SlideShare une entreprise Scribd logo
1  sur  10
Télécharger pour lire hors ligne
érie 3 :
------------------------------------------------------------------------------------S
1ière année
Maths et Inf
2014/2015
Exercice 1
Matière: Algèbre linéaire
Responsable: Mr
Université d Oum’
Matrices






=
01
12
A 





=
21
10
B .
BA + , BA× , AB × , 2
A 2
B .
).(2)( 222
BABABA ×++=+ ?






=
12
01
A 





=
21
02
B .
On considère les matrices
a. Calculer
b. A-t-on
Mêmes questions pour les matrices
et
et
et
1)
2)
Soit la matrice 𝐴 de définie par : 𝐴 = (
13 −8 −12
12 −7 −12
6 −4 −5
)
1. Montrer que 𝐴 est inversible et calculer son inverse 𝐴−1
.
2. En déduire 𝐴 𝑛
, pour tout 𝑛 entier.
Exercice 3
Soit 𝐴 la matrice de définie par : 𝐴 = (
0 1 1
1 0 1
1 1 0
)
1. Calculer 𝐴2
.
2. Trouver un polynôme 𝑃 de degré 2 tel que 𝑃( 𝐴) = 𝑂.
3. En déduire 𝐴−1
.
4. Retrouver 𝐴−1
par une autre méthode.
Exercice 4
Calculer les déterminants des matrices suivantes :
7 11
−8 4


1 0 6
3 4 15
5 6 21




1 0 2
3 4 5
5 6 7




1 0 −1
2 3 5
4 1 3






0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2








0 1 1 0
1 0 0 1
1 1 0 1
1 1 1 0








1 2 1 2
1 3 1 3
2 1 0 6
1 1 1 7




Exercice 2
1
Elbouaghi Algérie.
Djeddi K amel.E-mail:djeddi.kamel@gmail.com
Exercice 5
Soit 𝛽 = ( 𝑒1, 𝑒2, 𝑒3) la base canonique de ℝ3
.
Soit 𝑢 l’endomorphisme de ℝ3
dont la matrice dans la base canonique est :
𝐴 = (
1 4 4
−1 −3 −3
0 2 3
)
Soient 𝑎 = 𝑒1 − 𝑒2 + 𝑒3, 𝑏 = 2𝑒1 − 𝑒2 + 𝑒3 et 𝑐 = 2𝑒1 − 2𝑒2 + 𝑒3 trois vecteurs de ℝ3
1. Montrer que 𝛽′
= ( 𝑎, 𝑏, 𝑐) est une base de ℝ3
.
2. Déterminer la matrice de passage 𝑃 de 𝛽 à 𝛽′
. Calculer 𝑃−1
.
3. Déterminer la matrice 𝑅 de 𝑢 dans la base 𝛽′
.
4.
a) Calculer 𝑃−1
𝐴𝑃 en fonction de 𝑅
b) Calculer 𝑅4
c) En déduire les valeurs de 𝐴4𝑛
.
Exercice 6










−
−
−
=
211
121
112
A 33IAB += .
2
B B .
2
A A .
A
On considère les matrices1)
a. Exprimer en fonction de
b. En déduire en fonction de
c. La matrice est-elle inversible ?
et on pose










−
−
−
−
=
2111
1211
1121
1112
A 43IAB += .2) Mêmes questions pour les matrices et
2
Correction de l’exercice 1
1) 





=
01
12
A 





=
21
10
B
BA + , BA× , AB × , 2
A et 2
B .
♦ 





=+
22
22
BA , 





=×
10
41
BA , 





=×
14
01
AB , 





=
12
252
A , 





=
52
212
B
b. 222
.2)( BBAABA +×+≠+ : ABBA ×≠×
♦ )()()( 2
BABABA +×+=+ 





=+⇒
88
88
)( 2
BA
♦ 





=+×+
84
128
.2 22
BBAA
2) 





=
12
01
A et 





=
21
02
B
a. Calcul de BA + , BA× , AB × , 2
A et 2
B .
♦ 





=+
33
03
BA , 





=×
25
02
BA , 





=×
25
02
AB , 





=
14
012
A , 





=
44
042
B
b. 222
.2)( BBAABA +×+=+ : ABBA ×=×
♦ )()()( 2
BABABA +×+=+ 





=+⇒
918
09
)( 2
BA
♦ 





=+×+
918
09
.2 22
BBAA
a. Calcul de
et
3
Corrections
E-mail:djeddi.kamel@gmail.com
Correction de l’exercice 2
𝑌 = 𝐴𝑋 ⇔ 𝐴𝑋 = 𝑌
⇔ {
13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦1
12𝑥1 − 7𝑥2 − 12𝑥3 = 𝑦2
6𝑥1 − 4𝑥2 − 5𝑥3 = 𝑦3
⇔ 13𝐿2 − 12𝐿1
2𝐿3 − 𝐿2
{
13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦1
5𝑥2 − 12𝑥3 = 13𝑦2 − 12𝑦1
−𝑥2 + 2𝑥3 = 2𝑦3 − 𝑦2
⇔
5𝐿3 + 𝐿2
{
13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦1
5𝑥2 − 12𝑥3 = 13𝑦2 − 12𝑦1
−2𝑥3 = 10𝑦3 − 5𝑦2 + 13𝑦2 − 12𝑦1
⇔ {
13𝑥1 = 𝑦1 + 8𝑥2 + 12𝑥3
5𝑥2 = 13𝑦2 − 12𝑦1 + 12𝑥3
𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3
⇔ {
13𝑥1 = 𝑦1 + 8𝑥2 + 12(6𝑦1 − 4𝑦2 − 5𝑦3)
5𝑥2 = 13𝑦2 − 12𝑦1 + 12(6𝑦1 − 4𝑦2 − 5𝑦3) = 60𝑦1 − 35𝑦2 − 60𝑦3
𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3
⇔ {
13𝑥1 = 73𝑦1 − 48𝑦2 − 60𝑦3 + 8(12𝑦1 − 7𝑦2 − 12𝑦3)
𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3
𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3
⇔ {
13𝑥1 = 169𝑦1 − 104𝑦2 − 156𝑦3
𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3
𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3
⇔ {
𝑥1 = 13𝑦1 − 8𝑦2 − 12𝑦3
𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3
𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3
⇔ (
𝑥1
𝑥2
𝑥3
) = (
13 −8 −12
12 −7 −12
6 −4 −5
) (
𝑦1
𝑦2
𝑦3
)
Donc 𝐴−1
= (
13 −8 −12
12 −7 −12
6 −4 −5
) = 𝐴
Le mieux aurait été de changer les rôles de 𝑥1 et 𝑥3 dans le premier système.
𝐴2
= 𝐼 donc 𝐴2𝑛
= 𝐴2 𝑛
= 𝐼 𝑛
= 𝐼 et 𝐴2𝑛+1
= 𝐴2𝑛
𝐴 = 𝐴.
Correction de l’exercice 3
1. et 2.
𝐴2
= (
0 1 1
1 0 1
1 1 0
) (
0 1 1
1 0 1
1 1 0
) = (
2 1 1
1 2 1
1 1 2
) = 𝐴 + 2𝐼 donc 𝑃( 𝑋) = 𝑋2
− 𝑋 − 2
𝐴2
− 𝐴 = 2𝐼 ⇔ 𝐴( 𝐴 − 𝐼) = 2𝐼 ⇔ 𝐴 ×
𝐴−𝐼
2
= 𝐼 donc 𝐴−1
=
𝐴−𝐼
2
=
1
2
(
−1 1 1
1 −1 1
1 1 −1
)
4
𝐴𝑋 = 𝑌 ⇔ (
0 1 1
1 0 1
1 1 0
) (
𝑥1
𝑥2
𝑥3
) = (
𝑦1
𝑦2
𝑦3
) = {
𝑥2 + 𝑥3 = 𝑦1
𝑥1 + 𝑥3 = 𝑦2
𝑥1 + 𝑥2 = 𝑦3
𝑥1 dans la
𝑥1et 𝑥2 soit on intervertit la ligne 1 avec une ligne où il y a un 𝑥1
Ici il y a un problème pour appliquer le pivot de Gauss parce qu’il n’y a pas de
termes en première ligne, il y a deux façons d’arranger ce problème, soit
on intervertit , c’est
ce que nous allons faire.
𝐿1
𝐿2
𝐿3
{
𝑥2 + 𝑥3 = 𝑦1
𝑥1 + 𝑥3 = 𝑦2
𝑥1 + 𝑥2 = 𝑦3
⇔
𝐿2
𝐿1
𝐿3
{
𝑥1 + 𝑥3 = 𝑦2
𝑥2 + 𝑥3 = 𝑦1
𝑥1 + 𝑥2 = 𝑦3
⇔
𝐿1
𝐿2
𝐿3 − 𝐿1
{
𝑥1 + 𝑥3 = 𝑦2
𝑥2 + 𝑥3 = 𝑦1
𝑥2 − 𝑥3 = −𝑦2 + 𝑦3
⇔
𝐿1
𝐿2
𝐿3 − 𝐿2
{
𝑥1 + 𝑥3 = 𝑦2
𝑥2 + 𝑥3 = 𝑦1
−2𝑥3 = −𝑦1 − 𝑦2 + 𝑦3
⇔ {
𝑥1 = −𝑥3+ 𝑦2
𝑥2 = −𝑥3 + 𝑦1
𝑥3 =
1
2
𝑦1 +
1
2
𝑦2 −
1
2
𝑦3
⇔
{
𝑥1 = − (
1
2
𝑦1 +
1
2
𝑦2 −
1
2
𝑦3) + 𝑦2
𝑥2 = − (
1
2
𝑦1 +
1
2
𝑦2 −
1
2
𝑦3) + 𝑦1
𝑥3 =
1
2
𝑦1 +
1
2
𝑦2 −
1
2
𝑦3
⇔
{
𝑥1 = −
1
2
𝑦1 +
1
2
𝑦2 +
1
2
𝑦3
𝑥2 =
1
2
𝑦1 −
1
2
𝑦2 +
1
2
𝑦3
𝑥3 =
1
2
𝑦1 +
1
2
𝑦2 −
1
2
𝑦3
⇔ (
𝑥1
𝑥2
𝑥3
)
=
(
−
1
2
1
2
1
2
1
2
−
1
2
1
2
1
2
1
2
−
1
2)
(
𝑦1
𝑦2
𝑦3
) Donc 𝐴−1
=
(
−
1
2
1
2
1
2
1
2
−
1
2
1
2
1
2
1
2
−
1
2)
Correction de l’exercice 4
1. Le déterminant de la matrice
a b
c d
est
a b
c d
= ad −bc
7 11
−8 4
= 7×4−11×(−8) = 116.
2. Nous allons voir différentes méthodes pour calculer les déterminants.
Première méthode. Règle de Sarrus. Pour le matrice 3×3 il existe une formule qui permet de calculer
directement le déterminant.
.
Donc
5
a11 a12 a13
a21 a22 a23
a31 a32 a33
= a11a22a33 +a12a23a31 +a21a32a13 −a13a22a31 −a11a32a23 −a12a21a33
Donc
1 0 6
3 4 15
5 6 21
= 1×4×21+0×15×5+3×6×6−5×4×6−6×15×1−3×0×21 = −18
Attention ! La règle de Sarrus ne s’applique qu’aux matrices 3×3.
3. Deuxième méthode. Se ramener à une matrice diagonale ou triangulaire.
Si dans une matrice on change un ligne Li en Li −λLj
avec les colonnes.
alors le déterminant reste le même.
Même chose
L1 1 0 2
L2 3 4 5
L3 5 6 7
=
1 0 2
L2←L2−3L1 0 4 −1
L3←L3−5L1 0 6 −3
=
1 0 2
0 4 −1
L3←L3−3
2 L2
0 0 −3
2
= 1×4×(−3
2) = −6
cients sur la diagonale.
On a utilisé le fait que le déterminant d’une matrice diagonale (ou triangulaire) est le produit
des coeffi
4. Troisième méthode. Développement par rapport à une ligne ou une colonne.
par rapport à la deuxième colonne.
1 0 −1
2 3 5
4 1 3
= (−0)×
2 5
4 3
+(+3)×
1 −1
4 3
+(−1)×
1 −1
2 5
= 0+3×7−1×7 = 14
Nous allons
développer
Bien souvent on commence par simplifier la matrice en faisant apparaître un maximum de 0 par les
opérations élémentaires sur les lignes et les colonnes. Puis on développe en choisissant la ligne ou la
colonne qui a le plus de 0.
5. On fait apparaître des 0 sur la première colonne puis on développe par rapport à cette colonne.
∆ =
L1 0 1 2 3
L2 1 2 3 0
L3 2 3 0 1
L4 3 0 1 2
=
0 1 2 3
1 2 3 0
L3←L3−2L2 0 −1 −6 1
L4←L4−3L2 0 −6 −8 2
= −
1 2 3
−1 −6 1
−6 −8 2
Pour calculer le déterminant 3×3 on fait apparaître des 0 sur la première colonne, puis on la développe.
−∆ =
L1 1 2 3
L2 −1 −6 1
L3 −6 −8 2
=
1 2 3
L2←L2+L1 0 −4 4
L3←L3+6L1 0 4 20
= 1
−4 4
4 20
= −96
6
Donc ∆ = 96.
6. La matrice a déjà beaucoup de 0 mais on peut en faire apparaître davantage sur la dernière colonne, puis
on développe par rapport à la dernière colonne.
∆ =
L1 0 1 1 0
L2 1 0 0 1
L3 1 1 0 1
L4 1 1 1 0
=
0 1 1 0
1 0 0 1
L3←L3−L2 0 1 0 0
1 1 1 0
=
0 1 1
0 1 0
1 1 1
On développe ce dernier déterminant par rapport à la première colonne :
∆ =
0 1 1
0 1 0
1 1 1
= 1×
1 1
1 0
= −1
7. Toujours la même méthode, on fait apparaître des 0 sur la première colonne, puis on développe par
rapport à cette colonne.
∆ =
L1 1 2 1 2
L2 1 3 1 3
L3 2 1 0 6
L4 1 1 1 7
=
1 2 1 2
L2←L2−L1 0 1 0 1
L3←L3−2L1 0 −3 −2 2
L4←L4−L1 0 −1 0 5
=
1 0 1
−3 −2 2
−1 0 5
On développe par rapport à la deuxième colonne :
∆ = −2×
1 1
−1 5
= −12
Correction de l’exercice 5
det( 𝑎, 𝑏, 𝑐) = |
1 2 2
−1 −1 −2
1 1 1
| =
𝐶3 − 𝐶2
|
1 2 2
−1 −1 −2
0 0 −1
|
= − |
1 2
−1 −1
| = −(−1 + 2) = −1 ≠ 0
Donc ( 𝑎, 𝑏, 𝑐) est une base de ℝ3
1.
2.
𝑃 = (
1 2 2
−1 −1 −2
1 1 1
)
𝑃𝑋 = 𝑌 ⇔ (
1 2 2
−1 −1 −2
1 1 1
) (
𝑥1
𝑥2
𝑥3
) = (
𝑦1
𝑦2
𝑦3
) ⇔
𝐿1
𝐿2
𝐿3
{
𝑥1 + 2𝑥2 + 2𝑥3 = 𝑦1
−𝑥1 − 𝑥2 − 2𝑥3 = 𝑦2
𝑥1 + 𝑥2 + 𝑥3 = 𝑦3
7
⇔
𝐿1
𝐿2 + 𝐿1
𝐿3 + 𝐿2
{
𝑥1 + 2𝑥2 + 2𝑥3 = 𝑦1
𝑥2 = 𝑦1 + 𝑦2
−𝑥3 = 𝑦2 + 𝑦3
⇔ {
𝑥1 = −2𝑥2 − 2𝑥3 + 𝑦1
𝑥2 = 𝑦1 + 𝑦2
𝑥3 = −𝑦2 − 𝑦3
⇔ {
𝑥1 = −2𝑦1 − 2𝑦2 + 2𝑦2 + 2𝑦3 + 𝑦1
𝑥2 = 𝑦1 + 𝑦2
𝑥3 = −𝑦2 − 𝑦3
⇔ {
𝑥1 = −𝑦1 + 2𝑦3
𝑥2 = 𝑦1 + 𝑦2
𝑥3 = −𝑦2 − 𝑦3
Donc
𝑃−1
= (
−1 0 2
1 1 0
0 −1 −1
)
3. Les coordonnées de 𝑢( 𝑎) dans la base 𝛽 sont
(
1 4 4
−1 −3 −3
0 2 3
) (
1
−1
1
) = (
1
−1
1
)
Donc 𝑢( 𝑎) = 𝑎
Les coordonnées de 𝑢( 𝑏) dans la base 𝛽 sont
(
1 4 4
−1 −3 −3
0 2 3
) (
2
−1
1
) = (
2
−2
1
)
Donc 𝑢( 𝑏) = 𝑐
Les coordonnées de 𝑢( 𝑐) dans la base 𝛽 sont
(
1 4 4
−1 −3 −3
0 2 3
) (
2
−2
1
) = (
−2
1
−1
)
Donc 𝑢( 𝑐) = −𝑏
Par conséquent
𝑅 = (
1 0 0
0 0 −1
0 1 0
)
4.
a)
𝑃−1
𝐴𝑃 = (
−1 0 2
1 1 0
0 −1 −1
) (
1 4 4
−1 −3 −3
0 2 3
) (
1 2 2
−1 −1 −2
1 1 1
)
= (
−1 0 2
1 1 0
0 −1 −1
) (
1 2 −2
−1 −2 1
1 1 −1
) = (
1 0 0
0 0 −1
0 1 0
) = 𝑅
8
b)
𝑅2
= (
1 0 0
0 0 −1
0 1 0
) (
1 0 0
0 0 −1
0 1 0
) = (
1 0 0
0 −1 0
0 0 −1
)
𝑅4
= 𝑅2
𝑅2
= (
1 0 0
0 −1 0
0 0 −1
) (
1 0 0
0 −1 0
0 0 −1
) = (
1 0 0
0 1 0
0 0 1
) = 𝐼
c) 𝑅 = 𝑃−1
𝐴𝑃 ⇔ 𝐴 = 𝑃𝑅𝑃−1
𝐴4
= 𝑃𝑅𝑃−1
𝑃𝑅𝑃−1
𝑃𝑅𝑃−1
𝑃𝑅𝑃−1
= 𝑃𝑅4
𝑃−1
= 𝑃𝐼𝑃−1
= 𝐼
Donc
𝐴4𝑛
= ( 𝐴4) 𝑛
= 𝐼 𝑛
= 𝐼
Correction de l’exercice 6
1)










−
−
−
=
211
121
112
A , 33IAB +=
a. 2
B en fonction de B :










=⇒+=
111
111
111
3 3 BIAB
♦










=
111
111
111
B : ⇒










=×=
333
333
333
2
BBB BB .32
=
b. 2
A en fonction de A .
♦ 33 33 IBAIAB −=⇒+=
♦ Les matrices B et 3).3( I− commutent : BIBBI ).3().3().3( 33 −=−×=×−
( ) ( ) ( ) 2
3
2
3
2
3
2
.32.3.3 BBIIIBA +×−×+−=−=⇒
( ) BIBBIBBIIBA .3.9.3.6.9.6.9.3 33
2
3
2
3
2
−=+−=+−=−=⇒ , car BB .32
=
ABIBIA .3).3.(3.3.9 33
2
−=+−−=−=⇒ , BIA +−= 3.3
Donc AA .32
−=
c. La matrice A n'est pas inversible :
On suppose que la matrice A est inversible
On a alors 3
1
IAA =× −
et AA .32
−=
Donc 3
11
.3.3 IAAAAAA −=⇒×−=×× −−
Or 3.3 IA −≠ , donc la matrice A n'est pas inversible.
9
2)














−
−
−
−
=
2111
1211
1121
1112
A , 43IAB +=
a. 2
B en fonction de B :














=⇒+=
1111
1111
1111
1111
3 4 BIAB
♦














=
1111
1111
1111
1111
B : ⇒














=×=
4444
4444
4444
4444
2
BBB BB .42
=
b. 2
A en fonction de A .
♦ 44 33 IBAIAB −=⇒+=
♦ Les matrices B et 4).3( I− commutent : BIBBI ).3().3().3( 44 −=−×=×−
( ) ( ) ( ) 2
4
2
4
2
4
2
.32.3.3 BBIIIBA +×−×+−=−=⇒
BIBBIBBIA .2.9.4.6.9.6.9 44
2
4
2
−=+−=+−=⇒ , car BB .42
=
AIBIIBIIA .23).3).(2(3.2.63 44434
2
−=+−−+=−+=⇒ , BIA +−= 4.3
Donc AIA .23 4
2
−=
c. La matrice A est inversible :
44444
2
4
2
).2(
3
1
.).2(.
3
1
3.2.23 IIAAIIAAIAAAIA =





+×⇒=+×⇒=+⇒−=
Donc 44 /).2(
3
1
)4( IBAIABMB =×





+=∈∃
Donc la matrice A est inversible et ).2(
3
1
4
1
IAA +=−
10

Contenu connexe

Tendances

Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...
Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...
Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...amin lord
 
Exercices corriges en electricite triphase
Exercices corriges en electricite triphaseExercices corriges en electricite triphase
Exercices corriges en electricite triphasemorin moli
 
Comptabilite generale (cours+exercices corriges)
Comptabilite generale (cours+exercices corriges)Comptabilite generale (cours+exercices corriges)
Comptabilite generale (cours+exercices corriges)Taha Can
 
47811458 exercices-systemes-echantillonnes
47811458 exercices-systemes-echantillonnes47811458 exercices-systemes-echantillonnes
47811458 exercices-systemes-echantillonnesTRIKI BILEL
 
Chapitre ii circuits combinatoires
Chapitre ii circuits combinatoiresChapitre ii circuits combinatoires
Chapitre ii circuits combinatoiresSana Aroussi
 
Exercices-et-problemes-d-electrotechnique
Exercices-et-problemes-d-electrotechniqueExercices-et-problemes-d-electrotechnique
Exercices-et-problemes-d-electrotechniquemohatiareti
 
la comptabilité générale Exercices de journale balance et grand livre
la comptabilité générale Exercices de journale balance et grand livrela comptabilité générale Exercices de journale balance et grand livre
la comptabilité générale Exercices de journale balance et grand livresemmah el
 
Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexesOmar Ramzaoui
 
Exercices corrigés
Exercices corrigésExercices corrigés
Exercices corrigéshadhoum
 
Effets de commerce comptabilité générale _fsjes Mohammedia
Effets de commerce comptabilité générale _fsjes MohammediaEffets de commerce comptabilité générale _fsjes Mohammedia
Effets de commerce comptabilité générale _fsjes MohammediaYassine Chrif
 
Exercices corriges math fin
Exercices corriges math finExercices corriges math fin
Exercices corriges math finYassineHammoucha
 
TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire bilal001
 
Comptabilité analytique avec exercices corrigés - www.coursdefsjes.com
Comptabilité analytique avec exercices corrigés - www.coursdefsjes.comComptabilité analytique avec exercices corrigés - www.coursdefsjes.com
Comptabilité analytique avec exercices corrigés - www.coursdefsjes.comcours fsjes
 
Exercices coprrigés sur les torseurs
Exercices coprrigés sur les torseursExercices coprrigés sur les torseurs
Exercices coprrigés sur les torseursm.a bensaaoud
 

Tendances (20)

Ener1 - CM1 - Monophasé
Ener1 - CM1 - MonophaséEner1 - CM1 - Monophasé
Ener1 - CM1 - Monophasé
 
Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...
Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...
Exercices corrigés-de-la-comptabilité-analytique-faculté-pluridisciplinaire-n...
 
Exercices corriges en electricite triphase
Exercices corriges en electricite triphaseExercices corriges en electricite triphase
Exercices corriges en electricite triphase
 
Comptabilite generale (cours+exercices corriges)
Comptabilite generale (cours+exercices corriges)Comptabilite generale (cours+exercices corriges)
Comptabilite generale (cours+exercices corriges)
 
47811458 exercices-systemes-echantillonnes
47811458 exercices-systemes-echantillonnes47811458 exercices-systemes-echantillonnes
47811458 exercices-systemes-echantillonnes
 
Chapitre ii circuits combinatoires
Chapitre ii circuits combinatoiresChapitre ii circuits combinatoires
Chapitre ii circuits combinatoires
 
Exercices-et-problemes-d-electrotechnique
Exercices-et-problemes-d-electrotechniqueExercices-et-problemes-d-electrotechnique
Exercices-et-problemes-d-electrotechnique
 
la comptabilité générale Exercices de journale balance et grand livre
la comptabilité générale Exercices de journale balance et grand livrela comptabilité générale Exercices de journale balance et grand livre
la comptabilité générale Exercices de journale balance et grand livre
 
cours TVA Maroc
cours TVA Maroccours TVA Maroc
cours TVA Maroc
 
Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexes
 
les matrices
les matricesles matrices
les matrices
 
Exercices corrigés
Exercices corrigésExercices corrigés
Exercices corrigés
 
Effets de commerce comptabilité générale _fsjes Mohammedia
Effets de commerce comptabilité générale _fsjes MohammediaEffets de commerce comptabilité générale _fsjes Mohammedia
Effets de commerce comptabilité générale _fsjes Mohammedia
 
Exercices corriges math fin
Exercices corriges math finExercices corriges math fin
Exercices corriges math fin
 
Analyse de structure i4
Analyse de structure i4Analyse de structure i4
Analyse de structure i4
 
TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire TP Compteurs - logique combinatoire
TP Compteurs - logique combinatoire
 
Comptabilité analytique avec exercices corrigés - www.coursdefsjes.com
Comptabilité analytique avec exercices corrigés - www.coursdefsjes.comComptabilité analytique avec exercices corrigés - www.coursdefsjes.com
Comptabilité analytique avec exercices corrigés - www.coursdefsjes.com
 
Cours-macroeconomie
 Cours-macroeconomie  Cours-macroeconomie
Cours-macroeconomie
 
Exercices coprrigés sur les torseurs
Exercices coprrigés sur les torseursExercices coprrigés sur les torseurs
Exercices coprrigés sur les torseurs
 
09 lignes d'influence
09 lignes d'influence09 lignes d'influence
09 lignes d'influence
 

En vedette

Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafaAlgèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafaKamel Djeddi
 
Exercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeExercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeKamel Djeddi
 
Mathematiques _resumes_du_cours
Mathematiques  _resumes_du_coursMathematiques  _resumes_du_cours
Mathematiques _resumes_du_coursahmed jafour
 
Exercices complexes corriges
Exercices complexes corrigesExercices complexes corriges
Exercices complexes corrigesKarim Amane
 
Résolution de l'équations linéaires
Résolution de l'équations linéairesRésolution de l'équations linéaires
Résolution de l'équations linéairesKamel Djeddi
 
Nombre complexe
Nombre complexeNombre complexe
Nombre complexevouad1
 
exercices d'analyse complexe
exercices d'analyse complexeexercices d'analyse complexe
exercices d'analyse complexeKamel Djeddi
 
Examen d'analyse complexe
Examen d'analyse complexeExamen d'analyse complexe
Examen d'analyse complexeKamel Djeddi
 
Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1AHMED ENNAJI
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexesYessin Abdelhedi
 
Cahier exercises maths
Cahier exercises mathsCahier exercises maths
Cahier exercises mathsTanger Outlets
 
Chapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocainChapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocainAHMED ENNAJI
 
Cours et exercices logique mr djeddi kamel
Cours et exercices  logique mr djeddi kamelCours et exercices  logique mr djeddi kamel
Cours et exercices logique mr djeddi kamelKamel Djeddi
 
Généralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et applicationGénéralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et applicationKamel Djeddi
 
Chap nombres complexes
Chap nombres complexesChap nombres complexes
Chap nombres complexesKarim Amane
 

En vedette (20)

Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafaAlgèbre linéaire cours et exercices corrigés djeddi kamel mostafa
Algèbre linéaire cours et exercices corrigés djeddi kamel mostafa
 
Exercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexeExercices avec les solutions d'analyse complexe
Exercices avec les solutions d'analyse complexe
 
Mathematiques _resumes_du_cours
Mathematiques  _resumes_du_coursMathematiques  _resumes_du_cours
Mathematiques _resumes_du_cours
 
Exercices complexes corriges
Exercices complexes corrigesExercices complexes corriges
Exercices complexes corriges
 
Résolution de l'équations linéaires
Résolution de l'équations linéairesRésolution de l'équations linéaires
Résolution de l'équations linéaires
 
Nombre complexe
Nombre complexeNombre complexe
Nombre complexe
 
exercices d'analyse complexe
exercices d'analyse complexeexercices d'analyse complexe
exercices d'analyse complexe
 
Examen d'analyse complexe
Examen d'analyse complexeExamen d'analyse complexe
Examen d'analyse complexe
 
Fiche complexes
Fiche complexesFiche complexes
Fiche complexes
 
Serie 3(derive)
Serie 3(derive)Serie 3(derive)
Serie 3(derive)
 
Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1
 
Exercice nombres complexes
Exercice nombres complexesExercice nombres complexes
Exercice nombres complexes
 
Série 7
Série 7Série 7
Série 7
 
Cahier exercises maths
Cahier exercises mathsCahier exercises maths
Cahier exercises maths
 
Chapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocainChapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocain
 
Cours et exercices logique mr djeddi kamel
Cours et exercices  logique mr djeddi kamelCours et exercices  logique mr djeddi kamel
Cours et exercices logique mr djeddi kamel
 
Généralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et applicationGénéralisation du théorème de weierstrass et application
Généralisation du théorème de weierstrass et application
 
Chap nombres complexes
Chap nombres complexesChap nombres complexes
Chap nombres complexes
 
Probabilité
ProbabilitéProbabilité
Probabilité
 
Exercice probabilités
Exercice probabilitésExercice probabilités
Exercice probabilités
 

Similaire à Exercices corrigés les matrices- djeddi kamel

Ex determ
Ex determEx determ
Ex determbades12
 
Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)meng try
 
Examen Seconde 2018-2019
Examen Seconde 2018-2019Examen Seconde 2018-2019
Examen Seconde 2018-2019Alialimehydine
 
rappel.pdf
rappel.pdfrappel.pdf
rappel.pdfAathGhl
 
Corrigé TD chapitre I.pptx
Corrigé TD chapitre I.pptxCorrigé TD chapitre I.pptx
Corrigé TD chapitre I.pptxMidoxotk
 
Les Fonctions de référence.pptx
Les Fonctions de référence.pptxLes Fonctions de référence.pptx
Les Fonctions de référence.pptxrezgui10
 
Rapport m3o brini_anouar
Rapport m3o brini_anouarRapport m3o brini_anouar
Rapport m3o brini_anouarAnwar Brini
 
Ball_beam_partie théorique2.docx
Ball_beam_partie théorique2.docxBall_beam_partie théorique2.docx
Ball_beam_partie théorique2.docxSAIEFEDDINEELAMRI
 
Moyen de-recherche-d-emploi
Moyen de-recherche-d-emploiMoyen de-recherche-d-emploi
Moyen de-recherche-d-emploiKarim Amane
 
SYStèmes d'équations linéaires
SYStèmes d'équations linéairesSYStèmes d'équations linéaires
SYStèmes d'équations linéairessarah Benmerzouk
 
Formulario de integrales de calculo integral
Formulario de integrales de calculo integralFormulario de integrales de calculo integral
Formulario de integrales de calculo integralUrielGomez45
 
formulario.pdf
formulario.pdfformulario.pdf
formulario.pdfSMITHE3
 
formulario de Calculo Diferencial e Integral
formulario de Calculo Diferencial e Integralformulario de Calculo Diferencial e Integral
formulario de Calculo Diferencial e IntegralEdgarBenites8
 
Les-suites-fakt-1.pptx
Les-suites-fakt-1.pptxLes-suites-fakt-1.pptx
Les-suites-fakt-1.pptxLszlPintr3
 
Annalyse de donnée sur l'astrophysique sur les galaxies
Annalyse de donnée sur l'astrophysique sur les galaxiesAnnalyse de donnée sur l'astrophysique sur les galaxies
Annalyse de donnée sur l'astrophysique sur les galaxiesfanantenanarajaonisa
 

Similaire à Exercices corrigés les matrices- djeddi kamel (20)

Ex determ
Ex determEx determ
Ex determ
 
Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)Projet Methode numerique_(MENG Try)
Projet Methode numerique_(MENG Try)
 
Examen Seconde 2018-2019
Examen Seconde 2018-2019Examen Seconde 2018-2019
Examen Seconde 2018-2019
 
Halba
HalbaHalba
Halba
 
rappel.pdf
rappel.pdfrappel.pdf
rappel.pdf
 
Corrigé TD chapitre I.pptx
Corrigé TD chapitre I.pptxCorrigé TD chapitre I.pptx
Corrigé TD chapitre I.pptx
 
Les Fonctions de référence.pptx
Les Fonctions de référence.pptxLes Fonctions de référence.pptx
Les Fonctions de référence.pptx
 
Chap 4 déterminant
Chap 4 déterminantChap 4 déterminant
Chap 4 déterminant
 
Rapport m3o brini_anouar
Rapport m3o brini_anouarRapport m3o brini_anouar
Rapport m3o brini_anouar
 
Ball_beam_partie théorique2.docx
Ball_beam_partie théorique2.docxBall_beam_partie théorique2.docx
Ball_beam_partie théorique2.docx
 
Moyen de-recherche-d-emploi
Moyen de-recherche-d-emploiMoyen de-recherche-d-emploi
Moyen de-recherche-d-emploi
 
SYStèmes d'équations linéaires
SYStèmes d'équations linéairesSYStèmes d'équations linéaires
SYStèmes d'équations linéaires
 
Tifawt suite exercice-series-numeriques
Tifawt suite exercice-series-numeriquesTifawt suite exercice-series-numeriques
Tifawt suite exercice-series-numeriques
 
formulario.pdf
formulario.pdfformulario.pdf
formulario.pdf
 
Formulario de integrales de calculo integral
Formulario de integrales de calculo integralFormulario de integrales de calculo integral
Formulario de integrales de calculo integral
 
formulario.pdf
formulario.pdfformulario.pdf
formulario.pdf
 
formulario de Calculo Diferencial e Integral
formulario de Calculo Diferencial e Integralformulario de Calculo Diferencial e Integral
formulario de Calculo Diferencial e Integral
 
Les-suites-fakt-1.pptx
Les-suites-fakt-1.pptxLes-suites-fakt-1.pptx
Les-suites-fakt-1.pptx
 
Dec cms arithmétiques
Dec cms arithmétiquesDec cms arithmétiques
Dec cms arithmétiques
 
Annalyse de donnée sur l'astrophysique sur les galaxies
Annalyse de donnée sur l'astrophysique sur les galaxiesAnnalyse de donnée sur l'astrophysique sur les galaxies
Annalyse de donnée sur l'astrophysique sur les galaxies
 

Dernier

STRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdf
STRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdfSTRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdf
STRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdfGamal Mansour
 
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...Universidad Complutense de Madrid
 
La mondialisation avantages et inconvénients
La mondialisation avantages et inconvénientsLa mondialisation avantages et inconvénients
La mondialisation avantages et inconvénientsJaouadMhirach
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxikospam0
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxrajaakiass01
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...Nguyen Thanh Tu Collection
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxhamzagame
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Technologia Formation
 
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetJeanYvesMoine
 
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean EudesNeuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean EudesUnidad de Espiritualidad Eudista
 
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKRAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKNassimaMdh
 
L'expression du but : fiche et exercices niveau C1 FLE
L'expression du but : fiche et exercices  niveau C1 FLEL'expression du but : fiche et exercices  niveau C1 FLE
L'expression du but : fiche et exercices niveau C1 FLElebaobabbleu
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaireTxaruka
 
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxIntégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxabdououanighd
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfAmgdoulHatim
 
les_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkles_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkRefRama
 
Les roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptxLes roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptxShinyaHilalYamanaka
 
Cours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiquesCours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiquesMohammedAmineHatoch
 
658708519-Power-Point-Management-Interculturel.pdf
658708519-Power-Point-Management-Interculturel.pdf658708519-Power-Point-Management-Interculturel.pdf
658708519-Power-Point-Management-Interculturel.pdfMariaClaraAlves46
 

Dernier (20)

STRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdf
STRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdfSTRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdf
STRATEGIE_D’APPRENTISSAGE flee_DU_FLE.pdf
 
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
CompLit - Journal of European Literature, Arts and Society - n. 7 - Table of ...
 
La mondialisation avantages et inconvénients
La mondialisation avantages et inconvénientsLa mondialisation avantages et inconvénients
La mondialisation avantages et inconvénients
 
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptxCopie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
Copie de Engineering Software Marketing Plan by Slidesgo.pptx.pptx
 
Formation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptxFormation qhse - GIASE saqit_105135.pptx
Formation qhse - GIASE saqit_105135.pptx
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI DẠY BUỔI 2) - TIẾNG ANH 6, 7 GLOBAL SUCCESS (2...
 
L application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptxL application de la physique classique dans le golf.pptx
L application de la physique classique dans le golf.pptx
 
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
Conférence Sommet de la formation 2024 : Développer des compétences pour la m...
 
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projetFormation échiquéenne jwhyCHESS, parallèle avec la planification de projet
Formation échiquéenne jwhyCHESS, parallèle avec la planification de projet
 
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean EudesNeuvaine de la Pentecôte avec des textes de saint Jean Eudes
Neuvaine de la Pentecôte avec des textes de saint Jean Eudes
 
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANKRAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
RAPPORT DE STAGE D'INTERIM DE ATTIJARIWAFA BANK
 
L'expression du but : fiche et exercices niveau C1 FLE
L'expression du but : fiche et exercices  niveau C1 FLEL'expression du but : fiche et exercices  niveau C1 FLE
L'expression du but : fiche et exercices niveau C1 FLE
 
Apolonia, Apolonia.pptx Film documentaire
Apolonia, Apolonia.pptx         Film documentaireApolonia, Apolonia.pptx         Film documentaire
Apolonia, Apolonia.pptx Film documentaire
 
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptxIntégration des TICE dans l'enseignement de la Physique-Chimie.pptx
Intégration des TICE dans l'enseignement de la Physique-Chimie.pptx
 
Bilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdfBilan énergétique des chambres froides.pdf
Bilan énergétique des chambres froides.pdf
 
les_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhkles_infections_a_streptocoques.pptkioljhk
les_infections_a_streptocoques.pptkioljhk
 
Les roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptxLes roches magmatique géodynamique interne.pptx
Les roches magmatique géodynamique interne.pptx
 
Echos libraries Burkina Faso newsletter 2024
Echos libraries Burkina Faso newsletter 2024Echos libraries Burkina Faso newsletter 2024
Echos libraries Burkina Faso newsletter 2024
 
Cours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiquesCours Généralités sur les systèmes informatiques
Cours Généralités sur les systèmes informatiques
 
658708519-Power-Point-Management-Interculturel.pdf
658708519-Power-Point-Management-Interculturel.pdf658708519-Power-Point-Management-Interculturel.pdf
658708519-Power-Point-Management-Interculturel.pdf
 

Exercices corrigés les matrices- djeddi kamel

  • 1. érie 3 : ------------------------------------------------------------------------------------S 1ière année Maths et Inf 2014/2015 Exercice 1 Matière: Algèbre linéaire Responsable: Mr Université d Oum’ Matrices       = 01 12 A       = 21 10 B . BA + , BA× , AB × , 2 A 2 B . ).(2)( 222 BABABA ×++=+ ?       = 12 01 A       = 21 02 B . On considère les matrices a. Calculer b. A-t-on Mêmes questions pour les matrices et et et 1) 2) Soit la matrice 𝐴 de définie par : 𝐴 = ( 13 −8 −12 12 −7 −12 6 −4 −5 ) 1. Montrer que 𝐴 est inversible et calculer son inverse 𝐴−1 . 2. En déduire 𝐴 𝑛 , pour tout 𝑛 entier. Exercice 3 Soit 𝐴 la matrice de définie par : 𝐴 = ( 0 1 1 1 0 1 1 1 0 ) 1. Calculer 𝐴2 . 2. Trouver un polynôme 𝑃 de degré 2 tel que 𝑃( 𝐴) = 𝑂. 3. En déduire 𝐴−1 . 4. Retrouver 𝐴−1 par une autre méthode. Exercice 4 Calculer les déterminants des matrices suivantes : 7 11 −8 4   1 0 6 3 4 15 5 6 21     1 0 2 3 4 5 5 6 7     1 0 −1 2 3 5 4 1 3       0 1 2 3 1 2 3 0 2 3 0 1 3 0 1 2         0 1 1 0 1 0 0 1 1 1 0 1 1 1 1 0         1 2 1 2 1 3 1 3 2 1 0 6 1 1 1 7     Exercice 2 1 Elbouaghi Algérie. Djeddi K amel.E-mail:djeddi.kamel@gmail.com
  • 2. Exercice 5 Soit 𝛽 = ( 𝑒1, 𝑒2, 𝑒3) la base canonique de ℝ3 . Soit 𝑢 l’endomorphisme de ℝ3 dont la matrice dans la base canonique est : 𝐴 = ( 1 4 4 −1 −3 −3 0 2 3 ) Soient 𝑎 = 𝑒1 − 𝑒2 + 𝑒3, 𝑏 = 2𝑒1 − 𝑒2 + 𝑒3 et 𝑐 = 2𝑒1 − 2𝑒2 + 𝑒3 trois vecteurs de ℝ3 1. Montrer que 𝛽′ = ( 𝑎, 𝑏, 𝑐) est une base de ℝ3 . 2. Déterminer la matrice de passage 𝑃 de 𝛽 à 𝛽′ . Calculer 𝑃−1 . 3. Déterminer la matrice 𝑅 de 𝑢 dans la base 𝛽′ . 4. a) Calculer 𝑃−1 𝐴𝑃 en fonction de 𝑅 b) Calculer 𝑅4 c) En déduire les valeurs de 𝐴4𝑛 . Exercice 6           − − − = 211 121 112 A 33IAB += . 2 B B . 2 A A . A On considère les matrices1) a. Exprimer en fonction de b. En déduire en fonction de c. La matrice est-elle inversible ? et on pose           − − − − = 2111 1211 1121 1112 A 43IAB += .2) Mêmes questions pour les matrices et 2
  • 3. Correction de l’exercice 1 1)       = 01 12 A       = 21 10 B BA + , BA× , AB × , 2 A et 2 B . ♦       =+ 22 22 BA ,       =× 10 41 BA ,       =× 14 01 AB ,       = 12 252 A ,       = 52 212 B b. 222 .2)( BBAABA +×+≠+ : ABBA ×≠× ♦ )()()( 2 BABABA +×+=+       =+⇒ 88 88 )( 2 BA ♦       =+×+ 84 128 .2 22 BBAA 2)       = 12 01 A et       = 21 02 B a. Calcul de BA + , BA× , AB × , 2 A et 2 B . ♦       =+ 33 03 BA ,       =× 25 02 BA ,       =× 25 02 AB ,       = 14 012 A ,       = 44 042 B b. 222 .2)( BBAABA +×+=+ : ABBA ×=× ♦ )()()( 2 BABABA +×+=+       =+⇒ 918 09 )( 2 BA ♦       =+×+ 918 09 .2 22 BBAA a. Calcul de et 3 Corrections E-mail:djeddi.kamel@gmail.com
  • 4. Correction de l’exercice 2 𝑌 = 𝐴𝑋 ⇔ 𝐴𝑋 = 𝑌 ⇔ { 13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦1 12𝑥1 − 7𝑥2 − 12𝑥3 = 𝑦2 6𝑥1 − 4𝑥2 − 5𝑥3 = 𝑦3 ⇔ 13𝐿2 − 12𝐿1 2𝐿3 − 𝐿2 { 13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦1 5𝑥2 − 12𝑥3 = 13𝑦2 − 12𝑦1 −𝑥2 + 2𝑥3 = 2𝑦3 − 𝑦2 ⇔ 5𝐿3 + 𝐿2 { 13𝑥1 − 8𝑥2 − 12𝑥3 = 𝑦1 5𝑥2 − 12𝑥3 = 13𝑦2 − 12𝑦1 −2𝑥3 = 10𝑦3 − 5𝑦2 + 13𝑦2 − 12𝑦1 ⇔ { 13𝑥1 = 𝑦1 + 8𝑥2 + 12𝑥3 5𝑥2 = 13𝑦2 − 12𝑦1 + 12𝑥3 𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3 ⇔ { 13𝑥1 = 𝑦1 + 8𝑥2 + 12(6𝑦1 − 4𝑦2 − 5𝑦3) 5𝑥2 = 13𝑦2 − 12𝑦1 + 12(6𝑦1 − 4𝑦2 − 5𝑦3) = 60𝑦1 − 35𝑦2 − 60𝑦3 𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3 ⇔ { 13𝑥1 = 73𝑦1 − 48𝑦2 − 60𝑦3 + 8(12𝑦1 − 7𝑦2 − 12𝑦3) 𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3 𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3 ⇔ { 13𝑥1 = 169𝑦1 − 104𝑦2 − 156𝑦3 𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3 𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3 ⇔ { 𝑥1 = 13𝑦1 − 8𝑦2 − 12𝑦3 𝑥2 = 12𝑦1 − 7𝑦2 − 12𝑦3 𝑥3 = 6𝑦1 − 4𝑦2 − 5𝑦3 ⇔ ( 𝑥1 𝑥2 𝑥3 ) = ( 13 −8 −12 12 −7 −12 6 −4 −5 ) ( 𝑦1 𝑦2 𝑦3 ) Donc 𝐴−1 = ( 13 −8 −12 12 −7 −12 6 −4 −5 ) = 𝐴 Le mieux aurait été de changer les rôles de 𝑥1 et 𝑥3 dans le premier système. 𝐴2 = 𝐼 donc 𝐴2𝑛 = 𝐴2 𝑛 = 𝐼 𝑛 = 𝐼 et 𝐴2𝑛+1 = 𝐴2𝑛 𝐴 = 𝐴. Correction de l’exercice 3 1. et 2. 𝐴2 = ( 0 1 1 1 0 1 1 1 0 ) ( 0 1 1 1 0 1 1 1 0 ) = ( 2 1 1 1 2 1 1 1 2 ) = 𝐴 + 2𝐼 donc 𝑃( 𝑋) = 𝑋2 − 𝑋 − 2 𝐴2 − 𝐴 = 2𝐼 ⇔ 𝐴( 𝐴 − 𝐼) = 2𝐼 ⇔ 𝐴 × 𝐴−𝐼 2 = 𝐼 donc 𝐴−1 = 𝐴−𝐼 2 = 1 2 ( −1 1 1 1 −1 1 1 1 −1 ) 4
  • 5. 𝐴𝑋 = 𝑌 ⇔ ( 0 1 1 1 0 1 1 1 0 ) ( 𝑥1 𝑥2 𝑥3 ) = ( 𝑦1 𝑦2 𝑦3 ) = { 𝑥2 + 𝑥3 = 𝑦1 𝑥1 + 𝑥3 = 𝑦2 𝑥1 + 𝑥2 = 𝑦3 𝑥1 dans la 𝑥1et 𝑥2 soit on intervertit la ligne 1 avec une ligne où il y a un 𝑥1 Ici il y a un problème pour appliquer le pivot de Gauss parce qu’il n’y a pas de termes en première ligne, il y a deux façons d’arranger ce problème, soit on intervertit , c’est ce que nous allons faire. 𝐿1 𝐿2 𝐿3 { 𝑥2 + 𝑥3 = 𝑦1 𝑥1 + 𝑥3 = 𝑦2 𝑥1 + 𝑥2 = 𝑦3 ⇔ 𝐿2 𝐿1 𝐿3 { 𝑥1 + 𝑥3 = 𝑦2 𝑥2 + 𝑥3 = 𝑦1 𝑥1 + 𝑥2 = 𝑦3 ⇔ 𝐿1 𝐿2 𝐿3 − 𝐿1 { 𝑥1 + 𝑥3 = 𝑦2 𝑥2 + 𝑥3 = 𝑦1 𝑥2 − 𝑥3 = −𝑦2 + 𝑦3 ⇔ 𝐿1 𝐿2 𝐿3 − 𝐿2 { 𝑥1 + 𝑥3 = 𝑦2 𝑥2 + 𝑥3 = 𝑦1 −2𝑥3 = −𝑦1 − 𝑦2 + 𝑦3 ⇔ { 𝑥1 = −𝑥3+ 𝑦2 𝑥2 = −𝑥3 + 𝑦1 𝑥3 = 1 2 𝑦1 + 1 2 𝑦2 − 1 2 𝑦3 ⇔ { 𝑥1 = − ( 1 2 𝑦1 + 1 2 𝑦2 − 1 2 𝑦3) + 𝑦2 𝑥2 = − ( 1 2 𝑦1 + 1 2 𝑦2 − 1 2 𝑦3) + 𝑦1 𝑥3 = 1 2 𝑦1 + 1 2 𝑦2 − 1 2 𝑦3 ⇔ { 𝑥1 = − 1 2 𝑦1 + 1 2 𝑦2 + 1 2 𝑦3 𝑥2 = 1 2 𝑦1 − 1 2 𝑦2 + 1 2 𝑦3 𝑥3 = 1 2 𝑦1 + 1 2 𝑦2 − 1 2 𝑦3 ⇔ ( 𝑥1 𝑥2 𝑥3 ) = ( − 1 2 1 2 1 2 1 2 − 1 2 1 2 1 2 1 2 − 1 2) ( 𝑦1 𝑦2 𝑦3 ) Donc 𝐴−1 = ( − 1 2 1 2 1 2 1 2 − 1 2 1 2 1 2 1 2 − 1 2) Correction de l’exercice 4 1. Le déterminant de la matrice a b c d est a b c d = ad −bc 7 11 −8 4 = 7×4−11×(−8) = 116. 2. Nous allons voir différentes méthodes pour calculer les déterminants. Première méthode. Règle de Sarrus. Pour le matrice 3×3 il existe une formule qui permet de calculer directement le déterminant. . Donc 5
  • 6. a11 a12 a13 a21 a22 a23 a31 a32 a33 = a11a22a33 +a12a23a31 +a21a32a13 −a13a22a31 −a11a32a23 −a12a21a33 Donc 1 0 6 3 4 15 5 6 21 = 1×4×21+0×15×5+3×6×6−5×4×6−6×15×1−3×0×21 = −18 Attention ! La règle de Sarrus ne s’applique qu’aux matrices 3×3. 3. Deuxième méthode. Se ramener à une matrice diagonale ou triangulaire. Si dans une matrice on change un ligne Li en Li −λLj avec les colonnes. alors le déterminant reste le même. Même chose L1 1 0 2 L2 3 4 5 L3 5 6 7 = 1 0 2 L2←L2−3L1 0 4 −1 L3←L3−5L1 0 6 −3 = 1 0 2 0 4 −1 L3←L3−3 2 L2 0 0 −3 2 = 1×4×(−3 2) = −6 cients sur la diagonale. On a utilisé le fait que le déterminant d’une matrice diagonale (ou triangulaire) est le produit des coeffi 4. Troisième méthode. Développement par rapport à une ligne ou une colonne. par rapport à la deuxième colonne. 1 0 −1 2 3 5 4 1 3 = (−0)× 2 5 4 3 +(+3)× 1 −1 4 3 +(−1)× 1 −1 2 5 = 0+3×7−1×7 = 14 Nous allons développer Bien souvent on commence par simplifier la matrice en faisant apparaître un maximum de 0 par les opérations élémentaires sur les lignes et les colonnes. Puis on développe en choisissant la ligne ou la colonne qui a le plus de 0. 5. On fait apparaître des 0 sur la première colonne puis on développe par rapport à cette colonne. ∆ = L1 0 1 2 3 L2 1 2 3 0 L3 2 3 0 1 L4 3 0 1 2 = 0 1 2 3 1 2 3 0 L3←L3−2L2 0 −1 −6 1 L4←L4−3L2 0 −6 −8 2 = − 1 2 3 −1 −6 1 −6 −8 2 Pour calculer le déterminant 3×3 on fait apparaître des 0 sur la première colonne, puis on la développe. −∆ = L1 1 2 3 L2 −1 −6 1 L3 −6 −8 2 = 1 2 3 L2←L2+L1 0 −4 4 L3←L3+6L1 0 4 20 = 1 −4 4 4 20 = −96 6
  • 7. Donc ∆ = 96. 6. La matrice a déjà beaucoup de 0 mais on peut en faire apparaître davantage sur la dernière colonne, puis on développe par rapport à la dernière colonne. ∆ = L1 0 1 1 0 L2 1 0 0 1 L3 1 1 0 1 L4 1 1 1 0 = 0 1 1 0 1 0 0 1 L3←L3−L2 0 1 0 0 1 1 1 0 = 0 1 1 0 1 0 1 1 1 On développe ce dernier déterminant par rapport à la première colonne : ∆ = 0 1 1 0 1 0 1 1 1 = 1× 1 1 1 0 = −1 7. Toujours la même méthode, on fait apparaître des 0 sur la première colonne, puis on développe par rapport à cette colonne. ∆ = L1 1 2 1 2 L2 1 3 1 3 L3 2 1 0 6 L4 1 1 1 7 = 1 2 1 2 L2←L2−L1 0 1 0 1 L3←L3−2L1 0 −3 −2 2 L4←L4−L1 0 −1 0 5 = 1 0 1 −3 −2 2 −1 0 5 On développe par rapport à la deuxième colonne : ∆ = −2× 1 1 −1 5 = −12 Correction de l’exercice 5 det( 𝑎, 𝑏, 𝑐) = | 1 2 2 −1 −1 −2 1 1 1 | = 𝐶3 − 𝐶2 | 1 2 2 −1 −1 −2 0 0 −1 | = − | 1 2 −1 −1 | = −(−1 + 2) = −1 ≠ 0 Donc ( 𝑎, 𝑏, 𝑐) est une base de ℝ3 1. 2. 𝑃 = ( 1 2 2 −1 −1 −2 1 1 1 ) 𝑃𝑋 = 𝑌 ⇔ ( 1 2 2 −1 −1 −2 1 1 1 ) ( 𝑥1 𝑥2 𝑥3 ) = ( 𝑦1 𝑦2 𝑦3 ) ⇔ 𝐿1 𝐿2 𝐿3 { 𝑥1 + 2𝑥2 + 2𝑥3 = 𝑦1 −𝑥1 − 𝑥2 − 2𝑥3 = 𝑦2 𝑥1 + 𝑥2 + 𝑥3 = 𝑦3 7
  • 8. ⇔ 𝐿1 𝐿2 + 𝐿1 𝐿3 + 𝐿2 { 𝑥1 + 2𝑥2 + 2𝑥3 = 𝑦1 𝑥2 = 𝑦1 + 𝑦2 −𝑥3 = 𝑦2 + 𝑦3 ⇔ { 𝑥1 = −2𝑥2 − 2𝑥3 + 𝑦1 𝑥2 = 𝑦1 + 𝑦2 𝑥3 = −𝑦2 − 𝑦3 ⇔ { 𝑥1 = −2𝑦1 − 2𝑦2 + 2𝑦2 + 2𝑦3 + 𝑦1 𝑥2 = 𝑦1 + 𝑦2 𝑥3 = −𝑦2 − 𝑦3 ⇔ { 𝑥1 = −𝑦1 + 2𝑦3 𝑥2 = 𝑦1 + 𝑦2 𝑥3 = −𝑦2 − 𝑦3 Donc 𝑃−1 = ( −1 0 2 1 1 0 0 −1 −1 ) 3. Les coordonnées de 𝑢( 𝑎) dans la base 𝛽 sont ( 1 4 4 −1 −3 −3 0 2 3 ) ( 1 −1 1 ) = ( 1 −1 1 ) Donc 𝑢( 𝑎) = 𝑎 Les coordonnées de 𝑢( 𝑏) dans la base 𝛽 sont ( 1 4 4 −1 −3 −3 0 2 3 ) ( 2 −1 1 ) = ( 2 −2 1 ) Donc 𝑢( 𝑏) = 𝑐 Les coordonnées de 𝑢( 𝑐) dans la base 𝛽 sont ( 1 4 4 −1 −3 −3 0 2 3 ) ( 2 −2 1 ) = ( −2 1 −1 ) Donc 𝑢( 𝑐) = −𝑏 Par conséquent 𝑅 = ( 1 0 0 0 0 −1 0 1 0 ) 4. a) 𝑃−1 𝐴𝑃 = ( −1 0 2 1 1 0 0 −1 −1 ) ( 1 4 4 −1 −3 −3 0 2 3 ) ( 1 2 2 −1 −1 −2 1 1 1 ) = ( −1 0 2 1 1 0 0 −1 −1 ) ( 1 2 −2 −1 −2 1 1 1 −1 ) = ( 1 0 0 0 0 −1 0 1 0 ) = 𝑅 8
  • 9. b) 𝑅2 = ( 1 0 0 0 0 −1 0 1 0 ) ( 1 0 0 0 0 −1 0 1 0 ) = ( 1 0 0 0 −1 0 0 0 −1 ) 𝑅4 = 𝑅2 𝑅2 = ( 1 0 0 0 −1 0 0 0 −1 ) ( 1 0 0 0 −1 0 0 0 −1 ) = ( 1 0 0 0 1 0 0 0 1 ) = 𝐼 c) 𝑅 = 𝑃−1 𝐴𝑃 ⇔ 𝐴 = 𝑃𝑅𝑃−1 𝐴4 = 𝑃𝑅𝑃−1 𝑃𝑅𝑃−1 𝑃𝑅𝑃−1 𝑃𝑅𝑃−1 = 𝑃𝑅4 𝑃−1 = 𝑃𝐼𝑃−1 = 𝐼 Donc 𝐴4𝑛 = ( 𝐴4) 𝑛 = 𝐼 𝑛 = 𝐼 Correction de l’exercice 6 1)           − − − = 211 121 112 A , 33IAB += a. 2 B en fonction de B :           =⇒+= 111 111 111 3 3 BIAB ♦           = 111 111 111 B : ⇒           =×= 333 333 333 2 BBB BB .32 = b. 2 A en fonction de A . ♦ 33 33 IBAIAB −=⇒+= ♦ Les matrices B et 3).3( I− commutent : BIBBI ).3().3().3( 33 −=−×=×− ( ) ( ) ( ) 2 3 2 3 2 3 2 .32.3.3 BBIIIBA +×−×+−=−=⇒ ( ) BIBBIBBIIBA .3.9.3.6.9.6.9.3 33 2 3 2 3 2 −=+−=+−=−=⇒ , car BB .32 = ABIBIA .3).3.(3.3.9 33 2 −=+−−=−=⇒ , BIA +−= 3.3 Donc AA .32 −= c. La matrice A n'est pas inversible : On suppose que la matrice A est inversible On a alors 3 1 IAA =× − et AA .32 −= Donc 3 11 .3.3 IAAAAAA −=⇒×−=×× −− Or 3.3 IA −≠ , donc la matrice A n'est pas inversible. 9
  • 10. 2)               − − − − = 2111 1211 1121 1112 A , 43IAB += a. 2 B en fonction de B :               =⇒+= 1111 1111 1111 1111 3 4 BIAB ♦               = 1111 1111 1111 1111 B : ⇒               =×= 4444 4444 4444 4444 2 BBB BB .42 = b. 2 A en fonction de A . ♦ 44 33 IBAIAB −=⇒+= ♦ Les matrices B et 4).3( I− commutent : BIBBI ).3().3().3( 44 −=−×=×− ( ) ( ) ( ) 2 4 2 4 2 4 2 .32.3.3 BBIIIBA +×−×+−=−=⇒ BIBBIBBIA .2.9.4.6.9.6.9 44 2 4 2 −=+−=+−=⇒ , car BB .42 = AIBIIBIIA .23).3).(2(3.2.63 44434 2 −=+−−+=−+=⇒ , BIA +−= 4.3 Donc AIA .23 4 2 −= c. La matrice A est inversible : 44444 2 4 2 ).2( 3 1 .).2(. 3 1 3.2.23 IIAAIIAAIAAAIA =      +×⇒=+×⇒=+⇒−= Donc 44 /).2( 3 1 )4( IBAIABMB =×      +=∈∃ Donc la matrice A est inversible et ).2( 3 1 4 1 IAA +=− 10