SlideShare une entreprise Scribd logo
1  sur  53
Télécharger pour lire hors ligne
Résistance des matériaux II Chapitre 145
é é é iMéthodes énergétiques
chapitres 9 et 14
• Objectifs
– Utiliser le théorème de Castigliano pour calculer des lesUtiliser le théorème de Castigliano pour calculer des les
réactions aux appuis de structures hyperstatiques
– Utiliser le théorème de Castigliano pour calculer des
déplacements, rotations ou rotations angulaires de structures
hyperstatiques
– Savoir la définition de l’aire effective en cisaillementSavoir la définition de l aire effective en cisaillement
– Calculer l’énergie de déformation en tenant compte de l’effort
tranchant
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 1
Résistance des matériaux II Chapitre 145
Ch it 9 É i d déf tiChapitre 9: Énergie de déformation
9.7 Énergie de déformation
9.7.1 Expression de l’énergie pour un chargement uniaxial
9.7.2 Énergie de déformation élastique pour un chargement général
Chapitre 14 : Méthodes énergétiques Fichier 1Chapitre 14 : Méthodes énergétiques
14.2 Cas particuliers
14.2.1 Tension
14.2.2 Flexion
Fichier 1
14.2.3 Torsion
14.3 Théorème de la réciprocité, de Maxwell-Betti
14.4 Théorème de Castigliano
h14.4.1 Application aux systèmes isostatiques
14.4.2 Application aux systèmes hyperstatiques
14.5 Effets de l’effort tranchant
Fichier 2
Fichier 3
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 2
Résistance des matériaux II Chapitre 145
14 4 2 Applications aux systèmes hyperstatiques14.4.2 Applications aux systèmes hyperstatiques
Cette poutre est hyperstatique: A
w
xx
y
Cette poutre est hyperstatique:
il n’y a pas suffisamment d’équations
d’équilibre pour calculer les réactions.
y
A
L
BB
Il y a trois inconnues: Ra, Rb et Mb.
Deux équations d’équilibre sont
BM
L
w
A B
x
y
disponibles: ∑Fy = 0 ; ∑Mz = 0
Par conséquent, il manque une équation.
AR
L
BR
On peut lever l’indétermination en posant une équation de
compatibilité et en transformant cette équation en équation de
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
p q q
forces ou de moments à l’aide du théorème de Castigliano.
3
Résistance des matériaux II Chapitre 145
Mé h d d l i d’ è h iMéthode de solution d’un système hyperstatique
• poser les équations d’équilibre
disponibles BMwy
disponibles
• déterminer le nombre d’équation(s)
A
R
L
R
B
x
q ( )
d’équilibre manquante(s), N
N = degré d’hyperstaticité (N = 1 pour notre cours)
AR BR
Pour la poutre montrée, il manque une équation;
le système est hyperstatique du premier degré
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 4
Résistance des matériaux II Chapitre 145
Méthode de solution (suite)Méthode de solution (suite)
• établir N équations de compatibilité
– Pour la poutre montrée, on connaît trois conditions de
ibili écompatibilité:
δA = 0 δB = 0 θB = 0
– Le système étant hyperstatique A
BMw
B
x
y
Le système étant hyperstatique
du premier degré, on choisit une
seule condition de compatibilité
AR
L
BR
B
et la réaction correspondante est
appelée surabondante:
a) si on choisit δ = 0 R est la réaction surabondantea) si on choisit δA = 0, RA est la réaction surabondante,
appelée R
Selon Castigliano: A
R
U
R
U
δ=
∂
∂
=
∂
∂
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
A
A RR ∂∂
5
Résistance des matériaux II Chapitre 145
Méthode de solution (suite)Méthode de solution (suite)
b) si on choisit δB = 0, RB est la) B , B
réaction surabondante, appelée R
A
BMw
x
y
et
B
B R
U
R
U
δ=
∂
∂
=
∂
∂ A
AR L
BR
B
c) si on choisit θB = 0, MB est la
réaction surabondanteréaction surabondante
et U
θ=
∂
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
et B
BM
θ=
∂
6
Résistance des matériaux II Chapitre 145
Méthode de solution (suite)
i l é i A
BMw
x
y
• Exprimer toutes les réactions
en fonction de la réaction
surabondante et du chargement
A
AR
L
BR
B
surabondante et du chargement.
• Appliquer Castigliano:
L ff i l’é i
A
Les efforts internes et l’énergie
de déformation doivent être
exprimés en fonction de la
é i b d dréaction surabondante et du
chargement seulement.
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 7
Résistance des matériaux II Chapitre 145
E lExemple :
On demande de calculer
a) les réactions aux appuis A
mNw /,
B Ca) les réactions aux appuis
b) l’angle de rotation θ A
au point A de cette poutre.
L L
A B
p p
Cette poutre est hyperstatique car elle est appuyée sur trois
appuis simples A, B et C:
– 3 réactions inconnues, soit RA,RB et RC
2 équations d’équilibre disponibles soit ∑F = 0 ; ∑M = 0– 2 équations d équilibre disponibles, soit ∑Fy = 0 ; ∑Mz = 0
La solution est d ’utiliser le théorème de Castigliano.
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
La solution est d utiliser le théorème de Castigliano.
8
Résistance des matériaux II Chapitre 145
La procédure pour trouver les réactions aux appuis d’un
problème hyperstatique est :
1 Choisir une condition de compatibilité et déclarer la réaction1. Choisir une condition de compatibilité et déclarer la réaction
correspondante surabondante (R)
2. Établir les équations d’équilibre. Les réactions sont exprimées
en fonction du chargement et de la force surabondante
3. Établir les équations des efforts internes et les exprimer en
fonction du chargement et de la surabondantefonction du chargement et de la surabondante
4. Appliquer le théorème de Castigliano à la condition de
compatibilité choisie
– Permet de déterminer la surabondante (R)
– Déterminer les autres réactions aux appuis à l’aide des
é ti d’é ilib
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
équations d’équilibre
9
Résistance des matériaux II Chapitre 145
RR
On choisit δ comme
mNw /,
B C
RRA =1. Réactions aux appuis
On choisit δ A comme
condition de compatibilité
L L
A B C
BR CR
∂U
0==
∂
∂
A
AR
U
δ
La force RA est déclarée
b dsurabondante
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 10
Résistance des matériaux II Chapitre 145
RR
mNw /,
B C
RRA =
RRA =
2. Équilibre
L L
A B C
BR CR
A
MC =∑ 0 Fy =∑ 0
Lw
LR
Lw
LRB ⋅⋅+
⋅
=⋅ 2
2
2
L
RRLwR BC −+⋅=
R
Lw
RB ⋅+
⋅
= 2
2
R
Lw
RC −
⋅
=
2
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
Les réactions sont exprimées en fonction
de R et du chargement seulement
11
Résistance des matériaux II Chapitre 145
mNw /,RR =
A B C
RRA =
BR CR
3. Efforts internes
L L
B C
BCM
V
R
V
ABM•O
C
x
CR
De A à B : 0 < x < L
à
xA •O
0
2
xw
xRMM
⋅
+∑
De B à C : 0 < x < L
xRM AB ⋅=⇒=∑ 0OM
0
2
2
xw
xR
Lw
M
xRMM
BC
CBCO
⋅
−⋅⎟
⎞
⎜
⎛ −
⋅
=
=+⋅−=∑
Les efforts internes sont
exprimées en fonction de R
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
22
xRMBC ⎟
⎠
⎜
⎝
=
12
et du chargement seulement
Résistance des matériaux II Chapitre 145
RM
⎞⎛∂⎞⎛∂ M
xRM AB ⋅=
22
2
xw
xR
Lw
MBC
⋅
−⋅⎟
⎠
⎞
⎜
⎝
⎛
−
⋅
=
4. Appliquer la condition de compatibilité
0
00
=
⋅
⋅⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
+
⋅
⋅⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
==
∂
∂
∫∫
L
BC
BCL
AB
AB
A
IE
dx
R
M
M
IE
dx
R
M
M
R
U
δ
( ) ( ) ( ) 0
220
2
=⋅−⋅⎥
⎦
⎤
⎢
⎣
⎡ ⋅
−⋅⎟
⎠
⎞
⎜
⎝
⎛ −
⋅
+⋅⋅⋅=
∂
∂
∫∫
LL
o
dxx
xw
xR
Lw
dxxxR
R
U
0 ⎦⎣o
0
423323
4333
=
⋅
⋅
+
⋅
+
⋅
⋅⋅
−
⋅
=
∂
∂ LwLRLLwLR
R
U
423323∂R
16
Lw
R
⋅
=
16
7 Lw
RC
⋅⋅
=
8
5 Lw
RB
⋅⋅
=
Avec les équations
d’équilibre
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
16 16
C
8
B
13
d équilibre
Résistance des matériaux II Chapitre 145
b) Rotation θ A de la poutre en A
La tâche est facile avec
A
mNw /,
B C
La tâche est facile avec
Castigliano, sachant que L L
U∂
θ
Le problème est qu ’il n ’y a pas de
A
A
M
U
∂
∂
=θ
mNw /,
C
16
Lw
RA
⋅
=
moment concentré MA au point A!
Que fait-on?
O j t t fi tif
L
L
A B C
AM
16
7 Lw
RC
⋅⋅
=
On ajoute un moment fictif. L
8
5 Lw
RB
⋅⋅
=
Mais, par le fait même, on perturbe
l ’éq ilibre de la po tre
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
l ’équilibre de la poutre
14
Résistance des matériaux II Chapitre 145
Truc pour restaurer l’équilibre LTruc pour restaurer l équilibre
Comment?
On garde les réactions calculées
A
mNw /,
B C
16
Lw
RA
⋅
=
g
précédemment
On équilibre seulement le
moment fictif M en ajo tant des
L
L
A B C
AM
16
7 Lw
RC
⋅⋅
=
moment fictif MA en ajoutant des
forces :
• qui ont un moment égal et opposé à celui du moment ajouté
L
8
5 Lw
RB
⋅⋅
=
q g pp j
• qui sont d’intensité égale et opposée pour ne pas perturber
l’équilibre de la poutre dans la direction y
• qui s’appliquent aux points d’appui de la poutre pour ne pas• qui s appliquent aux points d appui de la poutre pour ne pas
perturber la déformée de la poutre et pour ne pas ajouter de
l’énergie de déformation dans la poutre
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 15
Résistance des matériaux II Chapitre 145
LM A / Alternative 1
Alt ti 2
A
mNw /,
B C
16
Lw
RA
⋅
=
A
A
mNw /,
B C
16
Lw
RA
⋅
=
Alternative 2
L L
8
5 Lw
RB
⋅⋅
=
16
7 Lw
RC
⋅⋅
=AM
LM A / L L
A B
8
5 Lw
RB
⋅⋅
=
16
7 Lw
RC
⋅⋅
=AM
LM A /LM A /A
mNw /,Lw
R
⋅
LM A ⋅2/ Alternative 3
A
,
B C
16
RA =
8
5 Lw
RB
⋅⋅
=
16
7 Lw
RC
⋅⋅
=AM
• Les trois alternatives permettent d’annuler
MA et de garder la poutre en équilibre en y.
• Le choix d’une alternative plutôt qu’une
L L
8 16
LM A ⋅2/
• Le choix d une alternative plutôt qu une
autre est basé sur une question d’expérience.
• Ici, c’est l’alternative 1 qui semble et
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
s’avérera la plus avantageuse.
16
Résistance des matériaux II Chapitre 145
LM A / Alternative 1
A
mNw /,
B C
16
Lw
RA
⋅
=
A
Les efforts internes
L L
8
5 Lw
RB
⋅⋅
=
16
7 Lw
RC
⋅⋅
=AM
LM A /LM A /
De A à B : 0 < x < L
A
AM
V
ABM
AR
•O
•O
De B à C : 0 < x < L
xA
C
CR
BCM
V x
•O
x
L
M
xRMM
M
A
AAAB
O
⋅−⋅+=
⇒=∑ 0 0
2
xw
xRM
M
CBC
O
⋅
−⋅=
⇒=∑
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
L
AAAB
2
xRM CBC ⋅=
17
Résistance des matériaux II Chapitre 145
M
Selon Castigliano x
L
M
xRMM A
AAAB ⋅−⋅+=
2
2
xw
xRM CBC
⋅
−⋅=
2
∫∫
⋅⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
+
⋅⎟
⎠
⎞
⎜
⎝
⎛
∂
∂
=
∂
=θ
L
A
BC
BCL
A
AB
AB
A
dx
M
M
Mdx
M
M
M
U
⎥
⎤
⎢
⎡
⋅⎟
⎠
⎞
⎜
⎝
⎛ −⋅⋅−⋅+∫
L
A
AA dx
x
x
M
xRM 1)(
∫∫ ⋅
+
⋅∂
θ
= 000AMA
A
IEIEM
16
Lw
RA
⋅
=
( )
⎥
⎥
⎥
⎥
⎥
⎦⎢
⎢
⎢
⎢
⎢
⎣
⋅⋅⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ ⋅
−⋅+
⎟
⎠
⎜
⎝
⋅
=
∫
∫
L
C
AA
A
dx
xw
xR
LL
IE
0
2
0
0
2
)(
1
θ
16
7 Lw
RC
⋅⋅
=
⎥⎦⎢⎣ ⎠⎝0
96
1
6
1 32
Lw
IE
LR
IE
A
A ⋅=⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛ ⋅
⋅=θEn posant MA = 0 ⇒
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
966 IEIE ⋅⎟
⎠
⎜
⎝⋅
p A ⇒
18
Résistance des matériaux II Chapitre 145
Exemple:
On demande de calculer θ pour
y
xmNw /,
On demande de calculer θ A pour
la poutre illustrée ci-contre
L
z
A
B
Les réactions RA, RB et le moment MB sont déjà connus.
L
mNw /,
A
B
5 L
8
2
Lw
MB
⋅
=
P i l l θ il f t j t t fi tif t é A
L
8
3 Lw
RA
⋅⋅
= 8
5 Lw
RB
⋅⋅
=
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
Pour pouvoir calculer θ A, il faut ajouter un moment fictif concentré en A
et ensuite restaurer l’équilibre.
19
Résistance des matériaux II Chapitre 145
Deux alternatives sont possibles
2
Lw
M AB
⋅
=
Alternative 1
L’alternative 1 est possible
parce que l’encastrement B
peut reprendre un moment sans
L
mNw /,
A
8
M AB
AM
B
AM
peut reprendre un moment sans
que de l’énergie de déformation
soit ajoutée au système.
L
8
3 Lw
RA
⋅⋅
=
8
5 Lw
RB
⋅⋅
=
B
Alternative 2
mNw /,
A
8
2
Lw
MB
⋅
=
Alternative 2
AM
LM A /
L
A
B
8
3 Lw
RA
⋅⋅
= 5 Lw
R
⋅⋅
=
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
8
A
8
RB =
LM A /
20
Résistance des matériaux II Chapitre 145
On choisit l’alternative 1.
mNw /, 8
2
Lw
MB
⋅
=
Eff t i t
AM
L
A
3 Lw
R
⋅⋅ 5 Lw
R
⋅⋅
B
AM
Efforts internes
8
RA =
8
RB =
RM
xw
MM
⋅
∑ 0
2
De A à B :
xRM
xw
MM AAABO ⋅−+=⇒=∑
2
0
mNw /,
AM
x
A
3 Lw
R
⋅⋅ V
•O
ABM
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
8
RA = V
21
Résistance des matériaux II Chapitre 145
Appliquant Castigliano :pp q g
x
mNw /,
A xRM
xw
M AAAB ⋅−+
⋅
=
2
2
M x
8
3 Lw
RA
⋅⋅
= V
xw ⋅ 2
AM
dx
M
M
IE
M
M
U
A
AB
L
AB
MA
A
A
∂
∂
⋅
=
∂
∂
= ∫
= 00
θ ( ) dx
IE
xR
xw
ML AA
⋅⋅
⋅
⋅−
⋅
+
= ∫ 12
0
Lw⋅ 3
θEn posant MA = 0, ⇒ IE
A
⋅⋅
−=
48
θ
i.e., dans le sens inverse de
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
i.e., dans le sens inverse de
MA fictif
22
Résistance des matériaux II Chapitre 145
Thé è d C ti liThéorème de Castigliano
CommentaireCo e e
Lorsque le système est isostatique, il est plus simple de mettre sur la
structure, dès le début, les charges réelles et fictives et d’établir les
é i d’é ilib idé l d d héquations d’équilibre en considérant les deux types de chargement,
fictif et réel.
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 23
Résistance des matériaux II Chapitre 145
Ch it 9 É i d déf tiChapitre 9: Énergie de déformation
9.7 Énergie de déformation
9.7.1 Expression de l’énergie pour un chargement uniaxial
9.7.2 Énergie de déformation élastique pour un chargement général
Chapitre 14 : Méthodes énergétiques Fichier 1Chapitre 14 : Méthodes énergétiques
14.2 Cas particuliers
14.2.1 Tension
14.2.2 Flexion
Fichier 1
14.2.3 Torsion
14.3 Théorème de la réciprocité, de Maxwell-Betti
14.4 Théorème de Castigliano
h14.4.1 Application aux systèmes isostatiques
14.4.2 Application aux systèmes hyperstatiques
14.5 Effets de l’effort tranchant
Fichier 2
Fichier 3
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 24
Résistance des matériaux II Chapitre 145
Jusqu’ici, on a négligé l’apport de l’énergie de déformation
associée à l’effort tranchant dans le calcul de la flèche ou de
l’angle de rotation.g
La notion de l’aire effective en cisaillement Ac simplifie
considérablement le calcul de l’énergie de déformation due à
l’effort tranchant et permet ainsi de tenir compte de l’effort
tranchant dans le calcul de la flèche et de l’angle de rotation.g
Ac devient une propriété de la section au même titre que les
moments d’aire et que la constante de torsion
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 25
Résistance des matériaux II Chapitre 145
Ai ff ti d i ill tAire effective de cisaillement
Ac est déterminée de façon à ce que l’énergie de déformation,c ç q g f
• calculée en utilisant la distribution moyenne de la contrainte de
cisaillement agissant sur l’aire Ac par :
m
A
V
=τ
au lieu de la distribution réelle:
cA
∫= dAV τ
• soit équivalente à l’énergie de déformation calculée en utilisant la
distribution réelle de la contrainte de cisaillement sur la section
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 26
Résistance des matériaux II Chapitre 145
Ainsi, pour une contrainte de cisaillement τ, l ’énergie de
déformation U est donnée par :
∫
1
Puisque :
dVU
V
⋅⋅= ∫ γτ
2
1
G/
q
on peut écrire :
G/τγ =
(a)
2
1 2
∫∫ ⋅⋅= dxdA
G
U τ
2 ∫∫⋅ L A
G
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 27
Résistance des matériaux II Chapitre 145
E idé l i d i ill iEn considérant la contrainte de cisaillement moyenne agissant
sur l ’aire effective de cisaillement, l ’énergie de
déformation est donnée par :p
∫∫∫ ⋅⋅
⋅
=⋅⋅
⋅
=
L
cm
L A
m dxA
G
dxdA
G
U 22
2
1
2
1
ττ
Puisque
LL A
GG 22
cm AV /=τ
(b)
2
1 2
∫ ⋅= dx
A
V
G
U
2⋅ L cAG
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 28
Résistance des matériaux II Chapitre 145
1
(a)
2
1 2
∫∫ ⋅⋅
⋅
=
L A
dxdA
G
U τ
2
(b)
2
1 2
∫ ⋅
⋅
=
L c
dx
A
V
G
U
En comparant (a) et (b), on tire :
∫ dA
V 2
2
∫ ⋅=
Ac
dA
A
2
τ
(c)2
2
∫ ⋅
=
A
c
dA
V
A
τ
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
A
29
Résistance des matériaux II Chapitre 145
L’aire effective de cisaillement A d’une section estL aire effective de cisaillement Ac d une section est
déterminée en utilisant (c). Lorsque sa valeur est connue,
l’énergie de déformation due à l’effort tranchant peut alors
êt l lé f il t tili t (b)être calculée facilement en utilisant (b).
2
(b)
2
1 2
∫ ⋅
⋅
=
L c
dx
A
V
G
U
(c)2
2
∫
=c
dA
V
A ( )2
∫ ⋅
A
c
dAτ
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 30
Résistance des matériaux II Chapitre 145
Ai ff ti d i ill tAire effective de cisaillement
Exemple : Déterminer l’aire effective de cisaillement AC d’unep C
poutre de section rectangulaire.
QV
⎟
⎠
⎞
⎜
⎝
⎛
− y
h
b
2
bI
QV
z
zy
⋅
⋅
=τ
h y
⎞⎛ h1
⎠⎝
τ
x
y
z
V
⋅
=
3
hb
I
b
⎟
⎠
⎞
⎜
⎝
⎛
+ y
h
22
1
τ
yV
⎥⎦
⎤
⎢⎣
⎡
+⋅⋅⎥⎦
⎤
⎢⎣
⎡
−⋅=⋅= )
2
(
2
1
)
2
(
12
y
h
y
h
byAQ
I
z
z
⎥
⎦
⎤
⎢
⎣
⎡
−⎟
⎠
⎞
⎜
⎝
⎛⋅
⋅
⋅
= 2
2
3
2
6
y
h
hb
Vy
τ
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 31
⎥⎦⎢⎣⎥⎦⎢⎣ 222 ⎦⎣ ⎠⎝hb
Résistance des matériaux II Chapitre 145
Ai ff ti d i ill tAire effective de cisaillement
Exemple (suite) : Section rectangulairep ( ) g
dyy
h
hb
V
bdA
h
y
A
⋅⎥
⎦
⎤
⎢
⎣
⎡
−⎟
⎠
⎞
⎜
⎝
⎛
⋅
⋅
⋅=⋅ ∫∫
2
2
22/
0
62
2
2
2
36
2τ
∫ ⋅
=c
dA
V
A 2
2
τA ⎦⎣ ⎠⎝0
dyyy
hh
hb
V
dA
h
y
⋅⎥
⎦
⎤
⎢
⎣
⎡
+⋅⎟
⎠
⎞
⎜
⎝
⎛⋅−⎟
⎠
⎞
⎜
⎝
⎛⋅
=⋅ ∫∫
2/
42
24
6
2
2
2
2
2
72
τ
∫A
yyy
hbA
⎥
⎦
⎢
⎣
⎟
⎠
⎜
⎝
⎟
⎠
⎜
⎝⋅ ∫∫ 0
6
22
VhhhV
dA y ⋅
=⎥
⎤
⎢
⎡
⎟
⎞
⎜
⎛⋅+⎟
⎞
⎜
⎛⋅−⎟
⎞
⎜
⎛⋅
⋅
=⋅∫
61272 25552
2
τ
hbhb
dA
A
⋅⋅
=⎥
⎦
⎢
⎣
⎟
⎠
⎜
⎝
+⎟
⎠
⎜
⎝
⎟
⎠
⎜
⎝⋅
=∫ 5252326
τ
55 Ahb
A
⋅⋅⋅
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
66
Ac ==
32
Résistance des matériaux II Chapitre 145
Ai ff ti d i ill tAire effective de cisaillement
Application : ypp
Aire effective de cisaillement Ac
d’un tube rond à paroi mince. z
R
t
A
2
A
tRAc =⋅⋅= π
Aire effective de cisaillement Ac R29
RA
c
d’un tube rond plein.
R2
10
9
RAc ⋅⋅= π
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 33
Résistance des matériaux II Chapitre 145
Ai ff ti d i ill tAire effective de cisaillement
Application :
y
pp
aire effective de cisaillement Ac
d’un tube rectangulaire à paroi mince. t
h
z
thAc ⋅⋅≈ 2
b
aire effective de cisaillement Ac
y
c
d’une poutre en I.
hw
t
z
hwAc ⋅≈
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 34
b
Résistance des matériaux II Chapitre 145
Thé è d C ti liThéorème de Castigliano
Exemple : Déterminer la contribution de l’effort tranchant à la flèchep
au point d’application de la force P
P
P
L
52200xWA B
P
V
ABM B
x
•o
xPMM AB ⋅=⇒=∑ 0 2
46
33
h
mm10x7,52I
MPa77x10G;MPa10x200E
=
==De A à B : 0 < x < L
xPMM ABo ⇒∑ 0 2
c mm1627mm206x7,9mmhxwA ===
PV =
S l C ti li
U∂
δ
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 35
Selon Castigliano :
P
B
∂
=δ
Résistance des matériaux II Chapitre 145
VM
LL 22
dx
AG
V
dx
IE
M
U
L
c
L
AB
∫∫ ⋅⋅
+
⋅⋅
=
0
2
0
2
22
( ) ( )PVVPMMU LL
∂∂∂∂∂ //
MAB = P·x
V = P
( ) ( )
dx
AG
PVV
dx
IE
PMM
P
U L
c
L
ABAB
B ∫∫ ⋅
∂∂
+
⋅
∂∂
=
∂
∂
=
00
//
δ
( ) ( )LL
LPLPPP 1 3
( ) ( )
c
L
c
L
B
AG
LP
IE
LP
dx
AG
P
dx
IE
xxP
⋅
⋅
+
⋅⋅
⋅
=
⋅
+
⋅
⋅
= ∫∫ 3
1 3
00
δ
⎤⎡3
Plus la poutre est courte, plus la
⎥
⎦
⎤
⎢
⎣
⎡
⋅⋅
⋅⋅
+⋅
⋅⋅
⋅
= 2
3
3
1
3 LAG
IE
IE
LP
c
Bδ
L, mm α α
p , p
contribution de l’effort tranchant
à la flèche est importante.
[ ]
3
3
253x10
1
3
+⋅
⋅⋅
⋅
= αδ
IE
LP
B
α+1
500 1,012 0,503
1000 0,253 0,202
2000 0,063 0,059
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
2
L
253x10
=α
L en mm
36
, ,
4000 0,016 0,016
Résistance des matériaux II Chapitre 145
Thé è d C ti liThéorème de Castigliano
Problème synthèse: Portiquey q
a) Déterminer les réactions aux appuis de
ce portique
mNw /,
B
C
D•
b) Déterminer la flèche au point C situé à
L/2 L
2/L 2/L
Les joints en B et D sont rigides; les
attaches en A et E sont des rotules A E
L
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 37
Résistance des matériaux II Chapitre 145
mNw /, mNw /,
B
C
D
,
B
C
D•
2/L 2/L
L
A
ERHA = RHE =
A E
L
AV EV
• Quatre réactions inconnues et trois équations d ’équilibre disponibles
∑∑∑ === 0;0;0 MFF
•Problème hyperstatique du premier degré; on choisit une équation de
compatibilité : δAH = δA = 0
∑∑∑ === 0;0;0 zyx MFF
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
• HA est la réaction surabondante
38
Résistance des matériaux II Chapitre 145
B D• B D•B C
D B
C
D
A E A E
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 39
Résistance des matériaux II Chapitre 145
mNw /, mNw /,
B
C
D
,
B
C
D•
2/L 2/L
L
A
ERHA = RHE =
A E
L
Par symétrie, on peut poser VA=VE=(wL)/2.
AV EV
La valeur de HA et HE sera obtenue à l ’aide de :
∑ =⇒= HHF 0
0=
∂
∂
=A
H
U
δ
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
∑ =⇒= EAx HHF 0 ∂ AH
40
Résistance des matériaux II Chapitre 145
mNw /,
Efforts internes
De A à B : 0 < x < L
De D à E : 0 < x < L
B C
D
Efforts internes
De D à E : 0 < x < L
P
x
L
Lw
P
xRM
AB
AB
⋅
−=
⋅=
2
ABM
ABP
V
•o
A
E
Lw
V
⋅ V
RHA = RHE =
RVAB
AB
=
2
RH
x
ABV 2
VA = EV
A
Lw
V
⋅
=
RHA =
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
2
VA =
41
Résistance des matériaux II Chapitre 145
mNw /,
De B à D : 0 < x < L
B D
x
Efforts internes
22
2
x
Lw
LR
xw
MBD ⋅
⋅
−⋅+
⋅
=
V
Lw
xwV
RP
BD
BD
⋅
−⋅=
= mNw /,
B
x
BDV
BDM
BDP•
o A
E
Lw
V
⋅ V
RHA =
RHE =
2
xwVBD x
2
VA = EV
RHA =
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
A
2
Lw
VA
⋅
=
42
Résistance des matériaux II Chapitre 145
2
x
Lw
LR
xw
MBD ⋅
⋅
−⋅+
⋅
=
xRM AB ⋅=
2
22
Lw
xwV
RP
xLRM
BD
BD
BD
⋅
−⋅=
=
+
RV
Lw
P
AB
AB
=
⋅
−=
2
( ) ( ) ( )
∑∑∫∑∫
∂∂
+
∂∂
+
∂∂
==
∂
=δ
LR/PPdxR/VVdxR/MM
0
U ii
L
ii
L
ii
2
Selon Castigliano:
∑∑∫∑∫ ⋅
+
⋅
+
⋅
==
∂
=δ
AEAGIE
0
R 0 c0
A
( )
1
A B et DE
( ) ( ) ( )0
2
1
2
1
22
00
⎞⎛⎞⎛
+
⋅
−
+
⋅
+
⋅
=
∂
∂
∫∫ AE
LwL
AG
dxR
IE
dxxRx
R
U L
c
L
( ) ( )
( )
0
1
0
22
1
2
1
00
2
=
⋅
+
+
⋅
⎟
⎠
⎞
⎜
⎝
⎛ −
+
⋅
⎟
⎠
⎞
⎜
⎝
⎛ −+
∫∫ AE
LR
AG
dx
wL
wx
IE
dxLwLxwxRL L
c
L
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
00 c
BD
43
Résistance des matériaux II Chapitre 145
44
wLwL
022322
3
2
3
3
=
⋅
+
⋅
⋅
−
⋅
+
+
⋅
+
⋅
=
∂
∂
AE
RL
IE
wLwL
RL
AG
RL
IE
RL
R
U
c
⎟
⎠
⎞
⎜
⎝
⎛+⎟⎟
⎞
⎜⎜
⎛
+
⋅
=
22
365
1
4 IEI
Lw
R
⎟
⎠
⎜
⎝
+⎟⎟
⎠
⎜⎜
⎝
+ 22
365
ALGLAc
1⎟
⎞
⎜
⎛ EI
1⎟
⎞
⎜
⎛ ISi C l i12
<<<⎟⎟
⎠
⎜⎜
⎝ GLAc
12
<<<⎟
⎠
⎞
⎜
⎝
⎛
AL
'R
wL
R ≈
Si et
l
Conclusion :
L’effet de l’effort tranchant et
de la force axiale sur l’énergie
'
20
RR =≈alors
g
de déformation est négligeable
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 44
Résistance des matériaux II Chapitre 145
Pour un portique fabriqué d ’un profilé W200x52 :Pour un portique fabriqué d un profilé W200x52 :
2246
1350et6660,107,52 mmAmmAmmxI c ===
L, mm R/w
x10-3
R’/w=L/20
x10-3
R’/R20
'
wL
R =
500 16,596 25 1,506
1000 44,405 50 1,127
⎟
⎞
⎜
⎛+⎟⎟
⎞
⎜⎜
⎛
+
⋅
=
365
1
4 IEI
Lw
R
, ,
2000 96,974 100 1,032
⎟
⎠
⎞
⎜
⎝
⎛+⎟⎟
⎠
⎜⎜
⎝
+ 22
365
ALGLAc
4000 198,57 200 1,007
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 45
Résistance des matériaux II Chapitre 145
Dans un portique de faible dimension L 500mm l ’effortDans un portique de faible dimension, L = 500mm, l ’effort
tranchant contribue pour 50% de la réaction horizontale aux
points A et E. Pour un portique aux dimensions plus
normales, L = 4 m, cette contribution est de 0,7 %.
L, mm R/w R’/w=L/20 R’/R,
x10-3
x10-3
500 16,596 25 1,506
1000 44,405 50 1,127
2000 96,974 100 1,032
4000 198,57 200 1,007
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 46
Résistance des matériaux II Chapitre 145
b) la flèche au point C
mNw /,
fictive=P
∂U B
C
D
0=∂
∂
=
P
C
P
U
δ
L
Puisqu’il n’y a pas de force au point C,
on ajoute une force fictive à ce
point ; il faut ensuite l ’équilibrer.
A
ERHA = RHE =
AV EV
2/P 2/P
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 47
Résistance des matériaux II Chapitre 145
On utilise les réactions calculéesOn utilise les réactions calculées
précédemment :
fictive=P
2
wL
VV EA ==
mNw /,
B
C
D
M
2
EA
20
wL
RHH EA ===
L
Ici on néglige les effets de l ’énergie de
déformation associée à la force axiale P et à
ABM
BDM L
l ’effort tranchant V.
ERHA =
wLwxP
LRM
2
A
2
wL
VA = EV
RHE =
2/P 2/PxRM AB ⋅=
x
22
x
2
LRMBD −+−⋅=
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
AB
48
Résistance des matériaux II Chapitre 145
LP 2 fictive=P
xRM AB ⋅=
x
2
wL
2
wx
x
2
P
LRM
2
BD −+−⋅= mNw /,
B
C
D
wL
R =xRM AB
d
PMMU ii
∑∫
∂∂∂ )/(
δ
ABM
BDM
20
R =
dx
EIP
ii
P
c ∑∫=
∂
=
=
)(
0
δ
ERHA = RHE =
A
2
wL
VA = EV
2/P 2/P∫ +=
∂
∂
=δ
=
L
00P
c
EI
dx)0(Rx
2
P
U
∫
−⎥⎦
⎤
⎢⎣
⎡ −+−L
2
0
EI
dx)
2
x
()Lxx(
2
w
x
2
P
RL
EI
wL
c
1920
13 4
=δ⇒
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing.
∫0
EI EI1920
49
Résistance des matériaux II Chapitre 145
P blè lé t i (f lt tif)Problème supplémentaire (facultatif) :
Calculer les déplacements vertical et horizontal δhC et δvC dans la
structure ci-contre soumise à la force P.
R
B
0=
∂
∂
=
Q
hC
Q
U
δ
0=∂
∂
=
Q
vC
P
U
δ
P
Q
B C
Efforts internes :
θBCM
BCP BCV
•o
L
A C
R
P Q
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 50
Résistance des matériaux II Chapitre 145
En négligeant les effets de la force axiale PBC et de l’effortEn négligeant les effets de la force axiale PBC et de l effort
tranchant VBC sur l ’énergie de déformation :
BCP BCVDe B à C : 0 < θ < π
[ ])cos(1)sin( θθ −⋅+⋅−= RPRQMBC θBCM
R
•o
B C
R
C
R
P Q
P
0=Q
C
ABM
x De A à B : 0 < x < L
RPxQM AB ⋅⋅+⋅= 2
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 51
Résistance des matériaux II Chapitre 145
dxMU ∂∂
∫ IE
dx
P
M
M
P
U i
i
Q
CV
⋅∂
∂
=
∂
∂
= ∑∫=0
δ
[ ])cos(1)sin( θθ −⋅+⋅−= RPRQMBC
RPxQM + 2 RPxQM AB ⋅⋅+⋅= 2
( )R cos11 θπ
[ ]{ }
( )
∫ ⋅
−
−⋅+⋅−
⋅
=
L
CV
dxR
d
IE
R
RPRQ
IE 0
2
cos1
)cos(1)sin(
1
θ
θ
θθδ
[ ]∫ ⋅
⋅⋅
⋅⋅+⋅+
IE
dxR
RPxQ
0
2
2
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 52
Résistance des matériaux II Chapitre 145
dMU ∂∂
IE
dx
P
M
M
Q
U i
i
Q
CH
⋅∂
∂
=
∂
∂
= ∑∫
=0
δ
[ ])cos(1()sin( θθ −⋅+⋅−= RPRQMBC
RPxQM AB ⋅⋅+⋅= 2
{ }( )dRRPRQ
EI
L
CH −−⋅+⋅−= ∫0
sin)cos(1()sin(
1
θθθθδ
π
( ) dxxRPxQ
EI
L
⋅⋅⋅⋅+⋅+ ∫0
2
1
Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 53

Contenu connexe

Tendances

Matériaux de chaussée
Matériaux de chausséeMatériaux de chaussée
Matériaux de chausséeadel213
 
Exercices coprrigés sur les torseurs
Exercices coprrigés sur les torseursExercices coprrigés sur les torseurs
Exercices coprrigés sur les torseursm.a bensaaoud
 
charpante metalique 3 3-lisses de bardages
charpante metalique 3 3-lisses de bardagescharpante metalique 3 3-lisses de bardages
charpante metalique 3 3-lisses de bardagesmassinissachilla
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsSami Sahli
 
Chapitre 05 la descant des charges
Chapitre 05 la descant des chargesChapitre 05 la descant des charges
Chapitre 05 la descant des chargespp
 
Polycopie rdm ii_licence_2_genie_civil_harichan_z
Polycopie rdm ii_licence_2_genie_civil_harichan_zPolycopie rdm ii_licence_2_genie_civil_harichan_z
Polycopie rdm ii_licence_2_genie_civil_harichan_zMohamed Nader Dallaj
 
charpante metalique 3 4-potelets
charpante metalique 3 4-poteletscharpante metalique 3 4-potelets
charpante metalique 3 4-poteletsmassinissachilla
 
Chap compression simple 1
Chap compression simple 1Chap compression simple 1
Chap compression simple 1Zahir Hadji
 
Mécanique des structures et RDM - Exercices corrigés
Mécanique des structures et RDM - Exercices corrigés Mécanique des structures et RDM - Exercices corrigés
Mécanique des structures et RDM - Exercices corrigés Hani sami joga
 
methodes-de-calcul-de-radiers
methodes-de-calcul-de-radiersmethodes-de-calcul-de-radiers
methodes-de-calcul-de-radiersAnas Tijani Modar
 
Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)Mohamed Trabelsi
 
Calcul Des Structures Portiques Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques   Methode Des Deplacements JexpozCalcul Des Structures Portiques   Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques Methode Des Deplacements Jexpozjexpoz
 
Formulaire de beton_arme
Formulaire de beton_armeFormulaire de beton_arme
Formulaire de beton_armeZahir Hadji
 

Tendances (20)

Matériaux de chaussée
Matériaux de chausséeMatériaux de chaussée
Matériaux de chaussée
 
Exercices coprrigés sur les torseurs
Exercices coprrigés sur les torseursExercices coprrigés sur les torseurs
Exercices coprrigés sur les torseurs
 
charpante metalique 3 3-lisses de bardages
charpante metalique 3 3-lisses de bardagescharpante metalique 3 3-lisses de bardages
charpante metalique 3 3-lisses de bardages
 
Calcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacementsCalcules des portiques. méthodes des déplacements
Calcules des portiques. méthodes des déplacements
 
Chapitre 05 la descant des charges
Chapitre 05 la descant des chargesChapitre 05 la descant des charges
Chapitre 05 la descant des charges
 
Polycopie rdm ii_licence_2_genie_civil_harichan_z
Polycopie rdm ii_licence_2_genie_civil_harichan_zPolycopie rdm ii_licence_2_genie_civil_harichan_z
Polycopie rdm ii_licence_2_genie_civil_harichan_z
 
Exercices rdm
Exercices rdmExercices rdm
Exercices rdm
 
7 charges
7 charges7 charges
7 charges
 
Cours rdm notions
Cours rdm notionsCours rdm notions
Cours rdm notions
 
charpante metalique 3 4-potelets
charpante metalique 3 4-poteletscharpante metalique 3 4-potelets
charpante metalique 3 4-potelets
 
charges permanentes
charges permanentescharges permanentes
charges permanentes
 
Chap compression simple 1
Chap compression simple 1Chap compression simple 1
Chap compression simple 1
 
Chapitre 3 tassements
Chapitre 3 tassementsChapitre 3 tassements
Chapitre 3 tassements
 
Mécanique des structures et RDM - Exercices corrigés
Mécanique des structures et RDM - Exercices corrigés Mécanique des structures et RDM - Exercices corrigés
Mécanique des structures et RDM - Exercices corrigés
 
TP TOURNAGE
TP TOURNAGETP TOURNAGE
TP TOURNAGE
 
methodes-de-calcul-de-radiers
methodes-de-calcul-de-radiersmethodes-de-calcul-de-radiers
methodes-de-calcul-de-radiers
 
Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)Pince+bras+manipulateur+(corrigé)
Pince+bras+manipulateur+(corrigé)
 
Calcul Des Structures Portiques Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques   Methode Des Deplacements JexpozCalcul Des Structures Portiques   Methode Des Deplacements Jexpoz
Calcul Des Structures Portiques Methode Des Deplacements Jexpoz
 
Formulaire de beton_arme
Formulaire de beton_armeFormulaire de beton_arme
Formulaire de beton_arme
 
8 poutres
8 poutres8 poutres
8 poutres
 

Similaire à Énergétique

4_5791671967392205542.pdf
4_5791671967392205542.pdf4_5791671967392205542.pdf
4_5791671967392205542.pdfArmandNsimenze
 
Cours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdf
Cours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdfCours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdf
Cours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdfIMADABOUDRAR1
 
Exercices d application_transfert_thermique-2
Exercices d application_transfert_thermique-2Exercices d application_transfert_thermique-2
Exercices d application_transfert_thermique-2mohamedbenafghoul
 
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2PHAM Van Thuan
 
Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Christophe Palermo
 
Exercices corrigés sur le gradateur triphasé
 Exercices corrigés sur le gradateur triphasé Exercices corrigés sur le gradateur triphasé
Exercices corrigés sur le gradateur triphasémorin moli
 
Télécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphaséTélécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphasémorin moli
 
Hydraulique en Charge
Hydraulique en ChargeHydraulique en Charge
Hydraulique en ChargeRoland Yonaba
 
Résistance des matériaux examens et série d'exercices corrigés
Résistance des matériaux examens et série d'exercices corrigésRésistance des matériaux examens et série d'exercices corrigés
Résistance des matériaux examens et série d'exercices corrigésHani sami joga
 
1-Strucutres tendues vf (1).pdf
1-Strucutres tendues vf (1).pdf1-Strucutres tendues vf (1).pdf
1-Strucutres tendues vf (1).pdftaoufikmaghzaz1
 
Memoire fin etudes_1983
Memoire fin etudes_1983Memoire fin etudes_1983
Memoire fin etudes_1983Clifford Stone
 
Photovoltaic solar panels
Photovoltaic solar panelsPhotovoltaic solar panels
Photovoltaic solar panelsmdaubry
 
pizoelectricite . ppt
pizoelectricite . pptpizoelectricite . ppt
pizoelectricite . pptsafiaouy
 

Similaire à Énergétique (20)

4_5791671967392205542.pdf
4_5791671967392205542.pdf4_5791671967392205542.pdf
4_5791671967392205542.pdf
 
Cours-treillis.pdf
Cours-treillis.pdfCours-treillis.pdf
Cours-treillis.pdf
 
Acétates du chapitre 2 (partie 1)
Acétates du chapitre 2 (partie 1)Acétates du chapitre 2 (partie 1)
Acétates du chapitre 2 (partie 1)
 
Cours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdf
Cours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdfCours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdf
Cours-sciences-de-lIngénieur-ADC-M-Said-Chari-2STE-Année-scolaire-2014-2015.pdf
 
Exercices d application_transfert_thermique-2
Exercices d application_transfert_thermique-2Exercices d application_transfert_thermique-2
Exercices d application_transfert_thermique-2
 
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
[Soutenance du PFE] Étude du flambement des poteaux selon l'EC2
 
Exercices rdm
Exercices rdmExercices rdm
Exercices rdm
 
Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3Equations différentielles, DUT MP, CM3
Equations différentielles, DUT MP, CM3
 
90392.ppt
90392.ppt90392.ppt
90392.ppt
 
Exercices corrigés sur le gradateur triphasé
 Exercices corrigés sur le gradateur triphasé Exercices corrigés sur le gradateur triphasé
Exercices corrigés sur le gradateur triphasé
 
Télécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphaséTélécharger Exercices corrigés sur le gradateur triphasé
Télécharger Exercices corrigés sur le gradateur triphasé
 
Cours RDM 1.pdf
Cours RDM 1.pdfCours RDM 1.pdf
Cours RDM 1.pdf
 
Hydraulique en Charge
Hydraulique en ChargeHydraulique en Charge
Hydraulique en Charge
 
Résistance des matériaux examens et série d'exercices corrigés
Résistance des matériaux examens et série d'exercices corrigésRésistance des matériaux examens et série d'exercices corrigés
Résistance des matériaux examens et série d'exercices corrigés
 
1-Strucutres tendues vf (1).pdf
1-Strucutres tendues vf (1).pdf1-Strucutres tendues vf (1).pdf
1-Strucutres tendues vf (1).pdf
 
16229029
1622902916229029
16229029
 
Memoire fin etudes_1983
Memoire fin etudes_1983Memoire fin etudes_1983
Memoire fin etudes_1983
 
Photovoltaic solar panels
Photovoltaic solar panelsPhotovoltaic solar panels
Photovoltaic solar panels
 
pizoelectricite . ppt
pizoelectricite . pptpizoelectricite . ppt
pizoelectricite . ppt
 
Norton thevenin
Norton theveninNorton thevenin
Norton thevenin
 

Plus de Mohamed Yassine Benfdil (10)

Poly etsher assemblage construction mã©tallique callaud 2003
Poly etsher assemblage construction mã©tallique callaud 2003Poly etsher assemblage construction mã©tallique callaud 2003
Poly etsher assemblage construction mã©tallique callaud 2003
 
concevoir-et-costruire-en-acier
concevoir-et-costruire-en-acierconcevoir-et-costruire-en-acier
concevoir-et-costruire-en-acier
 
Construction métallique
Construction métalliqueConstruction métallique
Construction métallique
 
Traitement des eaux usées
Traitement des eaux uséesTraitement des eaux usées
Traitement des eaux usées
 
Réseaux d'assainissement
Réseaux d'assainissementRéseaux d'assainissement
Réseaux d'assainissement
 
Tch001 treillis 2009
Tch001 treillis 2009Tch001 treillis 2009
Tch001 treillis 2009
 
Acétates du chapitre 1 (partie 1)
Acétates du chapitre 1 (partie 1)Acétates du chapitre 1 (partie 1)
Acétates du chapitre 1 (partie 1)
 
Acétates du chapitre 1 (partie 2)
Acétates du chapitre 1 (partie 2)Acétates du chapitre 1 (partie 2)
Acétates du chapitre 1 (partie 2)
 
Voirie
VoirieVoirie
Voirie
 
Construction en terre
Construction en terreConstruction en terre
Construction en terre
 

Dernier

BOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VLBOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VLidelewebmestre
 
Chapitre 2 : fondations et analyses de données géotechniques
Chapitre 2 : fondations et analyses de données géotechniquesChapitre 2 : fondations et analyses de données géotechniques
Chapitre 2 : fondations et analyses de données géotechniquesangevaleryn
 
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...maach1
 
BOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcins
BOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcinsBOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcins
BOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcinsidelewebmestre
 
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.pptCHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.pptbentaha1011
 
BOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud PorcsBOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud Porcsidelewebmestre
 
Bow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminants
Bow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminantsBow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminants
Bow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminantsidelewebmestre
 
Agrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en DordogneAgrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en Dordogneidelewebmestre
 
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...idelewebmestre
 
BOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pasBOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pasidelewebmestre
 
présentation sur la logistique (4).
présentation     sur la  logistique (4).présentation     sur la  logistique (4).
présentation sur la logistique (4).FatimaEzzahra753100
 
BOW 2024 - L'enrichissement du milieu des chèvres laitières
BOW 2024 - L'enrichissement du milieu des chèvres laitièresBOW 2024 - L'enrichissement du milieu des chèvres laitières
BOW 2024 - L'enrichissement du milieu des chèvres laitièresidelewebmestre
 
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...idelewebmestre
 
BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...
BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...
BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...idelewebmestre
 
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleurBOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleuridelewebmestre
 
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitièresBOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitièresidelewebmestre
 
BOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chairBOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chairidelewebmestre
 
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatiqueBOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatiqueidelewebmestre
 
Support de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptxSupport de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptxdocteurgyneco1
 
BOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein airBOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein airidelewebmestre
 

Dernier (20)

BOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VLBOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
BOW 2024 -3-9 - Matelas de logettes à eau refroidie VL
 
Chapitre 2 : fondations et analyses de données géotechniques
Chapitre 2 : fondations et analyses de données géotechniquesChapitre 2 : fondations et analyses de données géotechniques
Chapitre 2 : fondations et analyses de données géotechniques
 
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
Cours-de-Ponts Cours de Ponts Principes généraux - Conception Méthodes de con...
 
BOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcins
BOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcinsBOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcins
BOW 24 - De la réflexion de groupe à l'immersion dans des bâtiments porcins
 
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.pptCHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
CHAPITRE 2 VARIABLE ALEATOIRE probabilité.ppt
 
BOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud PorcsBOW 2024 - 3-6 - Adaptation climat chaud Porcs
BOW 2024 - 3-6 - Adaptation climat chaud Porcs
 
Bow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminants
Bow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminantsBow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminants
Bow 2024 - Plein air à l'intérieur des bâtiments d'élevage de ruminants
 
Agrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en DordogneAgrivoltaïsme et filière ovine en Dordogne
Agrivoltaïsme et filière ovine en Dordogne
 
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
Accompagnement de l'agrivoltaisme - Focus sur l'étude système en Merthe et Mo...
 
BOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pasBOW 2024 - Dedans/Dehors quand voir ne suffit pas
BOW 2024 - Dedans/Dehors quand voir ne suffit pas
 
présentation sur la logistique (4).
présentation     sur la  logistique (4).présentation     sur la  logistique (4).
présentation sur la logistique (4).
 
BOW 2024 - L'enrichissement du milieu des chèvres laitières
BOW 2024 - L'enrichissement du milieu des chèvres laitièresBOW 2024 - L'enrichissement du milieu des chèvres laitières
BOW 2024 - L'enrichissement du milieu des chèvres laitières
 
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...BOW 2024 - 3-3 -  Adaptation des bâtiments pour ruminants au changement clima...
BOW 2024 - 3-3 - Adaptation des bâtiments pour ruminants au changement clima...
 
BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...
BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...
BOW 2024 - 3-8 - Adaptation des bâtiments d'élevages de volailles au changeme...
 
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleurBOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
BOW 2024 - 3-5 - Des solutions numériques pour se préparer aux pics de chaleur
 
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitièresBOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
BOW 2024 -3-7- Impact bâtiment stress thermique Vaches laitières
 
BOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chairBOW 2024 - Jardins d'hiver en poulets de chair
BOW 2024 - Jardins d'hiver en poulets de chair
 
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatiqueBOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
BOW 2024 - 3 1 - Les infrastructures équestres et le changement climatique
 
Support de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptxSupport de cours La technologie WDM.pptx
Support de cours La technologie WDM.pptx
 
BOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein airBOW 2024 - Logement des veaux laitiers en plein air
BOW 2024 - Logement des veaux laitiers en plein air
 

Énergétique

  • 1. Résistance des matériaux II Chapitre 145 é é é iMéthodes énergétiques chapitres 9 et 14 • Objectifs – Utiliser le théorème de Castigliano pour calculer des lesUtiliser le théorème de Castigliano pour calculer des les réactions aux appuis de structures hyperstatiques – Utiliser le théorème de Castigliano pour calculer des déplacements, rotations ou rotations angulaires de structures hyperstatiques – Savoir la définition de l’aire effective en cisaillementSavoir la définition de l aire effective en cisaillement – Calculer l’énergie de déformation en tenant compte de l’effort tranchant Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 1
  • 2. Résistance des matériaux II Chapitre 145 Ch it 9 É i d déf tiChapitre 9: Énergie de déformation 9.7 Énergie de déformation 9.7.1 Expression de l’énergie pour un chargement uniaxial 9.7.2 Énergie de déformation élastique pour un chargement général Chapitre 14 : Méthodes énergétiques Fichier 1Chapitre 14 : Méthodes énergétiques 14.2 Cas particuliers 14.2.1 Tension 14.2.2 Flexion Fichier 1 14.2.3 Torsion 14.3 Théorème de la réciprocité, de Maxwell-Betti 14.4 Théorème de Castigliano h14.4.1 Application aux systèmes isostatiques 14.4.2 Application aux systèmes hyperstatiques 14.5 Effets de l’effort tranchant Fichier 2 Fichier 3 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 2
  • 3. Résistance des matériaux II Chapitre 145 14 4 2 Applications aux systèmes hyperstatiques14.4.2 Applications aux systèmes hyperstatiques Cette poutre est hyperstatique: A w xx y Cette poutre est hyperstatique: il n’y a pas suffisamment d’équations d’équilibre pour calculer les réactions. y A L BB Il y a trois inconnues: Ra, Rb et Mb. Deux équations d’équilibre sont BM L w A B x y disponibles: ∑Fy = 0 ; ∑Mz = 0 Par conséquent, il manque une équation. AR L BR On peut lever l’indétermination en posant une équation de compatibilité et en transformant cette équation en équation de Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. p q q forces ou de moments à l’aide du théorème de Castigliano. 3
  • 4. Résistance des matériaux II Chapitre 145 Mé h d d l i d’ è h iMéthode de solution d’un système hyperstatique • poser les équations d’équilibre disponibles BMwy disponibles • déterminer le nombre d’équation(s) A R L R B x q ( ) d’équilibre manquante(s), N N = degré d’hyperstaticité (N = 1 pour notre cours) AR BR Pour la poutre montrée, il manque une équation; le système est hyperstatique du premier degré Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 4
  • 5. Résistance des matériaux II Chapitre 145 Méthode de solution (suite)Méthode de solution (suite) • établir N équations de compatibilité – Pour la poutre montrée, on connaît trois conditions de ibili écompatibilité: δA = 0 δB = 0 θB = 0 – Le système étant hyperstatique A BMw B x y Le système étant hyperstatique du premier degré, on choisit une seule condition de compatibilité AR L BR B et la réaction correspondante est appelée surabondante: a) si on choisit δ = 0 R est la réaction surabondantea) si on choisit δA = 0, RA est la réaction surabondante, appelée R Selon Castigliano: A R U R U δ= ∂ ∂ = ∂ ∂ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. A A RR ∂∂ 5
  • 6. Résistance des matériaux II Chapitre 145 Méthode de solution (suite)Méthode de solution (suite) b) si on choisit δB = 0, RB est la) B , B réaction surabondante, appelée R A BMw x y et B B R U R U δ= ∂ ∂ = ∂ ∂ A AR L BR B c) si on choisit θB = 0, MB est la réaction surabondanteréaction surabondante et U θ= ∂ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. et B BM θ= ∂ 6
  • 7. Résistance des matériaux II Chapitre 145 Méthode de solution (suite) i l é i A BMw x y • Exprimer toutes les réactions en fonction de la réaction surabondante et du chargement A AR L BR B surabondante et du chargement. • Appliquer Castigliano: L ff i l’é i A Les efforts internes et l’énergie de déformation doivent être exprimés en fonction de la é i b d dréaction surabondante et du chargement seulement. Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 7
  • 8. Résistance des matériaux II Chapitre 145 E lExemple : On demande de calculer a) les réactions aux appuis A mNw /, B Ca) les réactions aux appuis b) l’angle de rotation θ A au point A de cette poutre. L L A B p p Cette poutre est hyperstatique car elle est appuyée sur trois appuis simples A, B et C: – 3 réactions inconnues, soit RA,RB et RC 2 équations d’équilibre disponibles soit ∑F = 0 ; ∑M = 0– 2 équations d équilibre disponibles, soit ∑Fy = 0 ; ∑Mz = 0 La solution est d ’utiliser le théorème de Castigliano. Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. La solution est d utiliser le théorème de Castigliano. 8
  • 9. Résistance des matériaux II Chapitre 145 La procédure pour trouver les réactions aux appuis d’un problème hyperstatique est : 1 Choisir une condition de compatibilité et déclarer la réaction1. Choisir une condition de compatibilité et déclarer la réaction correspondante surabondante (R) 2. Établir les équations d’équilibre. Les réactions sont exprimées en fonction du chargement et de la force surabondante 3. Établir les équations des efforts internes et les exprimer en fonction du chargement et de la surabondantefonction du chargement et de la surabondante 4. Appliquer le théorème de Castigliano à la condition de compatibilité choisie – Permet de déterminer la surabondante (R) – Déterminer les autres réactions aux appuis à l’aide des é ti d’é ilib Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. équations d’équilibre 9
  • 10. Résistance des matériaux II Chapitre 145 RR On choisit δ comme mNw /, B C RRA =1. Réactions aux appuis On choisit δ A comme condition de compatibilité L L A B C BR CR ∂U 0== ∂ ∂ A AR U δ La force RA est déclarée b dsurabondante Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 10
  • 11. Résistance des matériaux II Chapitre 145 RR mNw /, B C RRA = RRA = 2. Équilibre L L A B C BR CR A MC =∑ 0 Fy =∑ 0 Lw LR Lw LRB ⋅⋅+ ⋅ =⋅ 2 2 2 L RRLwR BC −+⋅= R Lw RB ⋅+ ⋅ = 2 2 R Lw RC − ⋅ = 2 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. Les réactions sont exprimées en fonction de R et du chargement seulement 11
  • 12. Résistance des matériaux II Chapitre 145 mNw /,RR = A B C RRA = BR CR 3. Efforts internes L L B C BCM V R V ABM•O C x CR De A à B : 0 < x < L à xA •O 0 2 xw xRMM ⋅ +∑ De B à C : 0 < x < L xRM AB ⋅=⇒=∑ 0OM 0 2 2 xw xR Lw M xRMM BC CBCO ⋅ −⋅⎟ ⎞ ⎜ ⎛ − ⋅ = =+⋅−=∑ Les efforts internes sont exprimées en fonction de R Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 22 xRMBC ⎟ ⎠ ⎜ ⎝ = 12 et du chargement seulement
  • 13. Résistance des matériaux II Chapitre 145 RM ⎞⎛∂⎞⎛∂ M xRM AB ⋅= 22 2 xw xR Lw MBC ⋅ −⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ⋅ = 4. Appliquer la condition de compatibilité 0 00 = ⋅ ⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ⋅ ⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ == ∂ ∂ ∫∫ L BC BCL AB AB A IE dx R M M IE dx R M M R U δ ( ) ( ) ( ) 0 220 2 =⋅−⋅⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⋅ −⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − ⋅ +⋅⋅⋅= ∂ ∂ ∫∫ LL o dxx xw xR Lw dxxxR R U 0 ⎦⎣o 0 423323 4333 = ⋅ ⋅ + ⋅ + ⋅ ⋅⋅ − ⋅ = ∂ ∂ LwLRLLwLR R U 423323∂R 16 Lw R ⋅ = 16 7 Lw RC ⋅⋅ = 8 5 Lw RB ⋅⋅ = Avec les équations d’équilibre Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 16 16 C 8 B 13 d équilibre
  • 14. Résistance des matériaux II Chapitre 145 b) Rotation θ A de la poutre en A La tâche est facile avec A mNw /, B C La tâche est facile avec Castigliano, sachant que L L U∂ θ Le problème est qu ’il n ’y a pas de A A M U ∂ ∂ =θ mNw /, C 16 Lw RA ⋅ = moment concentré MA au point A! Que fait-on? O j t t fi tif L L A B C AM 16 7 Lw RC ⋅⋅ = On ajoute un moment fictif. L 8 5 Lw RB ⋅⋅ = Mais, par le fait même, on perturbe l ’éq ilibre de la po tre Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. l ’équilibre de la poutre 14
  • 15. Résistance des matériaux II Chapitre 145 Truc pour restaurer l’équilibre LTruc pour restaurer l équilibre Comment? On garde les réactions calculées A mNw /, B C 16 Lw RA ⋅ = g précédemment On équilibre seulement le moment fictif M en ajo tant des L L A B C AM 16 7 Lw RC ⋅⋅ = moment fictif MA en ajoutant des forces : • qui ont un moment égal et opposé à celui du moment ajouté L 8 5 Lw RB ⋅⋅ = q g pp j • qui sont d’intensité égale et opposée pour ne pas perturber l’équilibre de la poutre dans la direction y • qui s’appliquent aux points d’appui de la poutre pour ne pas• qui s appliquent aux points d appui de la poutre pour ne pas perturber la déformée de la poutre et pour ne pas ajouter de l’énergie de déformation dans la poutre Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 15
  • 16. Résistance des matériaux II Chapitre 145 LM A / Alternative 1 Alt ti 2 A mNw /, B C 16 Lw RA ⋅ = A A mNw /, B C 16 Lw RA ⋅ = Alternative 2 L L 8 5 Lw RB ⋅⋅ = 16 7 Lw RC ⋅⋅ =AM LM A / L L A B 8 5 Lw RB ⋅⋅ = 16 7 Lw RC ⋅⋅ =AM LM A /LM A /A mNw /,Lw R ⋅ LM A ⋅2/ Alternative 3 A , B C 16 RA = 8 5 Lw RB ⋅⋅ = 16 7 Lw RC ⋅⋅ =AM • Les trois alternatives permettent d’annuler MA et de garder la poutre en équilibre en y. • Le choix d’une alternative plutôt qu’une L L 8 16 LM A ⋅2/ • Le choix d une alternative plutôt qu une autre est basé sur une question d’expérience. • Ici, c’est l’alternative 1 qui semble et Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. s’avérera la plus avantageuse. 16
  • 17. Résistance des matériaux II Chapitre 145 LM A / Alternative 1 A mNw /, B C 16 Lw RA ⋅ = A Les efforts internes L L 8 5 Lw RB ⋅⋅ = 16 7 Lw RC ⋅⋅ =AM LM A /LM A / De A à B : 0 < x < L A AM V ABM AR •O •O De B à C : 0 < x < L xA C CR BCM V x •O x L M xRMM M A AAAB O ⋅−⋅+= ⇒=∑ 0 0 2 xw xRM M CBC O ⋅ −⋅= ⇒=∑ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. L AAAB 2 xRM CBC ⋅= 17
  • 18. Résistance des matériaux II Chapitre 145 M Selon Castigliano x L M xRMM A AAAB ⋅−⋅+= 2 2 xw xRM CBC ⋅ −⋅= 2 ∫∫ ⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ + ⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ∂ ∂ = ∂ =θ L A BC BCL A AB AB A dx M M Mdx M M M U ⎥ ⎤ ⎢ ⎡ ⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −⋅⋅−⋅+∫ L A AA dx x x M xRM 1)( ∫∫ ⋅ + ⋅∂ θ = 000AMA A IEIEM 16 Lw RA ⋅ = ( ) ⎥ ⎥ ⎥ ⎥ ⎥ ⎦⎢ ⎢ ⎢ ⎢ ⎢ ⎣ ⋅⋅⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⋅ −⋅+ ⎟ ⎠ ⎜ ⎝ ⋅ = ∫ ∫ L C AA A dx xw xR LL IE 0 2 0 0 2 )( 1 θ 16 7 Lw RC ⋅⋅ = ⎥⎦⎢⎣ ⎠⎝0 96 1 6 1 32 Lw IE LR IE A A ⋅=⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ ⋅ ⋅=θEn posant MA = 0 ⇒ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 966 IEIE ⋅⎟ ⎠ ⎜ ⎝⋅ p A ⇒ 18
  • 19. Résistance des matériaux II Chapitre 145 Exemple: On demande de calculer θ pour y xmNw /, On demande de calculer θ A pour la poutre illustrée ci-contre L z A B Les réactions RA, RB et le moment MB sont déjà connus. L mNw /, A B 5 L 8 2 Lw MB ⋅ = P i l l θ il f t j t t fi tif t é A L 8 3 Lw RA ⋅⋅ = 8 5 Lw RB ⋅⋅ = Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. Pour pouvoir calculer θ A, il faut ajouter un moment fictif concentré en A et ensuite restaurer l’équilibre. 19
  • 20. Résistance des matériaux II Chapitre 145 Deux alternatives sont possibles 2 Lw M AB ⋅ = Alternative 1 L’alternative 1 est possible parce que l’encastrement B peut reprendre un moment sans L mNw /, A 8 M AB AM B AM peut reprendre un moment sans que de l’énergie de déformation soit ajoutée au système. L 8 3 Lw RA ⋅⋅ = 8 5 Lw RB ⋅⋅ = B Alternative 2 mNw /, A 8 2 Lw MB ⋅ = Alternative 2 AM LM A / L A B 8 3 Lw RA ⋅⋅ = 5 Lw R ⋅⋅ = Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 8 A 8 RB = LM A / 20
  • 21. Résistance des matériaux II Chapitre 145 On choisit l’alternative 1. mNw /, 8 2 Lw MB ⋅ = Eff t i t AM L A 3 Lw R ⋅⋅ 5 Lw R ⋅⋅ B AM Efforts internes 8 RA = 8 RB = RM xw MM ⋅ ∑ 0 2 De A à B : xRM xw MM AAABO ⋅−+=⇒=∑ 2 0 mNw /, AM x A 3 Lw R ⋅⋅ V •O ABM Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 8 RA = V 21
  • 22. Résistance des matériaux II Chapitre 145 Appliquant Castigliano :pp q g x mNw /, A xRM xw M AAAB ⋅−+ ⋅ = 2 2 M x 8 3 Lw RA ⋅⋅ = V xw ⋅ 2 AM dx M M IE M M U A AB L AB MA A A ∂ ∂ ⋅ = ∂ ∂ = ∫ = 00 θ ( ) dx IE xR xw ML AA ⋅⋅ ⋅ ⋅− ⋅ + = ∫ 12 0 Lw⋅ 3 θEn posant MA = 0, ⇒ IE A ⋅⋅ −= 48 θ i.e., dans le sens inverse de Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. i.e., dans le sens inverse de MA fictif 22
  • 23. Résistance des matériaux II Chapitre 145 Thé è d C ti liThéorème de Castigliano CommentaireCo e e Lorsque le système est isostatique, il est plus simple de mettre sur la structure, dès le début, les charges réelles et fictives et d’établir les é i d’é ilib idé l d d héquations d’équilibre en considérant les deux types de chargement, fictif et réel. Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 23
  • 24. Résistance des matériaux II Chapitre 145 Ch it 9 É i d déf tiChapitre 9: Énergie de déformation 9.7 Énergie de déformation 9.7.1 Expression de l’énergie pour un chargement uniaxial 9.7.2 Énergie de déformation élastique pour un chargement général Chapitre 14 : Méthodes énergétiques Fichier 1Chapitre 14 : Méthodes énergétiques 14.2 Cas particuliers 14.2.1 Tension 14.2.2 Flexion Fichier 1 14.2.3 Torsion 14.3 Théorème de la réciprocité, de Maxwell-Betti 14.4 Théorème de Castigliano h14.4.1 Application aux systèmes isostatiques 14.4.2 Application aux systèmes hyperstatiques 14.5 Effets de l’effort tranchant Fichier 2 Fichier 3 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 24
  • 25. Résistance des matériaux II Chapitre 145 Jusqu’ici, on a négligé l’apport de l’énergie de déformation associée à l’effort tranchant dans le calcul de la flèche ou de l’angle de rotation.g La notion de l’aire effective en cisaillement Ac simplifie considérablement le calcul de l’énergie de déformation due à l’effort tranchant et permet ainsi de tenir compte de l’effort tranchant dans le calcul de la flèche et de l’angle de rotation.g Ac devient une propriété de la section au même titre que les moments d’aire et que la constante de torsion Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 25
  • 26. Résistance des matériaux II Chapitre 145 Ai ff ti d i ill tAire effective de cisaillement Ac est déterminée de façon à ce que l’énergie de déformation,c ç q g f • calculée en utilisant la distribution moyenne de la contrainte de cisaillement agissant sur l’aire Ac par : m A V =τ au lieu de la distribution réelle: cA ∫= dAV τ • soit équivalente à l’énergie de déformation calculée en utilisant la distribution réelle de la contrainte de cisaillement sur la section Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 26
  • 27. Résistance des matériaux II Chapitre 145 Ainsi, pour une contrainte de cisaillement τ, l ’énergie de déformation U est donnée par : ∫ 1 Puisque : dVU V ⋅⋅= ∫ γτ 2 1 G/ q on peut écrire : G/τγ = (a) 2 1 2 ∫∫ ⋅⋅= dxdA G U τ 2 ∫∫⋅ L A G Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 27
  • 28. Résistance des matériaux II Chapitre 145 E idé l i d i ill iEn considérant la contrainte de cisaillement moyenne agissant sur l ’aire effective de cisaillement, l ’énergie de déformation est donnée par :p ∫∫∫ ⋅⋅ ⋅ =⋅⋅ ⋅ = L cm L A m dxA G dxdA G U 22 2 1 2 1 ττ Puisque LL A GG 22 cm AV /=τ (b) 2 1 2 ∫ ⋅= dx A V G U 2⋅ L cAG Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 28
  • 29. Résistance des matériaux II Chapitre 145 1 (a) 2 1 2 ∫∫ ⋅⋅ ⋅ = L A dxdA G U τ 2 (b) 2 1 2 ∫ ⋅ ⋅ = L c dx A V G U En comparant (a) et (b), on tire : ∫ dA V 2 2 ∫ ⋅= Ac dA A 2 τ (c)2 2 ∫ ⋅ = A c dA V A τ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. A 29
  • 30. Résistance des matériaux II Chapitre 145 L’aire effective de cisaillement A d’une section estL aire effective de cisaillement Ac d une section est déterminée en utilisant (c). Lorsque sa valeur est connue, l’énergie de déformation due à l’effort tranchant peut alors êt l lé f il t tili t (b)être calculée facilement en utilisant (b). 2 (b) 2 1 2 ∫ ⋅ ⋅ = L c dx A V G U (c)2 2 ∫ =c dA V A ( )2 ∫ ⋅ A c dAτ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 30
  • 31. Résistance des matériaux II Chapitre 145 Ai ff ti d i ill tAire effective de cisaillement Exemple : Déterminer l’aire effective de cisaillement AC d’unep C poutre de section rectangulaire. QV ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − y h b 2 bI QV z zy ⋅ ⋅ =τ h y ⎞⎛ h1 ⎠⎝ τ x y z V ⋅ = 3 hb I b ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + y h 22 1 τ yV ⎥⎦ ⎤ ⎢⎣ ⎡ +⋅⋅⎥⎦ ⎤ ⎢⎣ ⎡ −⋅=⋅= ) 2 ( 2 1 ) 2 ( 12 y h y h byAQ I z z ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛⋅ ⋅ ⋅ = 2 2 3 2 6 y h hb Vy τ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 31 ⎥⎦⎢⎣⎥⎦⎢⎣ 222 ⎦⎣ ⎠⎝hb
  • 32. Résistance des matériaux II Chapitre 145 Ai ff ti d i ill tAire effective de cisaillement Exemple (suite) : Section rectangulairep ( ) g dyy h hb V bdA h y A ⋅⎥ ⎦ ⎤ ⎢ ⎣ ⎡ −⎟ ⎠ ⎞ ⎜ ⎝ ⎛ ⋅ ⋅ ⋅=⋅ ∫∫ 2 2 22/ 0 62 2 2 2 36 2τ ∫ ⋅ =c dA V A 2 2 τA ⎦⎣ ⎠⎝0 dyyy hh hb V dA h y ⋅⎥ ⎦ ⎤ ⎢ ⎣ ⎡ +⋅⎟ ⎠ ⎞ ⎜ ⎝ ⎛⋅−⎟ ⎠ ⎞ ⎜ ⎝ ⎛⋅ =⋅ ∫∫ 2/ 42 24 6 2 2 2 2 2 72 τ ∫A yyy hbA ⎥ ⎦ ⎢ ⎣ ⎟ ⎠ ⎜ ⎝ ⎟ ⎠ ⎜ ⎝⋅ ∫∫ 0 6 22 VhhhV dA y ⋅ =⎥ ⎤ ⎢ ⎡ ⎟ ⎞ ⎜ ⎛⋅+⎟ ⎞ ⎜ ⎛⋅−⎟ ⎞ ⎜ ⎛⋅ ⋅ =⋅∫ 61272 25552 2 τ hbhb dA A ⋅⋅ =⎥ ⎦ ⎢ ⎣ ⎟ ⎠ ⎜ ⎝ +⎟ ⎠ ⎜ ⎝ ⎟ ⎠ ⎜ ⎝⋅ =∫ 5252326 τ 55 Ahb A ⋅⋅⋅ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 66 Ac == 32
  • 33. Résistance des matériaux II Chapitre 145 Ai ff ti d i ill tAire effective de cisaillement Application : ypp Aire effective de cisaillement Ac d’un tube rond à paroi mince. z R t A 2 A tRAc =⋅⋅= π Aire effective de cisaillement Ac R29 RA c d’un tube rond plein. R2 10 9 RAc ⋅⋅= π Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 33
  • 34. Résistance des matériaux II Chapitre 145 Ai ff ti d i ill tAire effective de cisaillement Application : y pp aire effective de cisaillement Ac d’un tube rectangulaire à paroi mince. t h z thAc ⋅⋅≈ 2 b aire effective de cisaillement Ac y c d’une poutre en I. hw t z hwAc ⋅≈ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 34 b
  • 35. Résistance des matériaux II Chapitre 145 Thé è d C ti liThéorème de Castigliano Exemple : Déterminer la contribution de l’effort tranchant à la flèchep au point d’application de la force P P P L 52200xWA B P V ABM B x •o xPMM AB ⋅=⇒=∑ 0 2 46 33 h mm10x7,52I MPa77x10G;MPa10x200E = ==De A à B : 0 < x < L xPMM ABo ⇒∑ 0 2 c mm1627mm206x7,9mmhxwA === PV = S l C ti li U∂ δ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 35 Selon Castigliano : P B ∂ =δ
  • 36. Résistance des matériaux II Chapitre 145 VM LL 22 dx AG V dx IE M U L c L AB ∫∫ ⋅⋅ + ⋅⋅ = 0 2 0 2 22 ( ) ( )PVVPMMU LL ∂∂∂∂∂ // MAB = P·x V = P ( ) ( ) dx AG PVV dx IE PMM P U L c L ABAB B ∫∫ ⋅ ∂∂ + ⋅ ∂∂ = ∂ ∂ = 00 // δ ( ) ( )LL LPLPPP 1 3 ( ) ( ) c L c L B AG LP IE LP dx AG P dx IE xxP ⋅ ⋅ + ⋅⋅ ⋅ = ⋅ + ⋅ ⋅ = ∫∫ 3 1 3 00 δ ⎤⎡3 Plus la poutre est courte, plus la ⎥ ⎦ ⎤ ⎢ ⎣ ⎡ ⋅⋅ ⋅⋅ +⋅ ⋅⋅ ⋅ = 2 3 3 1 3 LAG IE IE LP c Bδ L, mm α α p , p contribution de l’effort tranchant à la flèche est importante. [ ] 3 3 253x10 1 3 +⋅ ⋅⋅ ⋅ = αδ IE LP B α+1 500 1,012 0,503 1000 0,253 0,202 2000 0,063 0,059 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 2 L 253x10 =α L en mm 36 , , 4000 0,016 0,016
  • 37. Résistance des matériaux II Chapitre 145 Thé è d C ti liThéorème de Castigliano Problème synthèse: Portiquey q a) Déterminer les réactions aux appuis de ce portique mNw /, B C D• b) Déterminer la flèche au point C situé à L/2 L 2/L 2/L Les joints en B et D sont rigides; les attaches en A et E sont des rotules A E L Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 37
  • 38. Résistance des matériaux II Chapitre 145 mNw /, mNw /, B C D , B C D• 2/L 2/L L A ERHA = RHE = A E L AV EV • Quatre réactions inconnues et trois équations d ’équilibre disponibles ∑∑∑ === 0;0;0 MFF •Problème hyperstatique du premier degré; on choisit une équation de compatibilité : δAH = δA = 0 ∑∑∑ === 0;0;0 zyx MFF Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. • HA est la réaction surabondante 38
  • 39. Résistance des matériaux II Chapitre 145 B D• B D•B C D B C D A E A E Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 39
  • 40. Résistance des matériaux II Chapitre 145 mNw /, mNw /, B C D , B C D• 2/L 2/L L A ERHA = RHE = A E L Par symétrie, on peut poser VA=VE=(wL)/2. AV EV La valeur de HA et HE sera obtenue à l ’aide de : ∑ =⇒= HHF 0 0= ∂ ∂ =A H U δ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. ∑ =⇒= EAx HHF 0 ∂ AH 40
  • 41. Résistance des matériaux II Chapitre 145 mNw /, Efforts internes De A à B : 0 < x < L De D à E : 0 < x < L B C D Efforts internes De D à E : 0 < x < L P x L Lw P xRM AB AB ⋅ −= ⋅= 2 ABM ABP V •o A E Lw V ⋅ V RHA = RHE = RVAB AB = 2 RH x ABV 2 VA = EV A Lw V ⋅ = RHA = Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 2 VA = 41
  • 42. Résistance des matériaux II Chapitre 145 mNw /, De B à D : 0 < x < L B D x Efforts internes 22 2 x Lw LR xw MBD ⋅ ⋅ −⋅+ ⋅ = V Lw xwV RP BD BD ⋅ −⋅= = mNw /, B x BDV BDM BDP• o A E Lw V ⋅ V RHA = RHE = 2 xwVBD x 2 VA = EV RHA = Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. A 2 Lw VA ⋅ = 42
  • 43. Résistance des matériaux II Chapitre 145 2 x Lw LR xw MBD ⋅ ⋅ −⋅+ ⋅ = xRM AB ⋅= 2 22 Lw xwV RP xLRM BD BD BD ⋅ −⋅= = + RV Lw P AB AB = ⋅ −= 2 ( ) ( ) ( ) ∑∑∫∑∫ ∂∂ + ∂∂ + ∂∂ == ∂ =δ LR/PPdxR/VVdxR/MM 0 U ii L ii L ii 2 Selon Castigliano: ∑∑∫∑∫ ⋅ + ⋅ + ⋅ == ∂ =δ AEAGIE 0 R 0 c0 A ( ) 1 A B et DE ( ) ( ) ( )0 2 1 2 1 22 00 ⎞⎛⎞⎛ + ⋅ − + ⋅ + ⋅ = ∂ ∂ ∫∫ AE LwL AG dxR IE dxxRx R U L c L ( ) ( ) ( ) 0 1 0 22 1 2 1 00 2 = ⋅ + + ⋅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − + ⋅ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ −+ ∫∫ AE LR AG dx wL wx IE dxLwLxwxRL L c L Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 00 c BD 43
  • 44. Résistance des matériaux II Chapitre 145 44 wLwL 022322 3 2 3 3 = ⋅ + ⋅ ⋅ − ⋅ + + ⋅ + ⋅ = ∂ ∂ AE RL IE wLwL RL AG RL IE RL R U c ⎟ ⎠ ⎞ ⎜ ⎝ ⎛+⎟⎟ ⎞ ⎜⎜ ⎛ + ⋅ = 22 365 1 4 IEI Lw R ⎟ ⎠ ⎜ ⎝ +⎟⎟ ⎠ ⎜⎜ ⎝ + 22 365 ALGLAc 1⎟ ⎞ ⎜ ⎛ EI 1⎟ ⎞ ⎜ ⎛ ISi C l i12 <<<⎟⎟ ⎠ ⎜⎜ ⎝ GLAc 12 <<<⎟ ⎠ ⎞ ⎜ ⎝ ⎛ AL 'R wL R ≈ Si et l Conclusion : L’effet de l’effort tranchant et de la force axiale sur l’énergie ' 20 RR =≈alors g de déformation est négligeable Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 44
  • 45. Résistance des matériaux II Chapitre 145 Pour un portique fabriqué d ’un profilé W200x52 :Pour un portique fabriqué d un profilé W200x52 : 2246 1350et6660,107,52 mmAmmAmmxI c === L, mm R/w x10-3 R’/w=L/20 x10-3 R’/R20 ' wL R = 500 16,596 25 1,506 1000 44,405 50 1,127 ⎟ ⎞ ⎜ ⎛+⎟⎟ ⎞ ⎜⎜ ⎛ + ⋅ = 365 1 4 IEI Lw R , , 2000 96,974 100 1,032 ⎟ ⎠ ⎞ ⎜ ⎝ ⎛+⎟⎟ ⎠ ⎜⎜ ⎝ + 22 365 ALGLAc 4000 198,57 200 1,007 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 45
  • 46. Résistance des matériaux II Chapitre 145 Dans un portique de faible dimension L 500mm l ’effortDans un portique de faible dimension, L = 500mm, l ’effort tranchant contribue pour 50% de la réaction horizontale aux points A et E. Pour un portique aux dimensions plus normales, L = 4 m, cette contribution est de 0,7 %. L, mm R/w R’/w=L/20 R’/R, x10-3 x10-3 500 16,596 25 1,506 1000 44,405 50 1,127 2000 96,974 100 1,032 4000 198,57 200 1,007 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 46
  • 47. Résistance des matériaux II Chapitre 145 b) la flèche au point C mNw /, fictive=P ∂U B C D 0=∂ ∂ = P C P U δ L Puisqu’il n’y a pas de force au point C, on ajoute une force fictive à ce point ; il faut ensuite l ’équilibrer. A ERHA = RHE = AV EV 2/P 2/P Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 47
  • 48. Résistance des matériaux II Chapitre 145 On utilise les réactions calculéesOn utilise les réactions calculées précédemment : fictive=P 2 wL VV EA == mNw /, B C D M 2 EA 20 wL RHH EA === L Ici on néglige les effets de l ’énergie de déformation associée à la force axiale P et à ABM BDM L l ’effort tranchant V. ERHA = wLwxP LRM 2 A 2 wL VA = EV RHE = 2/P 2/PxRM AB ⋅= x 22 x 2 LRMBD −+−⋅= Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. AB 48
  • 49. Résistance des matériaux II Chapitre 145 LP 2 fictive=P xRM AB ⋅= x 2 wL 2 wx x 2 P LRM 2 BD −+−⋅= mNw /, B C D wL R =xRM AB d PMMU ii ∑∫ ∂∂∂ )/( δ ABM BDM 20 R = dx EIP ii P c ∑∫= ∂ = = )( 0 δ ERHA = RHE = A 2 wL VA = EV 2/P 2/P∫ += ∂ ∂ =δ = L 00P c EI dx)0(Rx 2 P U ∫ −⎥⎦ ⎤ ⎢⎣ ⎡ −+−L 2 0 EI dx) 2 x ()Lxx( 2 w x 2 P RL EI wL c 1920 13 4 =δ⇒ Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. ∫0 EI EI1920 49
  • 50. Résistance des matériaux II Chapitre 145 P blè lé t i (f lt tif)Problème supplémentaire (facultatif) : Calculer les déplacements vertical et horizontal δhC et δvC dans la structure ci-contre soumise à la force P. R B 0= ∂ ∂ = Q hC Q U δ 0=∂ ∂ = Q vC P U δ P Q B C Efforts internes : θBCM BCP BCV •o L A C R P Q Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 50
  • 51. Résistance des matériaux II Chapitre 145 En négligeant les effets de la force axiale PBC et de l’effortEn négligeant les effets de la force axiale PBC et de l effort tranchant VBC sur l ’énergie de déformation : BCP BCVDe B à C : 0 < θ < π [ ])cos(1)sin( θθ −⋅+⋅−= RPRQMBC θBCM R •o B C R C R P Q P 0=Q C ABM x De A à B : 0 < x < L RPxQM AB ⋅⋅+⋅= 2 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 51
  • 52. Résistance des matériaux II Chapitre 145 dxMU ∂∂ ∫ IE dx P M M P U i i Q CV ⋅∂ ∂ = ∂ ∂ = ∑∫=0 δ [ ])cos(1)sin( θθ −⋅+⋅−= RPRQMBC RPxQM + 2 RPxQM AB ⋅⋅+⋅= 2 ( )R cos11 θπ [ ]{ } ( ) ∫ ⋅ − −⋅+⋅− ⋅ = L CV dxR d IE R RPRQ IE 0 2 cos1 )cos(1)sin( 1 θ θ θθδ [ ]∫ ⋅ ⋅⋅ ⋅⋅+⋅+ IE dxR RPxQ 0 2 2 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 52
  • 53. Résistance des matériaux II Chapitre 145 dMU ∂∂ IE dx P M M Q U i i Q CH ⋅∂ ∂ = ∂ ∂ = ∑∫ =0 δ [ ])cos(1()sin( θθ −⋅+⋅−= RPRQMBC RPxQM AB ⋅⋅+⋅= 2 { }( )dRRPRQ EI L CH −−⋅+⋅−= ∫0 sin)cos(1()sin( 1 θθθθδ π ( ) dxxRPxQ EI L ⋅⋅⋅⋅+⋅+ ∫0 2 1 Préparé par Henri Yelle, ing, Marie Bernard, ing et Daniel Therriault, ing. 53