf
d. ),22,2(),,( zyxzyxzyxzyxf −+−++++=
Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0,0(),22,2( =−+−++++ zyxzyxzyx
o ssi





=−+−
=++
=++
0
022
02
)3(
)2(
)1(
zyx
zyx
zyx
ssi





=+
−=+
=+
yzx
yzx
y
)(2
0
)3(
)2(
)3()1(
ssi





∈
−=
=
IRx
xz
y 0
o ssi )1,0,1.(),0,(),,( −=−= xxxzyx , ( )IRx∈
o Donc : >−=< )1,0,1()( fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
==
−==
)1,2,1()(
)1,1,2()(
)1,2,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
{ }321 ,, uuuS = est lié car 13 uu = 3)( <⇒ Srg
• Cherchons si 2)( =Srg :
Le système { }21,uu (ou bien { }32,uu ) est libre (calcul) 2)( =⇒ Srg
o { }21,uu et { }32,uu sont deux base de fIm : >>=<=< 3221 ,,Im uuuuf
e. ),,(),,( zyxzyxzyxzyxf −++−++=
Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3
=∈= zyxfIRzyxfKer
o )(),,( fKerzyx ∈ ssi )0,0,0(),,( =−++−++ zyxzyxzyx
o ssi





=−+
=+−
=++
0
0
0
)3(
)2(
)1(
zyx
zyx
zyx
ssi





=
=
=
+
−
−
0
0
0
)3()2(
)2()1(
)3()1(
x
y
z
o Donc : { })0,0,0()( =fKer
Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff
o { }321 ,, eee la base canonique de 3
IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
o On pose { }321 ,, uuuS = avec





−==
−==
==
)1,1,1()(
)1,1,1()(
)1,1,1()(
33
22
11
efu
efu
efu
: >=< 321 ,,Im uuuf
o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg
• Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ?
On vérifie que { }321 ,, uuuS = est libre (calcul).
• 3=⇒ S
o { }321 ,, uuu est alors une base de fIm :
3
Im IRf =
Pour déterminer une base de )Im( f , sans calcul, il suffit de remarquer que :
o f est injective car : { })0,0,0()( =fKer
o f est alors un endomorphisme injectif de 3
IR , donc f est bijective.
o Donc f est surjective et alors
3
Im IRf =
2) Déterminons
1−
f , lorsqu’elle existe.
a. f définie de
3
IR vers
2
IR par : ),(),,( zyxzyxzyxf −−+−=
23
dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective :
o
2
Im IRf = donc f est surjective.
o { })0,0,0()( ≠fKer donc f n’est pas injective.
b. f définie de
3
IR vers
2
IR par : ),(),,( xzyzyxzyxf −+−−=
23
dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective :
o 1)dim(Im =f , donc
2
Im IRf ≠ donc f n’est pas surjective.
o { })0,0,0()( ≠fKer donc f n’est pas injective.
c. f définie de
2
IR vers
3
IR par : ),,(),( yxxyyxyxf −+−=
23
dimdim IRIR < , donc f ne peut pas être surjective donc f ne peut pas être
bijective :
o 2)dim(Im =f , donc
3
Im IRf ≠ donc f n’est pas surjective.
o { })0,0()( =fKer donc f est injective.
o f définie de
3
IR vers
3
IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++=
33
dimdim IRIR = , donc f peut être bijective :
f est bijective ssi f est injective ssi f est surjective
o 2)dim(Im =f donc
3
Im IRf ≠ et f n’est pas surjective.
o { })0,0,0()( ≠fKer donc f n’est pas injective.
o f n’est alors pas un automorphisme de 3
IR .
d. f définie de
3
IR vers
3
IR par : ),,(),,( zyxzyxzyxzyxf −++−++=
33
dimdim IRIR = , donc f peut être bijective :
f est bijective ssi f est injective ssi f est surjective
o 3
Im IRf = donc f est surjective.
o { })0,0,0()( =fKer donc f est injective.
o f est alors un automorphisme de 3
IR .
♦ Déterminons alors
1−
f .
1−
f définie de
3
IR vers
3
IR par : ),,(),,(1
zyxZYXf =−
ssi ),,(),,( ZYXzyxf =
),,(),,( ZYXzyxf = ssi ),,(),,( ZYXzyxzyxzyx =−++−++
ssi





=−+
=+−
=++
Zzyx
Yzyx
Xzyx
)3(
)2(
)1(
ssi





+=
−=
−=
+
−
−
ZYx
YXy
ZXz
2
2
2
)3()2(
)2()1(
)3()1(
ssi








+=
−=
−=
ZYx
YXy
ZXz
2
1
2
1
2
1
2
1
2
1
2
1
♦ La bijection réciproque
1−
f de ),,(),,( zyxzyxzyxzyxf −++−++= est alors définie de
3
IR vers
3
IR par : 





−−+=−
ZXYXZYZYXf
2
1
2
1
,
2
1
2
1
,
2
1
2
1
),,(1
Correction de l’exercice 2
1) Déterminons une base de { }0/),,( 3
=−∈= zxIRzyxV :
♦ Vzyx ∈),,( ssi 0== zx ssi )1,0,1.()0,1,0.(),,(),,( xyxyxzyx +== , ( )IRyx ∈,
♦ Donc : { })1,0,1(),0,1,0(=B est une base de V , 2dim =V
2) l’application linéaire g définie de V vers 2
IR par : ),()),,(( yxyxzyxg −+=
a) Calculons l’image de la base B de V par g .
{ }



=
−=
⇒



=
=
=
)1,1()(
)1,1()(
)1,0,1(
)0,1,0(
:,
2
1
2
1
21
ug
ug
u
u
uuB
b) Montrons que g est un isomorphisme de V vers 2
IR et déterminons
1−
g .
♦ Montrons que g est un isomorphisme de V vers 2
IR :
g est une application linéaire de V vers 2
IR et 2)dim(dim 2
== IRV
Pour montrer que g est un isomorphisme, il suffit alors de montrer que g est injective
ou g est surjective.
Montrons que g est injective : { })0,0,0()(
?
=gKer
o Déterminons )(gKer : { })0,0(),,(/),,()( =∈= zyxgVzyxfKer
o )(),,( gKerzyx ∈ ssi





=−
=+
=−
0
0
0
yx
yx
zx
ssi 0=== zyx
o Donc : { })0,0,0()( =gKer
g est alors injective donc bijective.
Ou bien :
Montrons que g est surjective :
2
?
)Im( IRg =
o >>=<=< 2121 ,))(),(Im vvugugg avec :



=
−=
)1,1(
)1,1(
2
1
v
v
o Déterminons le rang du système { }21,vvS = : 2)(1 ≤≤ Srg
o Le système { }21,vvS = est libre (calcul) 2)dim(Im2)( =⇒=⇒ gSrg
o { }21,uu est alors une base de gIm :
2
)Im( IRg =
g est alors surjective donc bijective.
♦ g est alors un isomorphisme de V vers 2
IR .
♦ Déterminons
1−
g : ),,(),(1
zyxYXg =−
ssi ),(),,( YXzyxg = , avec Vzyx ∈),,(
( )VzyxYXzyxg ∈= ),,(),,(),,( ssi





=−
=+
=−
Yyx
Xyx
zx 0
)3(
)2(
)1(
ssi





−=
+=
=
−
+
YXy
YXx
xz
2
2
)3()2(
)3()2(
)1(
ssi








−=
+=
+=
YXy
YXx
YXz
2
1
2
1
2
1
2
1
2
1
2
1
♦ L’isomorphisme réciproque
1−
g de ),()),,(( yxyxzyxg −+= est alors définie de 2
IR vers
par : 





+−+=−
YXYXYXYXg
2
1
2
1
,
2
1
2
1
,
2
1
2
1
),(1

Exercices corrigés applications linéaires-djeddi kamel

  • 1.
    On considère l’applicationf définie de 3 IR vers 3 IR par : ),,()),,(( zzxzyzyxf +−= 1) Montrer que l’application f est linéaire. 2) Calculer ff o et en déduire que f est un automorphisme. 3) Déterminer )( fKer et )Im( f . Exercice 2 1) On considère l’application linéaire f définie de 3 IR vers 4 IR par : ),,,()),,((:),,( 3 zyxxzzyyxzyxfIRzyx +++++=∈∀ a) Calculer l’image de la base canonique de 3 IR par f . b) En déduire une base de )Im( f et le rang de f ( ))( frg . c) Déterminer le noyau de f ( ))( fKer et en déduire le rang de f ( ))( frg . 2) Mêmes questions pour l’application linéaire g définie de 3 IR vers 4 IR par : ),,,()),,((:),,( 3 zyxzyxzyxzyxzyxgIRzyx −+−+−−+−−+=∈∀ 1) Déterminer une base de )Im( f et une base de )( fKer pour chacune des applications linéaires. a) f définie de 3 IR vers 2 IR par : ),(),,( zyxzyxzyxf −−+−= b) f définie de 3 IR vers 2 IR par : ),(),,( xzyzyxzyxf −+−−= c) f définie de 2 IR vers 3 IR par : ),,(),( yxxyyxyxf −+−= d) f définie de 3 IR vers 3 IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++= e) f définie de 3 IR vers 3 IR par : ),,(),,( zyxzyxzyxzyxf −++−++= 2) Déterminer 1− f si elle existe. Dans 3 IR , on considère le sous espace vectoriel V défini par { }0/),,( 3 =−∈= zxIRzyxV . 1) Donner une base B du sous espace vectoriel V . 2) On considère l’application linéaire g définie de V vers 2 IR par : ),()),,(( yxyxzyxg −+= a) Calculer l’image de la base B par f et en déduire une base de )Im(g . b) Montrer que g est un isomorphisme de V vers 2 IR et déterminer 1− g . Série 2: Applications linéaires Exercice 1 Exercice 3 Exercice 4 E-mail:djeddi.kamel@gmail.com 2015
  • 2.
    Correction de l’exercice1 1) Montrons que l’application f est linéaire. ♦ Soit ( )23 ),( IRyx ∈ : ),,( 321 xxxx = et ),,( 321 yyyy = On vérifie que 2 ),( IR∈∀ βα , on a : ( ) ( )yfxfyxf ..)..( βαβα +=+ ♦ L’application f est alors linéaire. 2) ♦ Calcul de l’application ff o . ( )( ) ( )( ) ( )zzxzyfzyxffzyxffzzxzyzyxf ,,,,,,),,()),,(( +−==⇒+−= o ( )( ) ( ) ( ) ),,(,)(,)(,,,, zyxzzzyzzxzzxzyzyxff =+−−+=+−=⇒ o ⇒ 3 IR Idff =o ♦ f est un automorphisme : L’application f est linéaire. L’application f est bijective et ff =−1 : 3 IR Idff =o 3) Déterminons )( fKer et )Im( f . ♦ Déterminons )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer )(),,( fKerzyx ∈ ssi )0,0,0(),,( =+− zzxzy ssi      = =+ =− 0 0 0 z zx zy ssi      = =−= == 0 0 0 z zx zy { })0,0,0()( =fKer ♦ Déterminons )Im( f : >=< )(),(),(Im 321 efefeff , { }321 ,, eee une base de 3 IR { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e      −== == == )1,1,1()( )0,0,1()( )0,1,0()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf On pose { }321 ,, uuuS = : >=< 321 ,,Im uuuf Corrections E-mail:djeddi.kamel@gmail.com
  • 3.
    Correction de l’exercice2 1) ),,,()),,(( zyxxzzyyxzyxf +++++= a) Calculons l’image de la base canonique { }321 ,, eee de 3 IR par f .      = = = ⇒      = = = )1,1,1,0()( )1,0,1,1()( )1,1,0,1()( )1,0,0( )0,1,0( )0,0,1( 3 2 1 3 2 1 ef ef ef e e e b) Déduisons en une base de )Im( f et ( ))( frg ♦ Déterminons une base de )Im( f >>=<=< 321321 ,,)(),(),(Im uuuefefeff avec :      = = = )1,1,1,0( )1,0,1,1( )1,1,0,1( 3 2 1 u u u Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? 0 00 0 0 0 )0,0,0,0(... 321 321 213 23 21 321 31 32 21 332211 ===⇒        =++ =−= −= −= ⇒        =++ =+ =+ =+ ⇒=++ ααα ααα ααα αα αα ααα αα αα αα ααα uuu Le système { }321 ,, uuuS = est alors libre 3)( =⇒ Srg ♦ { }321 ,, uuu est alors une base de fIm : 3 Im IRf = ♦ ⇒== 3)dim(Im)( ffrg 3)( =frg c) Déterminons une base de )( fKer et ( ))( frg ♦ Déterminons une base de )( fKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer Déterminons le rang du système 321 ,, uuuS = : 3)(1 ≤≤ Srg o Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? o )0,0,0(.. 332211 =++ uuu ααα o )0,0,0()1,1,1.()0,0,1.()1,0,1.( 321 =−++⇒ ααα
  • 4.
    )(),,( fKerzyx ∈ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx ssi        =++ =+ =+ =+ 0 0 0 0 zyx zx zy yx ssi        −−= −= =−= −= zxy xz xyz yx ssi 0=== zyx ♦ Donc : { })0,0,0()( =fKer , ( ) 0)(dim =fKer ♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 fKerfrgIRfKerfrg 3)( =frg 2) ),,,()),,(( zyxzyxzyxzyxzyxg −+−+−−+−−+= a) Calculons l’image de la base canonique { }321 ,, eee de 3 IR par g .      −−= −−= −−= ⇒      = = = )1,1,1,1()( )1,1,1,1()( )1,1,1,1()( )1,0,0( )0,1,0( )0,0,1( 3 2 1 3 2 1 eg eg eg e e e b) Déduisons en une base de )Im(g et ( ))(grg ♦ Déterminons une base de )Im(g >>=<=< 321321 ,,)(),(),(Im uuuegegegf avec :      −−= −−= −−= )1,1,1,1( )1,1,1,1( )1,1,1,1( 3 2 1 u u u Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 23 uu −= 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg ♦ { }21,uu et { }31,uu sont deux base de gIm : >>=<=< 3121 ,,Im uuuug ♦ ⇒== 2)dim(Im)( ggrg 2)( =grg
  • 5.
    c) Déterminons unebase de )(gKer et ( ))(grg ♦ Déterminons une base de )(gKer : { })0,0,0,0(),,(/),,()( 3 =∈= zyxgIRzyxgKer )(),,( gKerzyx ∈ ssi )0,0,0,0(),,,( =++++++ zyxzxzyyx ssi        =−+− =+−− =+− =−+ 0 0 0 0 )4( )3( )2( )1( zyx zyx zyx zyx ssi    +− =−+ zyx zyx 0 )2( )1( ssi    = = − + zy x 0 )2()1( )2()1( ssi )1,1,0.(),,0(),,( yyyzyx == , ( )IRy ∈ ♦ Donc : >=< )1,1,0()(gKer , ( ) 1)(dim =gKer ♦ ( ) ( ) ⇒−=⇒=+ )(dim3)(dim)(dim)( 3 gKergrgIRgKergrg 2)( =grg Correction de l’exercice 3 1) Déterminons )( fKer et )Im( f . a. ),(),,( zyxzyxzyxf −−+−= Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0(),( =−−+− zyxzyx o ssi    =−− =+− 0 0 zyx zyx ssi    −= =− yxz yx 0 ssi    = = 0z yx o >=< )0,1,1()( fKer , { })0,1,1( est une base de )( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −−== == )1,1()( )1,1()( )1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf
  • 6.
    o Déterminons lerang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 12 uu −= 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }32,uu (ou bien { }31,uu ) est libre (calcul) 2)( =⇒ Srg o { }32,uu et { }31,uu sont deux base de fIm o >>=<=< 3132 ,,Im uuuuf , 2 Im IRf = b. ),(),,( xzyzyxzyxf −+−−= Déterminons une base de )( fKer : { })0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0(),( =++−−− zyxzyx o ssi    =++− =−− 0 0 zyx zyx ssi 0=−− zyx ssi zyx += , ( )IRzy ∈, o ssi )1,0,1.()0,1,1.(),,(),,( zyzyzyzyx +=+= , ( )IRzy ∈, o Donc : >=< )1,0,1(),0,1,1()( fKer , { })1,0,1(),0,1,1( est une base de )( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −== −== )1,1()( )1,1()( )1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 123 uuu −== 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu est lié car 12 uu −= Le système { }31,uu est lié car 13 uu −= Le système { }32,uu est lié car 23 uu = • 2)( <⇒ Srg
  • 7.
    o Le système{ }1u est libre 1)( =⇒ Srg o { }1u est alors une base de fIm : >=>=<=< 321Im uuuf c. ),,(),( yxxyyxyxf −+−= Déterminons une base de )( fKer : { })0,0,0(),(/),()( 2 =∈= yxfIRyxfKer o )(),( fKeryx ∈ ssi )0,0,0(),,( =−+− yxxyyx o ssi    =+ =− 0 0 yx yx ssi    −= = yx yx ssi 0== yx o Donc : { })0,0()( =fKer Déterminons une base de )Im( f : >=< )(),(Im 21 efeff o { }21,ee la base canonique de 2 IR : )0,1(1 =e , )1,0(2 =e o On pose { }21,uuS = , avec    −−== == )1,1,1()( )1,1,1()( 22 11 efu efu : >=< 21,Im uuf o Déterminons le rang du système { }21,uuS = : 2)(1 ≤≤ Srg • Cherchons si 2)( =Srg : { }21,uuS = est-il libre ? { }21,uuS = est libre (calcul) o 2)( <⇒ Srg o { }21,uuS = est alors une base de fIm : >=< 21,Im uuf d. ),22,2(),,( zyxzyxzyxzyxf −+−++++= Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0,0(),22,2( =−+−++++ zyxzyxzyx o ssi      =−+− =++ =++ 0 022 02 )3( )2( )1( zyx zyx zyx ssi      =+ −=+ =+ yzx yzx y )(2 0 )3( )2( )3()1( ssi      ∈ −= = IRx xz y 0 o ssi )1,0,1.(),0,(),,( −=−= xxxzyx , ( )IRx∈ o Donc : >−=< )1,0,1()( fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e
  • 8.
    o On pose{ }321 ,, uuuS = avec      −== == −== )1,2,1()( )1,1,2()( )1,2,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? { }321 ,, uuuS = est lié car 13 uu = 3)( <⇒ Srg • Cherchons si 2)( =Srg : Le système { }21,uu (ou bien { }32,uu ) est libre (calcul) 2)( =⇒ Srg o { }21,uu et { }32,uu sont deux base de fIm : >>=<=< 3221 ,,Im uuuuf e. ),,(),,( zyxzyxzyxzyxf −++−++= Déterminons une base de )( fKer : { })0,0,0(),,(/),,()( 3 =∈= zyxfIRzyxfKer o )(),,( fKerzyx ∈ ssi )0,0,0(),,( =−++−++ zyxzyxzyx o ssi      =−+ =+− =++ 0 0 0 )3( )2( )1( zyx zyx zyx ssi      = = = + − − 0 0 0 )3()2( )2()1( )3()1( x y z o Donc : { })0,0,0()( =fKer Déterminons une base de )Im( f : >=< )(),(),(Im 321 efefeff o { }321 ,, eee la base canonique de 3 IR : )0,0,1(1 =e , )0,1,0(2 =e , )1,0,0(3 =e o On pose { }321 ,, uuuS = avec      −== −== == )1,1,1()( )1,1,1()( )1,1,1()( 33 22 11 efu efu efu : >=< 321 ,,Im uuuf o Déterminons le rang du système { }321 ,, uuuS = : 3)(1 ≤≤ Srg • Cherchons si 3)( =Srg : { }321 ,, uuuS = est-il libre ? On vérifie que { }321 ,, uuuS = est libre (calcul). • 3=⇒ S
  • 9.
    o { }321,, uuu est alors une base de fIm : 3 Im IRf = Pour déterminer une base de )Im( f , sans calcul, il suffit de remarquer que : o f est injective car : { })0,0,0()( =fKer o f est alors un endomorphisme injectif de 3 IR , donc f est bijective. o Donc f est surjective et alors 3 Im IRf = 2) Déterminons 1− f , lorsqu’elle existe. a. f définie de 3 IR vers 2 IR par : ),(),,( zyxzyxzyxf −−+−= 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective : o 2 Im IRf = donc f est surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. b. f définie de 3 IR vers 2 IR par : ),(),,( xzyzyxzyxf −+−−= 23 dimdim IRIR > , donc f ne peut pas être injective donc f ne peut pas être bijective : o 1)dim(Im =f , donc 2 Im IRf ≠ donc f n’est pas surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. c. f définie de 2 IR vers 3 IR par : ),,(),( yxxyyxyxf −+−= 23 dimdim IRIR < , donc f ne peut pas être surjective donc f ne peut pas être bijective : o 2)dim(Im =f , donc 3 Im IRf ≠ donc f n’est pas surjective. o { })0,0()( =fKer donc f est injective. o f définie de 3 IR vers 3 IR par : ),22,2(),,( zyxzyxzyxzyxf −+−++++= 33 dimdim IRIR = , donc f peut être bijective : f est bijective ssi f est injective ssi f est surjective o 2)dim(Im =f donc 3 Im IRf ≠ et f n’est pas surjective. o { })0,0,0()( ≠fKer donc f n’est pas injective. o f n’est alors pas un automorphisme de 3 IR .
  • 10.
    d. f définiede 3 IR vers 3 IR par : ),,(),,( zyxzyxzyxzyxf −++−++= 33 dimdim IRIR = , donc f peut être bijective : f est bijective ssi f est injective ssi f est surjective o 3 Im IRf = donc f est surjective. o { })0,0,0()( =fKer donc f est injective. o f est alors un automorphisme de 3 IR . ♦ Déterminons alors 1− f . 1− f définie de 3 IR vers 3 IR par : ),,(),,(1 zyxZYXf =− ssi ),,(),,( ZYXzyxf = ),,(),,( ZYXzyxf = ssi ),,(),,( ZYXzyxzyxzyx =−++−++ ssi      =−+ =+− =++ Zzyx Yzyx Xzyx )3( )2( )1( ssi      += −= −= + − − ZYx YXy ZXz 2 2 2 )3()2( )2()1( )3()1( ssi         += −= −= ZYx YXy ZXz 2 1 2 1 2 1 2 1 2 1 2 1 ♦ La bijection réciproque 1− f de ),,(),,( zyxzyxzyxzyxf −++−++= est alors définie de 3 IR vers 3 IR par :       −−+=− ZXYXZYZYXf 2 1 2 1 , 2 1 2 1 , 2 1 2 1 ),,(1 Correction de l’exercice 2 1) Déterminons une base de { }0/),,( 3 =−∈= zxIRzyxV : ♦ Vzyx ∈),,( ssi 0== zx ssi )1,0,1.()0,1,0.(),,(),,( xyxyxzyx +== , ( )IRyx ∈, ♦ Donc : { })1,0,1(),0,1,0(=B est une base de V , 2dim =V 2) l’application linéaire g définie de V vers 2 IR par : ),()),,(( yxyxzyxg −+=
  • 11.
    a) Calculons l’imagede la base B de V par g . { }    = −= ⇒    = = = )1,1()( )1,1()( )1,0,1( )0,1,0( :, 2 1 2 1 21 ug ug u u uuB b) Montrons que g est un isomorphisme de V vers 2 IR et déterminons 1− g . ♦ Montrons que g est un isomorphisme de V vers 2 IR : g est une application linéaire de V vers 2 IR et 2)dim(dim 2 == IRV Pour montrer que g est un isomorphisme, il suffit alors de montrer que g est injective ou g est surjective. Montrons que g est injective : { })0,0,0()( ? =gKer o Déterminons )(gKer : { })0,0(),,(/),,()( =∈= zyxgVzyxfKer o )(),,( gKerzyx ∈ ssi      =− =+ =− 0 0 0 yx yx zx ssi 0=== zyx o Donc : { })0,0,0()( =gKer g est alors injective donc bijective. Ou bien : Montrons que g est surjective : 2 ? )Im( IRg = o >>=<=< 2121 ,))(),(Im vvugugg avec :    = −= )1,1( )1,1( 2 1 v v o Déterminons le rang du système { }21,vvS = : 2)(1 ≤≤ Srg o Le système { }21,vvS = est libre (calcul) 2)dim(Im2)( =⇒=⇒ gSrg o { }21,uu est alors une base de gIm : 2 )Im( IRg = g est alors surjective donc bijective. ♦ g est alors un isomorphisme de V vers 2 IR .
  • 12.
    ♦ Déterminons 1− g :),,(),(1 zyxYXg =− ssi ),(),,( YXzyxg = , avec Vzyx ∈),,( ( )VzyxYXzyxg ∈= ),,(),,(),,( ssi      =− =+ =− Yyx Xyx zx 0 )3( )2( )1( ssi      −= += = − + YXy YXx xz 2 2 )3()2( )3()2( )1( ssi         −= += += YXy YXx YXz 2 1 2 1 2 1 2 1 2 1 2 1 ♦ L’isomorphisme réciproque 1− g de ),()),,(( yxyxzyxg −+= est alors définie de 2 IR vers par :       +−+=− YXYXYXYXg 2 1 2 1 , 2 1 2 1 , 2 1 2 1 ),(1