SlideShare une entreprise Scribd logo
La convection
1. Définitions
Le transfert de chaleur par convection existe au sein des milieux fluides
(mouvement de matière) dans lesquels il est généralement prépondérant. Selon la
nature du mécanisme qui provoque le mouvement du fluide on distingue :
1.1 La convection libre ou naturelle :
Le fluide est mis en mouvement sous le seul effet des
différences de masse volumique, résultant des
différences de températures, sur les frontières et d’un
champ de forces extérieures (la pesanteur).
1.2 La convection forcée :
Le mouvement du fluide est induit par une cause
indépendante des différences de température (pompe,
ventilateur...).
L’étude du transfert de chaleur par convection permet de
déterminer les échanges de chaleur se produisant entre
un fluide et une paroi.
1.3 Régime d’écoulement
Compte tenu du lien entre le transfert de masse et le transfert de chaleur, il est
nécessaire de considérer le régime d’écoulement. Considérons à titre d’exemple
l’écoulement d’un fluide dans une conduite :
- En régime laminaire, l’écoulement s’effectue par couches pratiquement
indépendantes.
Les échanges de chaleur s’effectuent donc :
- Par conduction uniquement si l’on considère une direction normale aux filets fluides.
- Par convection et conduction (négligeable) si l’on considère une direction non
normale aux filets fluides.
En régime turbulent, l’écoulement n’est pas unidirectionnel :
L’échange de chaleur dans la zone turbulente s’effectue par convection et conduction
dans toutes les directions. On vérifie que la conduction est généralement négligeable
par rapport à la convection, la turbulence augmente le flux de chaleur échangé entre
le fluide et la paroi.
Le changement de régime est généralement dû à l'augmentation d'un certain
paramètre (vitesse, température) au dessus d'une valeur critique on quantifie
cette valeur critique par des nombre adimensionnels par exemple, le nombre
de Reynolds (en convection forcée)
Re=VD/ν
V: vitesse de l'écoulement; D: diamètre de la conduite; ν: viscosité dynamique.
Par exemple pour le cas de l'écoulement dans les conduites; Rec=2300.
Re<2300 l'écoulement est laminaire.
Re>2300 l'écoulement est turbulent.
2. Expression du flux de chaleur
2.1 Couche limite dynamique et thermique
La couche limite est une région du fluide qui est proche des parois solides dont
l'influence de la viscosité est très importante, la vitesse et la température dans cette
région sont différentes de celle du fluide loin des parois. L'épaisseur de cette couche
varie en fonction de plusieurs paramètres: viscosité, distance,…
Le gradient thermique est particulièrement important au voisinage de la paroi, c’est
à dire dans la sous-couche laminaire. Quelque soit le régime d’écoulement du fluide,
on considère que la résistance thermique est entièrement située dans le film
laminaire qui joue le rôle d’isolant thermique (couche limite thermique).
2.2 Coefficient de transfert de chaleur par convection
La loi de transfert de chaleur par convection est une loi simple mais présente une
énorme difficulté dans son application. Elle amène à définir un cœfficient de transfert
de chaleur par convection h (W/m2.K).
Quelque soit le type de convection et le régime d'écoulement le flux de chaleur entre
le fluide et la paroi s'écrit comme suit:
( ) &
sQ hS T T
Considérer une surface de forme arbitraire et de
surface totale S, maintenue à une température
uniforme (Ts > T∞) exposés à un écoulement de fluide
à la vitesse u∞ .
on attend à ce que le coefficient de convection varie au-dessus de la surface dans ce
cas le flux thermique local, q peut être exprimé comme : ( )x x sq h T T 
Le flux de chaleur total peut être obtenu en intégrant le flux thermique local au-dessus
de la surface totale S(ou As). C'est :
( )sQ hS T T &
Où est coefficient de convection moyen:h
0
0
1
xh h dx
x
 
2.3 Estimation du coefficient de convection
Dans les problèmes de convection l’objectif principal est de déterminer le coefficient
de convection h pour différentes géométries et de multiples conditions d’écoulement.
donc h dépend d'un nombre important de paramètres: propriétés physiques du
fluides, caractéristiques de l'écoulement, la température, la géométrie,….
( , , , , , , , , )f s Ph f T T v C Q l D  &
Il s'avère très utile d'utiliser la technique de l'analyse adimensionnelle (similitude)
pour laquelle on groupe les grandeurs physiques sous forme de nombres
adimensionnels, et on déterminer expérimentalement et théoriquement la relation
entre ces nombres qu'on représente par des corrélations.
Les nombres sans dimensions importants dans la convection thermique sont :
Le nombre de Reynolds: Re=ρVD/ν
Le nombre de Prandtl : Pr=CPμ/λ=ν/a
Le nombre de Nusselt : Nu=hL/λ
3. Calcul du flux de chaleur en convection forcée
L’application de l’analyse dimensionnelle montre que la relation liant
le flux de chaleur transféré par convection aux variables dont il dépend
peut être recherchée sous la forme d’une relation entre trois nombres
adimensionnels :
Nu = f (Re, Pr)
Le calcul d’un flux de chaleur transmis par convection forcée s’effectue
donc de la manière suivante :
1. Calcul des nombres adimensionnels de Reynolds et de Prandtl.
2. Suivant la valeur de Re et la configuration choix de la corrélation
3. Calcul de Nu par application de cette corrélation.
4. Calcul de h =λNu/L et de ( )s fQ hS T T &
Quelques Corrélations usuelles
3.1 Ecoulements Externes
Exemple de la plaque plane
Malgré sa simplicité cette géométrie possède de nombreuses applications: Murs,
ailes, plafonds,…
Dans cette configuration le développement
de la couche limite laminaire commence au
bord d'attaque (x =0), et le passage à la
turbulence peut se produire à un distance
critique xc pour lequel le nombre de
Reynolds critique est Rex,c = 5.105.
Nous présenterons les corrélations appropriées pour prévoir l'épaisseur de la couche
limite aussi bien que le coefficient de convection. Nous commençons par les
conditions de la couche limite laminaire.
3.1.1 Couche limite laminaire
Comme illustré dans la fig., l'épaisseur de la couche limite dynamique δ(x) est défini
pour que u/u∞ = 0.99 et son expression pour la plaque plane est :
 
 1/2
x( ) 5 Re avec Re / (nombre de Reynolds local)xx x u x
Dans ce cas le nombre de Nusselt local :
   1/2 1/3 5
/ 0.332Re Pr , Re 5 10x x xNu h x
Et le nombre de Nusselt moyen : 1/2 1/3
/ 0.664Re PrLNu hL  
3.1.2 Couche limite turbulente
Pour des écoulements turbulents, à une approximation raisonnable, l'épaisseur
hydrodynamique de la couche limite peut être exprimée comme suit :
1/5 8
x( ) 0.37 Re avec Re 10xx x 
 
Dans ce cas le nombre de Nusselt local :
  4/5 1/3 8
/ 0.0296Re Pr (Re 10 ; 0.6<Pr<60)x x x xNu h x
Et le nombre de Nusselt moyen :
    4/5 1/3 5 8
/ 0.037Re Pr (5 10 Re 10 ; 0.6<Pr<60)L xNu hL
3.2 Ecoulements internes
Exemple d’écoulement dans un tube
Un fluide s’écoule en régime permanent dans une conduite cylindrique circulaire de
diamètre intérieur D. Dans une section droite, à l’abscisse x par rapport à l’entrée de la
conduite, la vitesse moyenne du fluide est Um, sa température moyenne Tm, et la
température de la paroi Tp.
échangé à travers l’aire latérale de paroi dS comprise entre les abscisses x et x + dx:
CdQ&Les corrélations expérimentales permettent de calculer le flux de chaleur
  & -C s mdQ h T T P dx
La conservation d'énergie permet d'écrire
& &C P mdQ mc dT
Cette relation est valide peu importe la condition à la frontière; Donc partir de
la conservation d'énergie on peut dériver une expression pour la variation de
Tm avec x
  
&
( )m
m s
P
dT hP
T T
dx mc
En régime laminaire établit ( Re < 2000), et loin de la zone d'entrée on peut appliquer
les corrélations qui ont pour expressions:
Nu=3.66 (température de la paroi constante)
Nu=4.36 (Flux de chaleur à la paroi constant)
3.2.1 Cas d'un flux de chaleur constant
Le flux convectif total d CQ&
devient simplement q.P.dx
Et la température moyenne devient
m mi
P
qP
T T x
mc
 
&
La température moyenne varie linéairement avec la distance.
3.2.2 Cas d'une paroi à température constante
Pour Ts constante comment Tm varie avec x (h=constant) ?

   
&
( )
( )m m
m
P
dT d T hP
T
dx dx mc
En séparant les variables et intégrant de l’entrée à la sortie du tube:



  
 & 0
( )s
e
T L
m m
m PT
dT d T hP
dx
dx T mc
Où encore

 
 &
ln s
e P
T hP
L
T mc

 
 &
exp( )ms s
me Ps
T T hP
L
T T mc
On obtient
Pour une distance quelconque x on a:

 
 &
( )
exp( )m s
me Ps
T x T hP
x
T T mc
4. La Convection naturelle
La convection naturelle est la forme d’échange convectif la plus couramment
observée. Au contact d’un corps chaud , la température de l’air augmente, donc sa
masse volumique décroît. L’air ambiant, de masse volumique plus élevée, exerce une
poussée d’Archimède vers le haut, et la masse d’air chaude s’élève en enlevant de la
chaleur au corps. Elle est remplacée par une masse d’air froid qui, au contact du corps
s’échauffe, et ainsi de suite.
Ces échanges jouent un grand rôle en pratique. On citera en particulier:
le chauffage domestique
le calcul des pertes par les parois dans les installations industrielles
Comme les vitesses en convection naturelle demeurent faibles, les
échanges sont nettement moins intenses qu’en convection forcée
Convection naturelle de Rayleigh- Bénard). La
couche de liquide est chauffée par le bas. Des
particules métalliques en suspension
permettent de visualiser les cellules de
convection qui ont presque toutes une forme
hexagonale.
Exemples
4.2 Calcul du flux de chaleur lors de la convection naturelle
Dans le cas d’un transfert de chaleur par convection naturelle, le coefficient de
convection dépend des caractéristiques du fluide : λ, ρ, μ, cp, β, g, de la paroi
caractérisée par la longueur L, et de l’écart de température ΔT aux bornes ce qu'on
peut traduire par une relation du type :
h = f (λ, ρ, μ, cp, β, g, L, ΔΤ)
L’application de l’analyse dimensionnelle montre que la relation liant le flux de
chaleur transféré par convection aux variables dont il dépend peut être recherchée
sous la forme d’une relation entre trois nombres adimensionnels :
Nu = f (Gr, Pr)
Gr=ρ2g.β.ΔT.D3/μ2 : le nombre de Grashof.
Le calcul du flux de chaleur par convection naturelle s’effectue donc de la manière
suivante :
1. Calcul des nombres adimensionnels de Grashof et de Prandtl.
2. Suivant la valeur de Gr et configuration choix de la corrélation.
3. Calcul de Nu par application de cette corrélation.
4. Calcul de h =λNu/L et de ( )s fQ hS T T &
1. Calcul des nombres adimensionnels de Grashof et de Prandtl.
2. Suivant la valeur de Gr et configuration choix de la corrélation.
3. Calcul de Nu par application de cette corrélation.
4. Calcul de h =λNu/L et de ( )s fQ hS T T &
La convection
La convection
La convection
La convection
La convection
La convection
La convection
La convection
La convection
La convection

Contenu connexe

Tendances

Chapitre 1 intro tdc
Chapitre 1 intro tdcChapitre 1 intro tdc
Chapitre 1 intro tdc
Sahnoune Khaled
 
Exercices corrigés chap 3 : Second principe de la thermodynamique
Exercices corrigés chap 3 : Second principe de la thermodynamiqueExercices corrigés chap 3 : Second principe de la thermodynamique
Exercices corrigés chap 3 : Second principe de la thermodynamique
Omar Benchiheub
 
Transfer de chaleur exercice corriger
Transfer de chaleur exercice corriger Transfer de chaleur exercice corriger
Transfer de chaleur exercice corriger
ChennoufHalim
 
Transferts Thermiques
Transferts ThermiquesTransferts Thermiques
Transferts Thermiques
AliBenMoussa10
 
Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)
Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)
Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)
MATENE ELHACENE
 
Hydraulique en Charge
Hydraulique en ChargeHydraulique en Charge
Hydraulique en Charge
Roland Yonaba
 
La conduction
La conductionLa conduction
La conduction
Sahnoune Khaled
 
Chap2 Premier principe de la thermodynamique
Chap2   Premier principe de la thermodynamiqueChap2   Premier principe de la thermodynamique
Chap2 Premier principe de la thermodynamique
Omar Benchiheub
 
Calcul Stabilite Des Barrages
Calcul Stabilite Des BarragesCalcul Stabilite Des Barrages
Calcul Stabilite Des Barrages
OURAHOU Mohamed
 
Chap1. Lois des gaz parfaits et réels
Chap1. Lois des gaz parfaits et réels Chap1. Lois des gaz parfaits et réels
Chap1. Lois des gaz parfaits et réels
Omar Benchiheub
 
Chap 4. Equilibres chimiques
Chap 4. Equilibres chimiquesChap 4. Equilibres chimiques
Chap 4. Equilibres chimiques
Omar Benchiheub
 
transfert_thermique_isolation_v2.ppt
transfert_thermique_isolation_v2.ppttransfert_thermique_isolation_v2.ppt
transfert_thermique_isolation_v2.ppt
KaHina28
 
Compte rendu n°3(pompe a chaleur)
Compte rendu n°3(pompe a chaleur)Compte rendu n°3(pompe a chaleur)
Compte rendu n°3(pompe a chaleur)
Hatem Jebali
 
Rapport pfe Oumaima AJBARA NAHY (1).pdf
Rapport pfe Oumaima AJBARA NAHY (1).pdfRapport pfe Oumaima AJBARA NAHY (1).pdf
Rapport pfe Oumaima AJBARA NAHY (1).pdf
simmsos
 
Thermique batiment
Thermique batimentThermique batiment
Thermique batiment
ennouri-marwa
 
Cours méthodes thermiques
Cours méthodes thermiques Cours méthodes thermiques
Cours méthodes thermiques
mariem dariss
 
Chap5. Equilibres de phases
Chap5. Equilibres de phasesChap5. Equilibres de phases
Chap5. Equilibres de phases
Omar Benchiheub
 
Memoire "ECHANGEUR DE CHALEUR"
Memoire "ECHANGEUR DE CHALEUR"Memoire "ECHANGEUR DE CHALEUR"
Memoire "ECHANGEUR DE CHALEUR"
amirouche87
 
Réacteurs réels
Réacteurs réelsRéacteurs réels
Réacteurs réels
WassimKechid
 
Chap3 traitement de-l_air
Chap3 traitement de-l_airChap3 traitement de-l_air
Chap3 traitement de-l_air
Fallou Diouf
 

Tendances (20)

Chapitre 1 intro tdc
Chapitre 1 intro tdcChapitre 1 intro tdc
Chapitre 1 intro tdc
 
Exercices corrigés chap 3 : Second principe de la thermodynamique
Exercices corrigés chap 3 : Second principe de la thermodynamiqueExercices corrigés chap 3 : Second principe de la thermodynamique
Exercices corrigés chap 3 : Second principe de la thermodynamique
 
Transfer de chaleur exercice corriger
Transfer de chaleur exercice corriger Transfer de chaleur exercice corriger
Transfer de chaleur exercice corriger
 
Transferts Thermiques
Transferts ThermiquesTransferts Thermiques
Transferts Thermiques
 
Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)
Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)
Methode Numerique De Resolution Des Equations De Navier Stockes(Matene Elhacene)
 
Hydraulique en Charge
Hydraulique en ChargeHydraulique en Charge
Hydraulique en Charge
 
La conduction
La conductionLa conduction
La conduction
 
Chap2 Premier principe de la thermodynamique
Chap2   Premier principe de la thermodynamiqueChap2   Premier principe de la thermodynamique
Chap2 Premier principe de la thermodynamique
 
Calcul Stabilite Des Barrages
Calcul Stabilite Des BarragesCalcul Stabilite Des Barrages
Calcul Stabilite Des Barrages
 
Chap1. Lois des gaz parfaits et réels
Chap1. Lois des gaz parfaits et réels Chap1. Lois des gaz parfaits et réels
Chap1. Lois des gaz parfaits et réels
 
Chap 4. Equilibres chimiques
Chap 4. Equilibres chimiquesChap 4. Equilibres chimiques
Chap 4. Equilibres chimiques
 
transfert_thermique_isolation_v2.ppt
transfert_thermique_isolation_v2.ppttransfert_thermique_isolation_v2.ppt
transfert_thermique_isolation_v2.ppt
 
Compte rendu n°3(pompe a chaleur)
Compte rendu n°3(pompe a chaleur)Compte rendu n°3(pompe a chaleur)
Compte rendu n°3(pompe a chaleur)
 
Rapport pfe Oumaima AJBARA NAHY (1).pdf
Rapport pfe Oumaima AJBARA NAHY (1).pdfRapport pfe Oumaima AJBARA NAHY (1).pdf
Rapport pfe Oumaima AJBARA NAHY (1).pdf
 
Thermique batiment
Thermique batimentThermique batiment
Thermique batiment
 
Cours méthodes thermiques
Cours méthodes thermiques Cours méthodes thermiques
Cours méthodes thermiques
 
Chap5. Equilibres de phases
Chap5. Equilibres de phasesChap5. Equilibres de phases
Chap5. Equilibres de phases
 
Memoire "ECHANGEUR DE CHALEUR"
Memoire "ECHANGEUR DE CHALEUR"Memoire "ECHANGEUR DE CHALEUR"
Memoire "ECHANGEUR DE CHALEUR"
 
Réacteurs réels
Réacteurs réelsRéacteurs réels
Réacteurs réels
 
Chap3 traitement de-l_air
Chap3 traitement de-l_airChap3 traitement de-l_air
Chap3 traitement de-l_air
 

En vedette

Synthese iex 04
Synthese iex 04Synthese iex 04
Synthese iex 04
Sahnoune Khaled
 
Rattrapage transfert 3_em _2010_11
Rattrapage transfert 3_em _2010_11Rattrapage transfert 3_em _2010_11
Rattrapage transfert 3_em _2010_11
Amine Chahed
 
Emd 1 iex 04
Emd 1 iex 04Emd 1 iex 04
Emd 1 iex 04
Sahnoune Khaled
 
Emd 2 iex 05
Emd 2 iex 05Emd 2 iex 05
Emd 2 iex 05
Sahnoune Khaled
 
Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_
Amine Chahed
 
Heat Transfer
Heat TransferHeat Transfer
Heat Transfer
Surender Rawat
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
Ronald Tenesaca
 
introduction a l'ingenieur petroliere
introduction a l'ingenieur petroliereintroduction a l'ingenieur petroliere
introduction a l'ingenieur petroliere
selim Haouari
 
Formation Ariel : Redaction administrative
Formation Ariel : Redaction administrativeFormation Ariel : Redaction administrative
Formation Ariel : Redaction administrative
impactjeunes
 
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
SlideShare
 

En vedette (10)

Synthese iex 04
Synthese iex 04Synthese iex 04
Synthese iex 04
 
Rattrapage transfert 3_em _2010_11
Rattrapage transfert 3_em _2010_11Rattrapage transfert 3_em _2010_11
Rattrapage transfert 3_em _2010_11
 
Emd 1 iex 04
Emd 1 iex 04Emd 1 iex 04
Emd 1 iex 04
 
Emd 2 iex 05
Emd 2 iex 05Emd 2 iex 05
Emd 2 iex 05
 
Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_Ex transfert 3_em _2010_11_
Ex transfert 3_em _2010_11_
 
Heat Transfer
Heat TransferHeat Transfer
Heat Transfer
 
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer6th ed solution manual---fundamentals-of-heat-and-mass-transfer
6th ed solution manual---fundamentals-of-heat-and-mass-transfer
 
introduction a l'ingenieur petroliere
introduction a l'ingenieur petroliereintroduction a l'ingenieur petroliere
introduction a l'ingenieur petroliere
 
Formation Ariel : Redaction administrative
Formation Ariel : Redaction administrativeFormation Ariel : Redaction administrative
Formation Ariel : Redaction administrative
 
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
A Guide to SlideShare Analytics - Excerpts from Hubspot's Step by Step Guide ...
 

Similaire à La convection

cc_solution 2017_lf.pptx
cc_solution 2017_lf.pptxcc_solution 2017_lf.pptx
cc_solution 2017_lf.pptx
AlOmossa
 
La viscosimétrie
La viscosimétrieLa viscosimétrie
La viscosimétrie
Maurice Maeck
 
Transferts thermiques 2024 pour exercice .pdf
Transferts thermiques 2024 pour exercice .pdfTransferts thermiques 2024 pour exercice .pdf
Transferts thermiques 2024 pour exercice .pdf
BaderBou
 
Td phys bat2_s2
Td phys bat2_s2Td phys bat2_s2
Td phys bat2_s2
Csc Amine
 
Séance 4.pdf
Séance 4.pdfSéance 4.pdf
Séance 4.pdf
HamidInekach
 
Transfert de chaleur vol 2
Transfert de chaleur vol 2Transfert de chaleur vol 2
Transfert de chaleur vol 2
ChennoufHalim
 
pheno_transport.pdf
pheno_transport.pdfpheno_transport.pdf
pheno_transport.pdf
salahmilan
 
GCV_S1_2021.pptx
GCV_S1_2021.pptxGCV_S1_2021.pptx
GCV_S1_2021.pptx
abdellatif43
 
mécanique des fluides numérique 2 38.pdf
mécanique des fluides numérique 2 38.pdfmécanique des fluides numérique 2 38.pdf
mécanique des fluides numérique 2 38.pdf
MoustaphaKONE5
 
3 Cours de mécaniques des fluides.pdf
3 Cours de mécaniques des fluides.pdf3 Cours de mécaniques des fluides.pdf
3 Cours de mécaniques des fluides.pdf
korukobasket
 
Inertie thermique dans le batiment
Inertie thermique dans le batimentInertie thermique dans le batiment
Inertie thermique dans le batiment
Sami Sahli
 
Transfert thermique par conduction dans un tuyau cylindrique
Transfert thermique par conduction dans un tuyau cylindriqueTransfert thermique par conduction dans un tuyau cylindrique
Transfert thermique par conduction dans un tuyau cylindrique
TCHOFFO2001
 
Atto U Et Al 1999 Review
Atto U Et Al 1999 ReviewAtto U Et Al 1999 Review
Atto U Et Al 1999 Review
guest487a312
 
13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf
bouafia ahmed
 
13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf
bouafia ahmed
 
13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf
bouafia ahmed
 
Diffusion thermique
Diffusion thermiqueDiffusion thermique
Diffusion thermique
jmlg29
 

Similaire à La convection (20)

cc_solution 2017_lf.pptx
cc_solution 2017_lf.pptxcc_solution 2017_lf.pptx
cc_solution 2017_lf.pptx
 
La viscosimétrie
La viscosimétrieLa viscosimétrie
La viscosimétrie
 
Transferts thermiques 2024 pour exercice .pdf
Transferts thermiques 2024 pour exercice .pdfTransferts thermiques 2024 pour exercice .pdf
Transferts thermiques 2024 pour exercice .pdf
 
Td phys bat2_s2
Td phys bat2_s2Td phys bat2_s2
Td phys bat2_s2
 
Séance 4.pdf
Séance 4.pdfSéance 4.pdf
Séance 4.pdf
 
Transfert de chaleur vol 2
Transfert de chaleur vol 2Transfert de chaleur vol 2
Transfert de chaleur vol 2
 
pheno_transport.pdf
pheno_transport.pdfpheno_transport.pdf
pheno_transport.pdf
 
GCV_S1_2021.pptx
GCV_S1_2021.pptxGCV_S1_2021.pptx
GCV_S1_2021.pptx
 
mécanique des fluides numérique 2 38.pdf
mécanique des fluides numérique 2 38.pdfmécanique des fluides numérique 2 38.pdf
mécanique des fluides numérique 2 38.pdf
 
Siham abdou
Siham abdouSiham abdou
Siham abdou
 
3 Cours de mécaniques des fluides.pdf
3 Cours de mécaniques des fluides.pdf3 Cours de mécaniques des fluides.pdf
3 Cours de mécaniques des fluides.pdf
 
Inertie thermique dans le batiment
Inertie thermique dans le batimentInertie thermique dans le batiment
Inertie thermique dans le batiment
 
Transfert thermique par conduction dans un tuyau cylindrique
Transfert thermique par conduction dans un tuyau cylindriqueTransfert thermique par conduction dans un tuyau cylindrique
Transfert thermique par conduction dans un tuyau cylindrique
 
Ben Arous2
Ben Arous2Ben Arous2
Ben Arous2
 
Atto U Et Al 1999 Review
Atto U Et Al 1999 ReviewAtto U Et Al 1999 Review
Atto U Et Al 1999 Review
 
Chapitre2
Chapitre2Chapitre2
Chapitre2
 
13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf
 
13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf
 
13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf13.3.a Exercice géothermie_basse énergie.pdf
13.3.a Exercice géothermie_basse énergie.pdf
 
Diffusion thermique
Diffusion thermiqueDiffusion thermique
Diffusion thermique
 

Plus de Sahnoune Khaled

Synthese iex 05
Synthese iex 05Synthese iex 05
Synthese iex 05
Sahnoune Khaled
 
Synthese iex 03
Synthese iex 03Synthese iex 03
Synthese iex 03
Sahnoune Khaled
 
Emd 3 iex
Emd 3 iexEmd 3 iex
Emd 3 iex
Sahnoune Khaled
 
Emd 2 iex 04
Emd 2 iex 04Emd 2 iex 04
Emd 2 iex 04
Sahnoune Khaled
 
Emd 2 iex 03
Emd 2 iex 03Emd 2 iex 03
Emd 2 iex 03
Sahnoune Khaled
 
Emd 1 iex 05
Emd 1 iex 05Emd 1 iex 05
Emd 1 iex 05
Sahnoune Khaled
 
Emd 1 iex 03
Emd 1 iex 03Emd 1 iex 03
Emd 1 iex 03
Sahnoune Khaled
 
Correction emd2 iex04
Correction emd2 iex04Correction emd2 iex04
Correction emd2 iex04
Sahnoune Khaled
 
Correction emd1 iex
Correction emd1 iexCorrection emd1 iex
Correction emd1 iex
Sahnoune Khaled
 
Correction emd1 iex 03
Correction emd1 iex 03Correction emd1 iex 03
Correction emd1 iex 03
Sahnoune Khaled
 
Correction emd 3 iex 03
Correction emd 3 iex 03Correction emd 3 iex 03
Correction emd 3 iex 03
Sahnoune Khaled
 
Correction emd 2 iex 05
Correction emd 2 iex 05Correction emd 2 iex 05
Correction emd 2 iex 05
Sahnoune Khaled
 
Correction emd 2 iex 05
Correction emd 2 iex 05Correction emd 2 iex 05
Correction emd 2 iex 05
Sahnoune Khaled
 
Correction emd 1 iex 05
Correction emd 1 iex 05Correction emd 1 iex 05
Correction emd 1 iex 05
Sahnoune Khaled
 
Correction emd 1 iex 04
Correction emd 1 iex 04Correction emd 1 iex 04
Correction emd 1 iex 04
Sahnoune Khaled
 
Coorrection emd 2 iex 03
Coorrection emd 2 iex 03Coorrection emd 2 iex 03
Coorrection emd 2 iex 03
Sahnoune Khaled
 
Cours de thermodynamique version 2.0
Cours de thermodynamique version 2.0Cours de thermodynamique version 2.0
Cours de thermodynamique version 2.0
Sahnoune Khaled
 
Rayonnement thermique
Rayonnement thermiqueRayonnement thermique
Rayonnement thermique
Sahnoune Khaled
 

Plus de Sahnoune Khaled (18)

Synthese iex 05
Synthese iex 05Synthese iex 05
Synthese iex 05
 
Synthese iex 03
Synthese iex 03Synthese iex 03
Synthese iex 03
 
Emd 3 iex
Emd 3 iexEmd 3 iex
Emd 3 iex
 
Emd 2 iex 04
Emd 2 iex 04Emd 2 iex 04
Emd 2 iex 04
 
Emd 2 iex 03
Emd 2 iex 03Emd 2 iex 03
Emd 2 iex 03
 
Emd 1 iex 05
Emd 1 iex 05Emd 1 iex 05
Emd 1 iex 05
 
Emd 1 iex 03
Emd 1 iex 03Emd 1 iex 03
Emd 1 iex 03
 
Correction emd2 iex04
Correction emd2 iex04Correction emd2 iex04
Correction emd2 iex04
 
Correction emd1 iex
Correction emd1 iexCorrection emd1 iex
Correction emd1 iex
 
Correction emd1 iex 03
Correction emd1 iex 03Correction emd1 iex 03
Correction emd1 iex 03
 
Correction emd 3 iex 03
Correction emd 3 iex 03Correction emd 3 iex 03
Correction emd 3 iex 03
 
Correction emd 2 iex 05
Correction emd 2 iex 05Correction emd 2 iex 05
Correction emd 2 iex 05
 
Correction emd 2 iex 05
Correction emd 2 iex 05Correction emd 2 iex 05
Correction emd 2 iex 05
 
Correction emd 1 iex 05
Correction emd 1 iex 05Correction emd 1 iex 05
Correction emd 1 iex 05
 
Correction emd 1 iex 04
Correction emd 1 iex 04Correction emd 1 iex 04
Correction emd 1 iex 04
 
Coorrection emd 2 iex 03
Coorrection emd 2 iex 03Coorrection emd 2 iex 03
Coorrection emd 2 iex 03
 
Cours de thermodynamique version 2.0
Cours de thermodynamique version 2.0Cours de thermodynamique version 2.0
Cours de thermodynamique version 2.0
 
Rayonnement thermique
Rayonnement thermiqueRayonnement thermique
Rayonnement thermique
 

Dernier

A2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiquesA2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiques
lebaobabbleu
 
1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire
NadineHG
 
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
mcevapi3
 
apprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdfapprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdf
kamouzou878
 
Zineb Mekouar.pptx Écrivaine marocaine
Zineb Mekouar.pptx   Écrivaine  marocaineZineb Mekouar.pptx   Écrivaine  marocaine
Zineb Mekouar.pptx Écrivaine marocaine
Txaruka
 
A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)
lebaobabbleu
 
Formation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimismeFormation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimisme
M2i Formation
 
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
Editions La Dondaine
 
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certificationMS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
OlivierLumeau1
 
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
dokposeverin
 
Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024
Friends of African Village Libraries
 
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptxMARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
Martin M Flynn
 
Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.
MahouwetinJacquesGBO
 

Dernier (13)

A2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiquesA2-Critiques-gastronomiques activités critiques
A2-Critiques-gastronomiques activités critiques
 
1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire
 
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
 
apprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdfapprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdf
 
Zineb Mekouar.pptx Écrivaine marocaine
Zineb Mekouar.pptx   Écrivaine  marocaineZineb Mekouar.pptx   Écrivaine  marocaine
Zineb Mekouar.pptx Écrivaine marocaine
 
A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)A2-Faire-une-appreciation positive et/ou négative (A2)
A2-Faire-une-appreciation positive et/ou négative (A2)
 
Formation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimismeFormation M2i - Attitude constructive : développer l'art de l'optimisme
Formation M2i - Attitude constructive : développer l'art de l'optimisme
 
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
 
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certificationMS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
 
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
Manuel-5.-Elevage-de-poisson-chat-africain-Clarias-gariepinus-en-bacs-hors-so...
 
Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024
 
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptxMARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
 
Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.
 

La convection

  • 2. 1. Définitions Le transfert de chaleur par convection existe au sein des milieux fluides (mouvement de matière) dans lesquels il est généralement prépondérant. Selon la nature du mécanisme qui provoque le mouvement du fluide on distingue : 1.1 La convection libre ou naturelle : Le fluide est mis en mouvement sous le seul effet des différences de masse volumique, résultant des différences de températures, sur les frontières et d’un champ de forces extérieures (la pesanteur). 1.2 La convection forcée : Le mouvement du fluide est induit par une cause indépendante des différences de température (pompe, ventilateur...). L’étude du transfert de chaleur par convection permet de déterminer les échanges de chaleur se produisant entre un fluide et une paroi.
  • 3. 1.3 Régime d’écoulement Compte tenu du lien entre le transfert de masse et le transfert de chaleur, il est nécessaire de considérer le régime d’écoulement. Considérons à titre d’exemple l’écoulement d’un fluide dans une conduite : - En régime laminaire, l’écoulement s’effectue par couches pratiquement indépendantes. Les échanges de chaleur s’effectuent donc : - Par conduction uniquement si l’on considère une direction normale aux filets fluides. - Par convection et conduction (négligeable) si l’on considère une direction non normale aux filets fluides. En régime turbulent, l’écoulement n’est pas unidirectionnel : L’échange de chaleur dans la zone turbulente s’effectue par convection et conduction dans toutes les directions. On vérifie que la conduction est généralement négligeable par rapport à la convection, la turbulence augmente le flux de chaleur échangé entre le fluide et la paroi.
  • 4. Le changement de régime est généralement dû à l'augmentation d'un certain paramètre (vitesse, température) au dessus d'une valeur critique on quantifie cette valeur critique par des nombre adimensionnels par exemple, le nombre de Reynolds (en convection forcée) Re=VD/ν V: vitesse de l'écoulement; D: diamètre de la conduite; ν: viscosité dynamique. Par exemple pour le cas de l'écoulement dans les conduites; Rec=2300. Re<2300 l'écoulement est laminaire. Re>2300 l'écoulement est turbulent.
  • 5. 2. Expression du flux de chaleur 2.1 Couche limite dynamique et thermique La couche limite est une région du fluide qui est proche des parois solides dont l'influence de la viscosité est très importante, la vitesse et la température dans cette région sont différentes de celle du fluide loin des parois. L'épaisseur de cette couche varie en fonction de plusieurs paramètres: viscosité, distance,… Le gradient thermique est particulièrement important au voisinage de la paroi, c’est à dire dans la sous-couche laminaire. Quelque soit le régime d’écoulement du fluide, on considère que la résistance thermique est entièrement située dans le film laminaire qui joue le rôle d’isolant thermique (couche limite thermique).
  • 6. 2.2 Coefficient de transfert de chaleur par convection La loi de transfert de chaleur par convection est une loi simple mais présente une énorme difficulté dans son application. Elle amène à définir un cœfficient de transfert de chaleur par convection h (W/m2.K). Quelque soit le type de convection et le régime d'écoulement le flux de chaleur entre le fluide et la paroi s'écrit comme suit: ( ) & sQ hS T T Considérer une surface de forme arbitraire et de surface totale S, maintenue à une température uniforme (Ts > T∞) exposés à un écoulement de fluide à la vitesse u∞ . on attend à ce que le coefficient de convection varie au-dessus de la surface dans ce cas le flux thermique local, q peut être exprimé comme : ( )x x sq h T T  Le flux de chaleur total peut être obtenu en intégrant le flux thermique local au-dessus de la surface totale S(ou As). C'est : ( )sQ hS T T & Où est coefficient de convection moyen:h 0 0 1 xh h dx x  
  • 7. 2.3 Estimation du coefficient de convection Dans les problèmes de convection l’objectif principal est de déterminer le coefficient de convection h pour différentes géométries et de multiples conditions d’écoulement. donc h dépend d'un nombre important de paramètres: propriétés physiques du fluides, caractéristiques de l'écoulement, la température, la géométrie,…. ( , , , , , , , , )f s Ph f T T v C Q l D  & Il s'avère très utile d'utiliser la technique de l'analyse adimensionnelle (similitude) pour laquelle on groupe les grandeurs physiques sous forme de nombres adimensionnels, et on déterminer expérimentalement et théoriquement la relation entre ces nombres qu'on représente par des corrélations. Les nombres sans dimensions importants dans la convection thermique sont : Le nombre de Reynolds: Re=ρVD/ν Le nombre de Prandtl : Pr=CPμ/λ=ν/a Le nombre de Nusselt : Nu=hL/λ
  • 8. 3. Calcul du flux de chaleur en convection forcée L’application de l’analyse dimensionnelle montre que la relation liant le flux de chaleur transféré par convection aux variables dont il dépend peut être recherchée sous la forme d’une relation entre trois nombres adimensionnels : Nu = f (Re, Pr) Le calcul d’un flux de chaleur transmis par convection forcée s’effectue donc de la manière suivante : 1. Calcul des nombres adimensionnels de Reynolds et de Prandtl. 2. Suivant la valeur de Re et la configuration choix de la corrélation 3. Calcul de Nu par application de cette corrélation. 4. Calcul de h =λNu/L et de ( )s fQ hS T T &
  • 11. Exemple de la plaque plane Malgré sa simplicité cette géométrie possède de nombreuses applications: Murs, ailes, plafonds,… Dans cette configuration le développement de la couche limite laminaire commence au bord d'attaque (x =0), et le passage à la turbulence peut se produire à un distance critique xc pour lequel le nombre de Reynolds critique est Rex,c = 5.105. Nous présenterons les corrélations appropriées pour prévoir l'épaisseur de la couche limite aussi bien que le coefficient de convection. Nous commençons par les conditions de la couche limite laminaire.
  • 12. 3.1.1 Couche limite laminaire Comme illustré dans la fig., l'épaisseur de la couche limite dynamique δ(x) est défini pour que u/u∞ = 0.99 et son expression pour la plaque plane est :    1/2 x( ) 5 Re avec Re / (nombre de Reynolds local)xx x u x Dans ce cas le nombre de Nusselt local :    1/2 1/3 5 / 0.332Re Pr , Re 5 10x x xNu h x Et le nombre de Nusselt moyen : 1/2 1/3 / 0.664Re PrLNu hL   3.1.2 Couche limite turbulente Pour des écoulements turbulents, à une approximation raisonnable, l'épaisseur hydrodynamique de la couche limite peut être exprimée comme suit : 1/5 8 x( ) 0.37 Re avec Re 10xx x    Dans ce cas le nombre de Nusselt local :   4/5 1/3 8 / 0.0296Re Pr (Re 10 ; 0.6<Pr<60)x x x xNu h x Et le nombre de Nusselt moyen :     4/5 1/3 5 8 / 0.037Re Pr (5 10 Re 10 ; 0.6<Pr<60)L xNu hL
  • 14. Exemple d’écoulement dans un tube Un fluide s’écoule en régime permanent dans une conduite cylindrique circulaire de diamètre intérieur D. Dans une section droite, à l’abscisse x par rapport à l’entrée de la conduite, la vitesse moyenne du fluide est Um, sa température moyenne Tm, et la température de la paroi Tp. échangé à travers l’aire latérale de paroi dS comprise entre les abscisses x et x + dx: CdQ&Les corrélations expérimentales permettent de calculer le flux de chaleur   & -C s mdQ h T T P dx La conservation d'énergie permet d'écrire & &C P mdQ mc dT
  • 15. Cette relation est valide peu importe la condition à la frontière; Donc partir de la conservation d'énergie on peut dériver une expression pour la variation de Tm avec x    & ( )m m s P dT hP T T dx mc En régime laminaire établit ( Re < 2000), et loin de la zone d'entrée on peut appliquer les corrélations qui ont pour expressions: Nu=3.66 (température de la paroi constante) Nu=4.36 (Flux de chaleur à la paroi constant) 3.2.1 Cas d'un flux de chaleur constant Le flux convectif total d CQ& devient simplement q.P.dx Et la température moyenne devient m mi P qP T T x mc   & La température moyenne varie linéairement avec la distance.
  • 16. 3.2.2 Cas d'une paroi à température constante Pour Ts constante comment Tm varie avec x (h=constant) ?      & ( ) ( )m m m P dT d T hP T dx dx mc En séparant les variables et intégrant de l’entrée à la sortie du tube:        & 0 ( )s e T L m m m PT dT d T hP dx dx T mc Où encore     & ln s e P T hP L T mc     & exp( )ms s me Ps T T hP L T T mc On obtient Pour une distance quelconque x on a:     & ( ) exp( )m s me Ps T x T hP x T T mc
  • 17. 4. La Convection naturelle La convection naturelle est la forme d’échange convectif la plus couramment observée. Au contact d’un corps chaud , la température de l’air augmente, donc sa masse volumique décroît. L’air ambiant, de masse volumique plus élevée, exerce une poussée d’Archimède vers le haut, et la masse d’air chaude s’élève en enlevant de la chaleur au corps. Elle est remplacée par une masse d’air froid qui, au contact du corps s’échauffe, et ainsi de suite. Ces échanges jouent un grand rôle en pratique. On citera en particulier: le chauffage domestique le calcul des pertes par les parois dans les installations industrielles Comme les vitesses en convection naturelle demeurent faibles, les échanges sont nettement moins intenses qu’en convection forcée
  • 18. Convection naturelle de Rayleigh- Bénard). La couche de liquide est chauffée par le bas. Des particules métalliques en suspension permettent de visualiser les cellules de convection qui ont presque toutes une forme hexagonale. Exemples
  • 19. 4.2 Calcul du flux de chaleur lors de la convection naturelle Dans le cas d’un transfert de chaleur par convection naturelle, le coefficient de convection dépend des caractéristiques du fluide : λ, ρ, μ, cp, β, g, de la paroi caractérisée par la longueur L, et de l’écart de température ΔT aux bornes ce qu'on peut traduire par une relation du type : h = f (λ, ρ, μ, cp, β, g, L, ΔΤ) L’application de l’analyse dimensionnelle montre que la relation liant le flux de chaleur transféré par convection aux variables dont il dépend peut être recherchée sous la forme d’une relation entre trois nombres adimensionnels : Nu = f (Gr, Pr) Gr=ρ2g.β.ΔT.D3/μ2 : le nombre de Grashof. Le calcul du flux de chaleur par convection naturelle s’effectue donc de la manière suivante : 1. Calcul des nombres adimensionnels de Grashof et de Prandtl. 2. Suivant la valeur de Gr et configuration choix de la corrélation. 3. Calcul de Nu par application de cette corrélation. 4. Calcul de h =λNu/L et de ( )s fQ hS T T &
  • 20. 1. Calcul des nombres adimensionnels de Grashof et de Prandtl. 2. Suivant la valeur de Gr et configuration choix de la corrélation. 3. Calcul de Nu par application de cette corrélation. 4. Calcul de h =λNu/L et de ( )s fQ hS T T &