SlideShare une entreprise Scribd logo
1  sur  21
Télécharger pour lire hors ligne
Exercices rédigés sur les nombres complexes Page 1 G. COSTANTINI http://bacamaths.net/
EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES
Exercice 1 Valeur exacte du cosinus et du sinus de p/12
On considère les deux nombres complexes suivants :
z1 = e
i
p
3 et z2 = 4
p
-i
e
1. Écrire z1 et z2 sous forme algébrique.
2. Déterminer les écritures sous formes algébrique, exponentielle et trigonométrique de z1z2.
3. En déduire la valeur exacte du cosinus et sinus suivants :
cos
p
12
et sin
p
12
Exercice 2 Des pistes pour démontrer qu'un complexe est réel ou imaginaire pur
Démontrer les équivalences suivantes :
Z réel Û Z = Z
Z Î  Û ( Z = 0 ou arg(Z) = 0 [p] )
Z imaginaire pur Û Z + Z = 0
Z Î i Û ( Z = 0 ou arg(Z) =
p
2
[p] )
Applications :
1. Comment choisir le nombre complexe z pour que Z = z2
+ 2z - 3 soit réel ?
Soit E l'ensemble des points M du plan complexe d'affixe z tels que Z soit réel. Déterminer E.
2. On considère les points A et B d'affixes respectives i et 1. Soit M un point du plan d'affixe z distinct de A.
On pose Z =
1-
-
z
zi
Déterminer l'ensemble E des points M tels que Z soit réel.
Déterminer l'ensemble F des points M tels que Z soit imaginaire pur.
Exercice 3 Écriture complexe de transformations
1. Soit ¦ la transformation du plan complexe qui à M(z) associe M'(z') tel que :
z' = az + 3i
Déterminer la nature et les éléments caractéristiques de ¦ lorsque a = 2, puis lorsque a = -i
2. On donne A(1), B(2 + i), A'(2i) et B'(1 + i).
Vérifier que AB = A'B'.
Démontrer qu'il existe une unique rotation r telle que r(A) = A' et r(B) = B'. La déterminer.
Exercice 4 Lieux de points
Soit z un nombre complexe différent de 1. On note M le point du plan complexe d'affixe z. On pose Z =
1
z
z
+
-
i
.
Déterminer l'ensemble :
1. E des points M tels que Z soit réel.
2. F des points M tels que |Z| = 1.
3. G des points M tels que arg(Z) =
p
2
[2p].
Exercices rédigés sur les nombres complexes Page 2 G. COSTANTINI http://bacamaths.net/
Exercice 5 Utilisation des nombres complexes pour établir une propriété algébrique
Soient a, b Î . On suppose que a et b sont la somme de deux carrés :
il existe x, y Î  tels que a = x y2 2
+ et il existe z, t Î  tels que b = z t2 2
+
Démontrer que le produit ab est encore la somme de deux carrés. (Idée : écrire ( )x y2 2
+ = x y+ i
2
etc...)
Exercice 6 Identité du parallélogramme
Démontrer que pour tous nombres complexes Z et Z', on a :
|Z + Z'|2
+ |Z - Z'|2
= 2|Z|2
+ 2|Z'|2
(Indication : utiliser la relation : Z
2
= Z Z )
Interpréter géométriquement.
Exercice 7 Racines de l'unité. Applications
Soit n Î *
. On appelle racine nème
de l'unité tout nombre complexe z tel que :
n
z = 1
On note n l'ensemble des racines nèmes
de l'unité. Par exemple, 2 = {-1, 1}.
1. Démontrer que :
n =
2
, {0, 1, ... , 1}
k
n k n
p
ì üï ï
Î -í ý
ï ïî þ
i
e
Démontrer que la somme des racines nèmes
de l'unité est nulle.
Démontrer que, dans repère orthonormal direct ( )1 2, ,O e e
ur uur
, les images Ak (0  k  n - 1) des nombres
wk =
2 k
n
pi
e sont les sommets d'un polygone régulier.
2. Applications :
a) Soit Z Î . On appelle racine nème
de Z tout nombre complexe tel que :
n
z = Z
Soit R = |Z| et Q un argument de Z. Démontrer que Z admet les n racines nèmes
suivantes :
2k
n n n
R
Q pæ ö+ç ÷
è ø
i
e , 0  k  n - 1
b) Soit ¦ la fonction polynôme définie par :
¦(x) = x4
+ 1
Déterminer les racines quatrièmes de -1 puis en déduire que ¦ peut s'écrire comme un produit de deux
fonctions polynômes de degré 2 à coefficients réels.
c) Soit z un nombre complexe tel que : 1 + z4
+ z8
= 0
Démontrer que z est une racine 12ème
de l'unité.
Exercices rédigés sur les nombres complexes Page 3 G. COSTANTINI http://bacamaths.net/
Exercice 8 Transformation de a cos x + b sin x
Soient a et b deux réels. Démontrer qu'il existe deux réels R et q tels que pour tout x Î  :
a cos x + b sin x = R cos(x - q)
Application : résoudre, sur , l'équation : cos x + sin x = 1
Exercice 9 Calcul de la valeur exacte de cos(2p/5) et cos(4p/5)
Pour connaître le but de cet exercice, se reporter à la question 5.
1. Résoudre, dans  ´ , le système suivant :
u v
uv
+ = -
= -
ì
í
ï
î
ï
1
2
1
4
2. On pose w = e
i
2
5
p
. Démontrer que : w0
+ w1
+ w2
+ w3
+ w4
= 0
En déduire (à l'aide des formules d'Euler) que :
cos
2
5
pæ ö
ç ÷
è ø
+ cos
4
5
pæ ö
ç ÷
è ø
= -
1
2
3. Démontrer que :
cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
+ sin
2
5
pæ ö
ç ÷
è ø
sin
4
5
pæ ö
ç ÷
è ø
= cos
2
5
pæ ö
ç ÷
è ø
et
cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
- sin
2
5
pæ ö
ç ÷
è ø
sin
4
5
pæ ö
ç ÷
è ø
= cos
4
5
pæ ö
ç ÷
è ø
4. En déduire que : cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
= -
1
4
5. Démontrer que : cos
2
5
pæ ö
ç ÷
è ø
=
- +1 5
4
et cos
4
5
pæ ö
ç ÷
è ø
=
- -1 5
4
Exercice 10 Carrés et parallélogramme
ABC est un triangle de sens direct.
DBA est un triangle isocèle et rectangle en D de sens direct.
ACE est un triangle isocèle et rectangle en E de sens direct.
On construit le point L tel que CL
®
= DB
®
.
1. Faire une figure.
2. Démontrer que EDL est un triangle rectangle isocèle en E de sens direct.
Exercices rédigés sur les nombres complexes Page 4 G. COSTANTINI http://bacamaths.net/
Exercice 11 Des carrés autour d'un quadrilatère (Théorème de Von Aubel)
On considère un quadrilatère ABCD de sens direct.
On construit quatre carrés de centres respectifs P, Q, R et S qui s'appuient extérieurement sur les côtés [AB],
[BC], [CD] et [DA] du quadrilatère ABCD. (Voir figure)
Le but du problème est de démontrer que les diagonales du quadrilatère PQRS sont perpendiculaires et de
même longueur.
On notre a, b, c, d, p, q, r et s les affixes respectives des points A, B, C, D, P, Q, R et S dans un repère
orthonormé ( )1 2, ,O e e
ur uur
de sens direct.
1. Démontrer que dans le carré construit sur [AB], on a :
p =
1
a b-
-
i
i
Établir des relations analogues pour q, r et s en raisonnant dans les trois autres carrés.
2. Calculer :
s q
r p
-
-
Conclure.
R
DS
Q
A
C
B
P
Exercices rédigés sur les nombres complexes Page 5 G. COSTANTINI http://bacamaths.net/
Exercice 12 Des carrés autour d'un triangle (Point de Vecten)
On considère un triangle ABC de sens direct.
On construit trois carrés de centres respectifs P, Q et R qui s'appuient extérieurement sur les côtés [AB], [BC] et
[CA] du triangle ABC. (Voir figure)
On notre a, b, c, p, q et r les affixes respectives des points A, B, C, P, Q et R dans un repère orthonormé
( )1 2, ,O e e
ur uur
de sens direct.
1. Démontrer que les triangles ABC et PQR ont le même centre de gravité.
2. Démontrer que dans le carré construit sur [AB], on a :
p =
1
a b-
-
i
i
Établir des relations analogues pour q et r en raisonnant dans les deux autres carrés.
3. Démontrer que les droites (AQ) et (PR) sont perpendiculaires
En déduire que les droites (AQ), (BR) et (CP) sont concourantes.
Information : ce point de concours s'appelle "point de Vecten" du triangle ABC.
P
R
Q
CB
A
Exercices rédigés sur les nombres complexes Page 6 G. COSTANTINI http://bacamaths.net/
Exercice 13 Théorème de Napoléon
On munit le plan d'un repère orthonormé ( )1 2, ,O e e
ur uur
de sens direct.
PARTIE A : des caractérisations du triangle équilatéral
On note j =
2
3
pi
e . Soient U, V et W trois points du plan d'affixes respectives u, v et w.
1. Démontrer l'équivalence suivante :
UVW est équilatéral de sens direct Û u - v = -j2
(w - v)
2. Démontrer l'équivalence suivante :
UVW est équilatéral de sens direct Û u + jv + j2
w = 0
PARTIE B : démonstration du théorème de Napoléon
ABC est un triangle quelconque de sens direct. On construit les points P, Q et R tels que BPC, CQA et ARB
soient des triangles équilatéraux de sens direct.
On note U, V et W les centres de gravité de BPC, CQA et ARB respectivement.
Démontrer que UVW est équilatéral de même centre de gravité que ABC.
W
V
U
R
Q
P
CB
A
Exercices rédigés sur les nombres complexes Page 7 G. COSTANTINI http://bacamaths.net/
Exercice 14 Nombres complexes et suites
Le but de cet exercice est l'étude de la suite (Sn) définie, pour n  2, par :
Sn =
0
sin
n
k
k
n=
pæ ö
ç ÷
è øå
1. On pose, pour n  2 : z = n
pi
e
Calculer la somme
1
0
n
k
k
z
-
=
å
2. Montrer que, pour n  2 :
2
1 z-
= 1 + i
1
tan
2n
pæ ö
ç ÷
è ø
3. En déduire que, pour n  2 : Sn =
1
tan
2n
pæ ö
ç ÷
è ø
4. Étudier la limite de la suite (un) définie, pour n  2, par :
un = nS
n
Exercices rédigés sur les nombres complexes Page 8 G. COSTANTINI http://bacamaths.net/
EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES : SOLUTIONS
Exercice 1 Valeur exacte du cosinus et du sinus de p/12
1. On a : z1 =
1
2
+ i
3
2
et z2 =
2
2
- i
2
2
2. Forme algébrique de z1z2 :
z1z2 =
1 3
2 2
æ ö
+ç ÷
è ø
i
2 2
2 2
æ ö
-ç ÷
è ø
i =
6 2
4
+
+ i
6 2
4
-
Forme exponentielle de z1z2 : z1z2 = e
i
p
3 4
p
-i
e = 12
p
i
e
Forme trigonométrique de z1z2 : z1z2 = cos
p
12
+ i sin
p
12
3. En identifiant la forme trigonométrique avec la forme algébrique de z1z2, il vient :
cos
p
12
=
6 2
4
+
et sin
p
12
=
6 2
4
-
Exercice 2 Des pistes pour démontrer qu'un complexe est réel ou imaginaire pur
D'une part : Z est réel Û Im(Z) = 0 Û Z - Z = 0 Û Z = Z
Z est imaginaire pur Û Re(Z) = 0 Û Z + Z = 0
D'autre part :
Z Î  Û ( Z = 0 ou arg(Z) = 0 [2p] ou arg(Z) = p [2p] ) Û ( Z = 0 ou arg(Z) = 0 [p] )
Z Î i Û ( Z = 0 ou arg(Z) =
p
2
[2p] ou arg(Z) = -
p
2
[2p] ) Û ( Z = 0 ou arg(Z) =
p
2
[p] )
Applications :
1. D'après ce qui précède et d'après les propriétés de la conjugaison :
Z réel Û Z = Z Û z2
+ 2z - 3 =
2
z + 2 z - 3 Û (z - z )[(z + z ) + 2] = 0
Z réel Û (z = z ou 2Re(z) = -2) Û (z réel ou Re(z) = -1)
L'ensemble E recherché est l'union des deux droites d'équations respectives y = 0 et x = -1.
2. Détermination de E :
On rappelle que z ¹ i. Autrement dit M est distinct de A. On a alors :
Z Î  Û (Z = 0 ou arg Z = 0 [p]) Û (z = 1 ou arg B
A
z z
z z
-æ ö
ç ÷-è ø
= 0 [p]) Û (M = B ou ( AM
®
, BM
®
) = 0 [p])
Z Î  Û A, M et B alignés, M ¹ A
On en déduit : E est la droite (AB) privée du point A
Détermination de F :
On rappelle que z ¹ i. On a alors :
Z Î i Û (Z = 0 ou arg(Z) =
p
2
[p]) Û (z = 1 ou arg B
A
z z
z z
-æ ö
ç ÷-è ø
=
p
2
[p])
Z Î i Û (M = B ou ( AM
®
, BM
®
) =
p
2
[p])
D'où : F est le cercle de diamètre [AB] privé du point A
Exercices rédigés sur les nombres complexes Page 9 G. COSTANTINI http://bacamaths.net/
Exercice 3 Écriture complexe de transformations
1. a = 2
Montrons que ¦ admet un unique point invariant. Pour cela on résout l'équation :
¦(w) = w
w = 2w + 3i
w = -3i
La transformation ¦ admet un unique point invariant W d'affixe w = -3i.
Pour déterminer la nature de ¦ on exprime z' - w en fonction de z - w .
On a :
' 2 3
2 3
z z= +ì
í
w = w+î
i
i
En soustrayant, membre à membre, ces deux égalités, on obtient :
z' - w = 2(z - w)
On en déduit, grâce à son écriture complexe, que ¦ est l'homothétie de centre W(-3i) et de rapport k = 2.
a = -i
Montrons que ¦ admet un unique point invariant. Pour cela on résout l'équation :
¦(w) = w
w = -iw + 3i
w =
3
1+
i
i
=
3 3
2
+ i
La transformation ¦ admet un unique point invariant W d'affixe w =
3 3
2
+ i
.
Pour déterminer la nature de ¦ on exprime z' - w en fonction de z - w .
On a :
' 3
3
z z= - +ì
í
w = w+î
i i
i i
En soustrayant, membre à membre, ces deux égalités, on obtient :
z' - w = -i(z - w)
On en déduit, grâce à son écriture complexe, que ¦ est rotation de centre W et d'angle -
p
2
.
2. On a : AB = A'B' = 2
Soit r une rotation de centre W et d'angle q. Son écriture complexe est :
z' - w = qi
e (z - w)
Montrons que l'on peut choisir, de manière unique, w Î  et q Î [0, 2p[ tels que r(A) = A' et r(B) = B'.
La condition r(A) = A' donne : 2i - w = qi
e (1 - w)
La condition r(B) = B' donne : 1 + i - w = qi
e (2 + i - w)
En soustrayant membre à membre : i - 1 = qi
e (-1 - i)
D'où : qi
e = -i
q = -
p
2
[2p]
On en déduit : 2i - w = -i(1 - w)
w =
3 3
2
+ i
La transformation cherchée est la rotation de centre W d'affixe
3 3
2
+ i
et d'angle -
p
2
.
Exercices rédigés sur les nombres complexes Page 10 G. COSTANTINI http://bacamaths.net/
Exercice 4 Lieux de points
L'idée est de se ramener à une expression du type Z = A
B
z z
z z
-
-
afin de pouvoir l'interpréter géométriquement.
Introduisons pour y parvenir le point A d'affixe -i et le point B d'affixe 1.
1. On a ainsi :
Z réel Û (Z = 0 ou arg(Z) = 0 [p]) Û (z = zA ou ( BM
®
, AM
®
) = 0 [p])
Or, ( BM
®
, AM
®
) = 0 [p] Û M appartient à la droite (AB) privée de A et B
On en déduit finalement :
E est la droite (AB) privée de B
2. |Z| = 2 Û |z - zA| = |z - zB| Û AM = BM Û M appartient à la médiatrice de [AB]
F est la médiatrice de [AB]
3. arg(Z) =
p
2
[2p] Û ( BM
®
, AM
®
) =
p
2
[2p]
G est le demi-cercle de diamètre [AB], privé de B, tel que le triangle AMB soit direct
Exercice 5 Utilisation des nombres complexes pour établir une propriété algébrique
On a : ab = x y+ i
2 2
z t+ i
Et d'après les propriétés des modules : ab = 2
( )( )x y z t+ +i i
ab = 2
( ) ( )xz yt yz xt- + +i
ab = (xz - yt)2
+ (yz + xt)2
Or, xz - yt Î  et yz + xt Î , donc ab est aussi la somme de deux carrés.
Exercice 6 Identité du parallélogramme
On a :
|Z + Z'|2
+ |Z - Z'|2
= (Z + Z') ( )Z Z¢+ + (Z - Z') ( )Z Z¢- = Z Z + Z Z¢ + Z' Z + Z' Z¢ + Z Z - Z Z¢ - Z' Z + Z' Z¢
|Z + Z'|2
+ |Z - Z'|2
= 2|Z|2
+ 2|Z'|2
Interprétation :
Soit ABCD un parallélogramme. Notons Z l'affixe de AB
®
et Z' l'affixe de AD
®
.
On a donc :
AC2
+ BD2
= 2AB2
+ 2AD2
Autrement dit : dans un parallélogramme, la somme des
carrés des diagonales est égale à la somme des carrés des
côtés
D
|Z'|
|Z - Z'|
|Z + Z'|
|Z|
C
B
A
Exercices rédigés sur les nombres complexes Page 11 G. COSTANTINI http://bacamaths.net/
Exercice 7 Racines de l'unité. Applications
1. Déjà, pour tout nombre complexe wk défini pour k Î {0, 1, ..., n - 1} par wk =
2 k
n
pi
e , on a :
n
kw = 2 kpi
e = 1
Les éléments de n sont bien des racines nèmes
de l'unité.
Réciproquement, soit z une racine nème
de l'unité :
n
z = 1
Notons r le module de z et q l'argument de z situé dans [0, 2p[. Ainsi, on a :
n n
r qi
e = 1 = 0i
e
Or, deux nombres complexes égaux ont même module et des arguments égaux (modulo 2p), d'où :
n
r = 1 et nq º 0 [2p]
Comme r est un réel positif, on a nécessairement r = 1. D'autre part, l'égalité nq º 0 [2p] signifie qu'il existe
un entier relatif k tel que :
nq = 2kp
q =
2k
n
p
Et comme on a choisi q Î [0, 2p[, il vient :
0  k < n
Et comme k est un entier : 0  k  n - 1
Il y a donc exactement n racines nème
de l'unité qui sont les nombres wk pour 0  k  n - 1 :
n =
2
, {0, 1, ... , 1}
k
n k n
p
ì üï ï
Î -í ý
ï ïî þ
i
e
Avec les notations précédentes, et en notant w = w1, on constate que :
wk = wk
La formule de sommation de termes consécutifs d'une suite géométrique donne alors :
1
0
n
k
k
-
=
wå =
1
1
n
- w
- w
= 0 puisque wn
= 1
De plus, pour tout k Î 0, n - 1, on a :
( kOA
uuuur
, 1kOA +
uuuuuuur
) = arg 1k
k
+wæ ö
ç ÷wè ø
=
2
n
pi
e [2p]
On en déduit que A0A1... An-1 est un polygone régulier.
2. Applications :
a) On procède comme pour les racines de l'unité. Soit z = r qi
e Î .
On a :
n
z = Z Û n
r nqi
e = R Qi
e Û
[2 ]
n
r R
n
ì =
í
q º Q pî
Û 2
n
r R
n n
ì =
ï
í Q pé ùq ºï ê úî ë û
Û 2
il existe tel que
n
r R
k
k
n n
ì =
ï
í Q p
Î q = +ïî
¢
On a noté, par commodité :
wn = w0 = 1 et An = A0
Exercices rédigés sur les nombres complexes Page 12 G. COSTANTINI http://bacamaths.net/
Et comme on peut toujours choisir q Î , 2
n n
Q Qé é+ pê êë ë
, il vient :
0  k  n - 1
Les racines nèmes
de Z sont donc les n nombres complexes suivants :
2k
n n n
R
Q pæ ö+ç ÷
è ø
i
e , 0  k  n - 1
Remarque : si on connaît déjà une racine nème
particulière z0 de Z, on peut en déduire toutes les autres en
multipliant z0 par les racines nèmes
de l'unité. En effet :
( 0
n
z = Z et n
z = Z) Û
0
n
z
z
æ ö
ç ÷
è ø
= 1 Û il existe k Î 0, n - 1 tel que
0
z
z
= wk
D'où : ( 0
n
z = Z et n
z = Z) Û il existe k Î 0, n - 1 tel que z = wkz0
b) Les racines quatrièmes de l'unité sont : 1, -1, i et -i
On connaît une racine quatrième particulière de -1 :
4
p
i
e
Les racines quatrièmes de -1 sont donc :
4
p
i
e , - 4
p
i
e , i 4
p
i
e et - i 4
p
i
e
C'est-à-dire : 4
p
i
e ,
3
4
p
-
i
e ,
3
4
pi
e et 4
p
-i
e
Or, les racines de x4
+ 1 sont précisément les racines quatrièmes de -1. On a donc la factorisation :
¦(x) = x4
+ 1 = 4x
p
æ ö
-ç ÷
ç ÷
è ø
i
e 4x
- p
æ ö
-ç ÷
ç ÷
è ø
i
e
3
4x
p
æ ö
-ç ÷
ç ÷
è ø
i
e
3
4x
p
-æ ö
-ç ÷
ç ÷
è ø
i
e
En regroupant les racines deux par deux (en choisissant celles qui sont conjuguées), on obtient :
¦(x) = 2
2 cos 1
4
x x
pæ ö- +ç ÷
è ø
2 3
2 cos 1
4
x x
pæ ö- +ç ÷
è ø
¦(x) = ( )2
2 1x x- + ( )2
2 1x x+ +
Nota : les amateurs de forme canonique peuvent retrouver ce résultat sans passer par les complexes :
x4
+ 1 = ( )
22
1x + - 2 x2
= ( )2
2 1x x- + ( )2
2 1x x+ +
c) On sait que : 1 + z4
+ z8
= 0
En multipliant par z : z + z5
+ z9
= 0
Puis encore : z2
+ z6
+ z10
= 0
z3
+ z7
+ z11
= 0
En sommant les quatre égalités, membre à membre :
11
0
k
k
z
=
å = 0
Il est clair que z ne peut pas être égal à 1. La formule de sommation de termes consécutifs d'une suite
géométrique donne alors :
Exercices rédigés sur les nombres complexes Page 13 G. COSTANTINI http://bacamaths.net/
12
1
1
z
z
-
-
= 0
D'où : z12
= 1
Donc z est une racine douzième de l'unité.
Exercice 8 Transformation de a cos x + b sin x
Si a = b = 0, il suffit de choisir R = 0 et q quelconque.
Supposons (a, b) ¹ (0, 0) et posons Z = a + ib. On a donc Z ¹ 0.
Notons : R = |Z| et q un argument de Z.
On sait qu'alors : a = |Z| cos q et b = |Z| sin q
On a ainsi, pour tout x Î  :
a cos x + b sin x = R(cos q cos x + sin q sin x)
Et d'après les formules d'additions :
a cos x + b sin x = R cos(x - q)
Application :
En utilisant ce qui précède en posant Z = 1 + i (R = 2 et q =
p
4
[2p]), l'équation proposée s'écrit :
2 cos
4
x
pæ ö-ç ÷
è ø
= 1
cos
4
x
pæ ö-ç ÷
è ø
=
2
2
= cos
p
4
D'où : x -
p
4
=
p
4
[2p] ou x -
p
4
= -
p
4
[2p]
x =
p
2
[2p] ou x = 0 [2p]
Exercice 9 Calcul de la valeur exacte de cos(2p/5) et cos(4p/5)
1. On procède par substitution. La première équation donne :
v = -u -
1
2
En remplaçant v par -u -
1
2
dans la seconde équation, il vient :
u
1
2
uæ ö- -ç ÷
è ø
= -
1
4
En multipliant par -4 et en développant :
4u2
+ 2u - 1 = 0
On obtient une équation du second degré. Son discriminant est :
D = b2
- 4ac = 20
Comme D > 0, il y a donc deux racines réelles distinctes :
u1 =
2
b
a
- - D
=
1 5
4
- -
et u2 =
2
b
a
- + D
=
1 5
4
- +
Exercices rédigés sur les nombres complexes Page 14 G. COSTANTINI http://bacamaths.net/
On en déduit les valeurs de v correspondantes :
v1 = -u1 -
1
2
=
1 5
4
- +
et v2 = -u2 -
1
2
=
1 5
4
- -
Conclusion : le système admet deux couples de solutions :
S =
1 5 1 5 1 5 1 5
, ; ,
4 4 4 4
ìæ ö æ öü- - - + - + - -
í ýç ÷ ç ÷
îè ø è øþ
2. Il s'agit de la somme de cinq termes consécutifs d'une suite géométrique de raison e
i
2
5
p
. On a donc :
w0
+ w1
+ w2
+ w3
+ w4
=
5
1
1
- w
- w
= 0 car w5
= 1
D'où : 1 + e
i
2
5
p
+
4
5
p
i
e +
6
5
p
i
e +
8
5
p
i
e = 0
Or :
6
5
p
º -
4
5
p
[2p] et
8
5
p
º -
2
5
p
[2p]
On peut donc écrire : 1 + e
i
2
5
p
+
4
5
p
i
e +
4
5
p
-i
e +
2
5
p
-i
e = 0
Et d'après les formules d'Euler : 1 + 2 cos
2
5
pæ ö
ç ÷
è ø
+ 2 cos
4
5
pæ ö
ç ÷
è ø
= 0
cos
2
5
pæ ö
ç ÷
è ø
+ cos
4
5
pæ ö
ç ÷
è ø
= -
1
2
3. D'après les formules d'additions :
cos
2
5
pæ ö
ç ÷
è ø
= cos
4 2
5 5
p pæ ö-ç ÷
è ø
= cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
+ sin
2
5
pæ ö
ç ÷
è ø
sin
4
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
= cos
4
5
pæ ö-ç ÷
è ø
= cos
6
5
pæ ö
ç ÷
è ø
= cos
4 2
5 5
p pæ ö+ç ÷
è ø
= cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
- sin
2
5
pæ ö
ç ÷
è ø
sin
4
5
pæ ö
ç ÷
è ø
4. En additionnant, membre à membre, les deux égalités ci-dessus et en utilisant la question 2. :
-
1
2
= 2 cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
cos
2
5
pæ ö
ç ÷
è ø
cos
4
5
pæ ö
ç ÷
è ø
= -
1
4
5. Posons u = cos
2
5
pæ ö
ç ÷
è ø
et v = cos
4
5
pæ ö
ç ÷
è ø
. On constate que :
u v
uv
+ = -
= -
ì
í
ï
î
ï
1
2
1
4
Or, cos
2
5
pæ ö
ç ÷
è ø
> 0 car
2
5
p
Î 0,
2
pé ù
ê úë û
et cos
4
5
pæ ö
ç ÷
è ø
< 0 car
4
5
p
Î ,
2
pé ùpê úë û
.
D'après la question 1, on en déduit :
cos
2
5
pæ ö
ç ÷
è ø
=
- +1 5
4
et cos
4
5
pæ ö
ç ÷
è ø
=
- -1 5
4
Exercices rédigés sur les nombres complexes Page 15 G. COSTANTINI http://bacamaths.net/
Exercice 10 Carrés et parallélogramme
1. Figure
2. Munissons le plan d'un repère orthonormal direct ( )1 2, ,O e e
ur uur
.
Notons a, b, c, d, e et l les affixes respectives des points A, B, C, D, E et L.
Comme A est l'image de B par la rotation de centre D et d'angle
p
2
:
a - d = i(b - d)
De même dans ACE : c - e = i(a - e)
Enfin, puisque L est l'image de C par la translation de vecteur DB
®
:
l = c + b - d
Exprimons l - e en fonction de d - e :
l - e = c - e + b - d = i(a - e) - i(a - d) = i(d - e)
Donc L est l'image de D par la rotation de centre E et d'angle
p
2
.
Le triangle EDL est bien rectangle isocèle en E de sens direct.
E
A
D
I
L
CB
Exercices rédigés sur les nombres complexes Page 16 G. COSTANTINI http://bacamaths.net/
Exercice 11 Des carrés autour d'un quadrilatère (Théorème de Von Aubel)
1. Puisque ABCD est de sens direct et que P est le centre du carré construit extérieurement sur [AB], on peut
affirmer que A est l'image de B par la rotation de centre P et d'angle
p
2
:
a - p = i(b - p)
a - ib = p - ip
D'où : p =
1
a b-
-
i
i
On obtient de même :
q =
1
b c-
-
i
i
, r =
1
c d-
-
i
i
et s =
1
d a-
-
i
i
2. On a alors :
s q
r p
-
-
=
( )
( )
d b c a
c a b d
- + -
- + -
i
i
= i
On en déduit, d'une part, que les droites (PR) et (QS) sont perpendiculaires.
De plus, comme
s q
r p
-
-
= 1, on a : PR = QS
Les diagonales du quadrilatère PQRS sont donc perpendiculaires et de même longueur.
R
DS
Q
A
C
B
P
Exercices rédigés sur les nombres complexes Page 17 G. COSTANTINI http://bacamaths.net/
Exercice 12 Des carrés autour d'un triangle (Point de Vecten)
1. Comme A est l'image de B par la rotation de centre P et d'angle
p
2
:
a - p = i(b - p)
De même : b - q = i(c - q)
c - r = i(a - r)
En additionnant membre à membre ces trois égalités :
a + b + c - (p + q + r) = i(a + b + c - (p + q + r))
D'où : a + b + c = p + q + r
2. De la relation a - p = i(b - p) on déduit : p =
1
a b-
-
i
i
De même : q =
1
b c-
-
i
i
et r =
1
c a-
-
i
i
P
R
Q
CB
A
Exercices rédigés sur les nombres complexes Page 18 G. COSTANTINI http://bacamaths.net/
3. On a :
r p
q a
-
-
=
( )
( )
c a b a
b a a c
- + -
- + -
i
i
= i
On en déduit que les droites (PR) et (AQ) sont perpendiculaires. Autrement dit :
(AQ) est la hauteur issue de A dans le triangle PQR
En raisonnant de même par rapport aux autres côtés, on constate que (BR) et (CP) sont les deux autres
hauteurs du triangle PQR.
Les droites (AQ), (BR) et (CP) sont donc concourantes.
Exercice 13 Théorème de Napoléon
PARTIE A : des caractérisations du triangle équilatéral
1. Si UVW est équilatéral de sens direct, alors U est l'image de W par la rotation de centre V et d'angle
p
3
:
u - v = 3
pi
e (w - v)
Or : -j2
= -
4
3
pi
e = -
2
3
p
-
i
e = pi
e
2
3
p
-
i
e = 3
pi
e
D'où : u - v = -j2
(w - v)
Réciproquement, supposons :
u - v = -j2
(w - v) = 3
pi
e (w - v)
Alors, U est l'image de W par la rotation de centre V et d'angle
p
3
donc UVW est équilatéral de sens direct.
2. Supposons UVW équilatéral de sens direct. D'après ce qui précède, on a :
u - v = -j2
(w - v)
u + (-1 -j2
)v + j2
w = 0
Or, 1 + j + j2
= 0 donc : u + jv + j2
w = 0
Réciproquement, supposons : u + jv + j2
w = 0
Alors, par le même calcul : u - v = -j2
(w - v)
Et d'après la question 1. : UVW équilatéral de sens direct
W
VU
Exercices rédigés sur les nombres complexes Page 19 G. COSTANTINI http://bacamaths.net/
PARTIE B : démonstration du théorème de Napoléon
Par hypothèse, on a : a - w = j(b - w) (E1)
b - u = j(c - u) (E2)
c - v = j(a - v) (E3)
En additionnant, membre à membre, les trois égalités, il vient :
a + b + c - (u + v + w) = j(a + b + c - (u + v + w))
D'où : a + b + c = u + v + w
Ce qui prouve déjà que UVW a le même centre de gravité que ABC.
De (E1) on déduit : w =
1
a b-
-
j
j
De même avec (E2) et (E3) : u =
1
b c-
-
j
j
v =
1
c a-
-
j
j
On calcule maintenant :
u + jv + j2
w =
2 2
1
a b b c c a- + - + -
-
j j j j
j
= 0
Donc : UVW est équilatéral de sens direct
W
V
U
R
Q
P
CB
A
Exercices rédigés sur les nombres complexes Page 20 G. COSTANTINI http://bacamaths.net/
Remarque : pour aller plus loin avec cette configuration, on peut aussi démontrer que les droites (AP), (BQ) et
(CR) sont concourantes en un point T appelé "point de Torricelli". Ce point T possède de belles propriétés : il
est le point de concours des cercles circonscrits aux triangles ABC, ABR, ACQ et BCP, c'est aussi le point qui
rend minimal la distance MA + MB + MC (lorsque les angles du triangle sont inférieurs à 120°).
W
V
U
R
Q
T
P
CB
A
Exercices rédigés sur les nombres complexes Page 21 G. COSTANTINI http://bacamaths.net/
Exercice 14 Nombres complexes et suites
1. Il s'agit d'une somme de termes consécutifs d'une suite géométrique de raison z ¹ 1, donc :
1
0
n
k
k
z
-
=
å =
1
1
n
z
z
-
-
=
2
1 z-
car zn
= pi
e = - 1
2. On a, pour tout n  2 :
1 - z = 1 - n
pi
e = 2n
pi
e 2 2n n
p p
-æ ö
-ç ÷
ç ÷
è ø
i i
e e = -2i 2n
pi
e sin
2n
pæ ö
ç ÷
è ø
D'où :
2
1 z-
=
2
sin
2
n
n
p
-
pæ ö
ç ÷
è ø
i
i e
=
cos sin
2 2
sin
2
n n
n
p pæ æ ö æ öö-ç ç ÷ ç ÷÷
è è ø è øø
pæ ö
ç ÷
è ø
i i
= 1 + i
1
tan
2n
pæ ö
ç ÷
è ø
3. En identifiant les parties imaginaires, on obtient :
Sn = Im
2
1 z
æ ö
ç ÷
-è ø
=
1
tan
2n
pæ ö
ç ÷
è ø
4. On a, pour tout n  2 : un =
1
tan
2
n
n
pæ ö
ç ÷
è ø
=
cos
2
sin
2
n
n
n
pæ ö
ç ÷
è ø
pæ ö
ç ÷
è ø
un =
2
p
2
sin
2
n
n
p
pæ ö
ç ÷
è ø
cos
2n
pæ ö
ç ÷
è ø
Or, on sait que : lim
n®+¥
2
sin
2
n
n
p
pæ ö
ç ÷
è ø
= 1
(Car lim
x®0
sin x
x
= 1)
Et comme lim
n®+¥
cos
2n
pæ ö
ç ÷
è ø
= 1, il vient finalement :
lim
n®+¥
un =
2
p
On dit que la suite (Sn) converge "en moyenne" vers
2
p
.

Contenu connexe

Tendances

Ch4 circuitscombinatoires
Ch4 circuitscombinatoiresCh4 circuitscombinatoires
Ch4 circuitscombinatoires
mickel iron
 
Ch3 algebreboole
Ch3 algebrebooleCh3 algebreboole
Ch3 algebreboole
mickel iron
 

Tendances (20)

Chapitre 4 robotique
Chapitre 4 robotiqueChapitre 4 robotique
Chapitre 4 robotique
 
SYStèmes d'équations linéaires
SYStèmes d'équations linéairesSYStèmes d'équations linéaires
SYStèmes d'équations linéaires
 
Tp1 electronique
Tp1 electroniqueTp1 electronique
Tp1 electronique
 
Corrige math s1-s3_r_1er_gr_2013
Corrige math s1-s3_r_1er_gr_2013Corrige math s1-s3_r_1er_gr_2013
Corrige math s1-s3_r_1er_gr_2013
 
Examen sap master 2015
Examen sap master 2015Examen sap master 2015
Examen sap master 2015
 
Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2Singular Value Decompostion (SVD): Worked example 2
Singular Value Decompostion (SVD): Worked example 2
 
Formulario serie numeriche serie notevoli, serie di potenze, criteri di con...
Formulario serie numeriche   serie notevoli, serie di potenze, criteri di con...Formulario serie numeriche   serie notevoli, serie di potenze, criteri di con...
Formulario serie numeriche serie notevoli, serie di potenze, criteri di con...
 
Differential geometry three dimensional space
Differential geometry   three dimensional spaceDifferential geometry   three dimensional space
Differential geometry three dimensional space
 
Sélection de contrôles avec correction
Sélection de contrôles avec correctionSélection de contrôles avec correction
Sélection de contrôles avec correction
 
Les circuits combinatoires
Les circuits combinatoires Les circuits combinatoires
Les circuits combinatoires
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 
4 m t2
4 m t24 m t2
4 m t2
 
Group theory notes
Group theory notesGroup theory notes
Group theory notes
 
Ch4 circuitscombinatoires
Ch4 circuitscombinatoiresCh4 circuitscombinatoires
Ch4 circuitscombinatoires
 
Exercice suites réelles
Exercice suites réellesExercice suites réelles
Exercice suites réelles
 
04 cours matrices_suites
04 cours matrices_suites04 cours matrices_suites
04 cours matrices_suites
 
Ch3 algebreboole
Ch3 algebrebooleCh3 algebreboole
Ch3 algebreboole
 
Line integral & ML inequality
Line integral & ML inequalityLine integral & ML inequality
Line integral & ML inequality
 
Fonctions logarithmes
Fonctions logarithmesFonctions logarithmes
Fonctions logarithmes
 
Cours master phys sc chap 1 2015
Cours master phys sc chap 1 2015Cours master phys sc chap 1 2015
Cours master phys sc chap 1 2015
 

En vedette

4 t série5-1314-wa-alphamaths
4 t série5-1314-wa-alphamaths4 t série5-1314-wa-alphamaths
4 t série5-1314-wa-alphamaths
Smaali Mondher
 
4 sc ds2.1314-slahk-hallouli-alphamaths
4 sc ds2.1314-slahk-hallouli-alphamaths4 sc ds2.1314-slahk-hallouli-alphamaths
4 sc ds2.1314-slahk-hallouli-alphamaths
Smaali Mondher
 
4°serie ln khmiri-fawzi-alphamaths
4°serie ln khmiri-fawzi-alphamaths4°serie ln khmiri-fawzi-alphamaths
4°serie ln khmiri-fawzi-alphamaths
Smaali Mondher
 
Exercices corriges series_numeriques
Exercices corriges series_numeriquesExercices corriges series_numeriques
Exercices corriges series_numeriques
Fouad Yak
 
12 الحساب المثلثي – الجزء الثاني
12 الحساب المثلثي – الجزء الثاني 12 الحساب المثلثي – الجزء الثاني
12 الحساب المثلثي – الجزء الثاني
AHMED ENNAJI
 
Mathematiques _resumes_du_cours
Mathematiques  _resumes_du_coursMathematiques  _resumes_du_cours
Mathematiques _resumes_du_cours
ahmed jafour
 

En vedette (20)

Exercices corriges nombres_complexes
Exercices corriges nombres_complexesExercices corriges nombres_complexes
Exercices corriges nombres_complexes
 
4 t série5-1314-wa-alphamaths
4 t série5-1314-wa-alphamaths4 t série5-1314-wa-alphamaths
4 t série5-1314-wa-alphamaths
 
Correction408
Correction408Correction408
Correction408
 
Exercice espace
Exercice espaceExercice espace
Exercice espace
 
4 sc ds2.1314-slahk-hallouli-alphamaths
4 sc ds2.1314-slahk-hallouli-alphamaths4 sc ds2.1314-slahk-hallouli-alphamaths
4 sc ds2.1314-slahk-hallouli-alphamaths
 
4°serie ln khmiri-fawzi-alphamaths
4°serie ln khmiri-fawzi-alphamaths4°serie ln khmiri-fawzi-alphamaths
4°serie ln khmiri-fawzi-alphamaths
 
Nombres complexes
Nombres complexesNombres complexes
Nombres complexes
 
Fiche complexes
Fiche complexesFiche complexes
Fiche complexes
 
Exercices corriges series_numeriques
Exercices corriges series_numeriquesExercices corriges series_numeriques
Exercices corriges series_numeriques
 
12 الحساب المثلثي – الجزء الثاني
12 الحساب المثلثي – الجزء الثاني 12 الحساب المثلثي – الجزء الثاني
12 الحساب المثلثي – الجزء الثاني
 
Résolution de l'équations linéaires
Résolution de l'équations linéairesRésolution de l'équations linéaires
Résolution de l'équations linéaires
 
exercices d'analyse complexe
exercices d'analyse complexeexercices d'analyse complexe
exercices d'analyse complexe
 
Serie 3(derive)
Serie 3(derive)Serie 3(derive)
Serie 3(derive)
 
Examen d'analyse complexe
Examen d'analyse complexeExamen d'analyse complexe
Examen d'analyse complexe
 
Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1Devoir 1en classe tc semestre1
Devoir 1en classe tc semestre1
 
Nombre complexe
Nombre complexeNombre complexe
Nombre complexe
 
Série 7
Série 7Série 7
Série 7
 
Cahier exercises maths
Cahier exercises mathsCahier exercises maths
Cahier exercises maths
 
Mathematiques _resumes_du_cours
Mathematiques  _resumes_du_coursMathematiques  _resumes_du_cours
Mathematiques _resumes_du_cours
 
Chapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocainChapitre projection pour tronc commun bac international marocain
Chapitre projection pour tronc commun bac international marocain
 

Similaire à Nbr complexes

85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)
AHMED ENNAJI
 
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Yessin Abdelhedi
 
Serie1 arithmetiques 1sm biof
Serie1 arithmetiques 1sm biofSerie1 arithmetiques 1sm biof
Serie1 arithmetiques 1sm biof
AHMED ENNAJI
 

Similaire à Nbr complexes (20)

Fic00001
Fic00001Fic00001
Fic00001
 
85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)85717b7aca485735313534313338323437343138 (1)
85717b7aca485735313534313338323437343138 (1)
 
Omp math nombres-complexes
Omp math nombres-complexesOmp math nombres-complexes
Omp math nombres-complexes
 
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
Devoir de synthèse_n°_02--2008-2009(mr_otay)[lycée__el_aghaliba]
 
Bac blan 8 pc biof
Bac blan 8 pc biofBac blan 8 pc biof
Bac blan 8 pc biof
 
Realatios trégonométriques
Realatios trégonométriquesRealatios trégonométriques
Realatios trégonométriques
 
exercices_probas_corriges.pdf
exercices_probas_corriges.pdfexercices_probas_corriges.pdf
exercices_probas_corriges.pdf
 
Cours Coniques
Cours   ConiquesCours   Coniques
Cours Coniques
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1
 
Devoir Math Bac 2011_La Correction
Devoir Math Bac 2011_La CorrectionDevoir Math Bac 2011_La Correction
Devoir Math Bac 2011_La Correction
 
Bac blanc 5
Bac blanc 5Bac blanc 5
Bac blanc 5
 
S2- Math
S2- Math S2- Math
S2- Math
 
Cours nombres complexes
Cours nombres complexesCours nombres complexes
Cours nombres complexes
 
DS6-CB-sujet (1).pdf
DS6-CB-sujet (1).pdfDS6-CB-sujet (1).pdf
DS6-CB-sujet (1).pdf
 
cours polynome.pdf
cours polynome.pdfcours polynome.pdf
cours polynome.pdf
 
Cours espace
Cours espaceCours espace
Cours espace
 
2.4_cylindriques_spheriques (1).pdf formulaire
2.4_cylindriques_spheriques (1).pdf formulaire2.4_cylindriques_spheriques (1).pdf formulaire
2.4_cylindriques_spheriques (1).pdf formulaire
 
Bac blanc 6
Bac blanc 6Bac blanc 6
Bac blanc 6
 
Corriges td algebre
Corriges td algebreCorriges td algebre
Corriges td algebre
 
Serie1 arithmetiques 1sm biof
Serie1 arithmetiques 1sm biofSerie1 arithmetiques 1sm biof
Serie1 arithmetiques 1sm biof
 

Plus de bades12 (20)

Ex determ
Ex determEx determ
Ex determ
 
Cours nombres reels
Cours nombres reelsCours nombres reels
Cours nombres reels
 
Cours derive d'une fonctions
Cours  derive d'une fonctionsCours  derive d'une fonctions
Cours derive d'une fonctions
 
Cours groupe
Cours groupeCours groupe
Cours groupe
 
Cours arithmetique
Cours arithmetiqueCours arithmetique
Cours arithmetique
 
Cours ensembles
Cours ensemblesCours ensembles
Cours ensembles
 
Ch logique cours
Ch logique coursCh logique cours
Ch logique cours
 
Cv p 214
Cv p 214Cv p 214
Cv p 214
 
12
1212
12
 
5
55
5
 
3 a-1
3 a-13 a-1
3 a-1
 
4 a-2
4 a-24 a-2
4 a-2
 
1 v-5
1 v-51 v-5
1 v-5
 
1 v-4
1 v-41 v-4
1 v-4
 
1 v-2
1 v-21 v-2
1 v-2
 
1 v-1
1 v-11 v-1
1 v-1
 
1 t-6
1 t-61 t-6
1 t-6
 
1 t-5
1 t-51 t-5
1 t-5
 
1 t-3
1 t-31 t-3
1 t-3
 
1 t-2
1 t-21 t-2
1 t-2
 

Dernier

Dernier (12)

Quitter la nuit. pptx
Quitter        la             nuit.   pptxQuitter        la             nuit.   pptx
Quitter la nuit. pptx
 
PowerPoint-de-Soutenance-de-TFE-infirmier.pdf
PowerPoint-de-Soutenance-de-TFE-infirmier.pdfPowerPoint-de-Soutenance-de-TFE-infirmier.pdf
PowerPoint-de-Soutenance-de-TFE-infirmier.pdf
 
Quitter la nuit. pptx
Quitter          la        nuit.    pptxQuitter          la        nuit.    pptx
Quitter la nuit. pptx
 
Nathanaëlle Herbelin.pptx Peintre française
Nathanaëlle Herbelin.pptx Peintre françaiseNathanaëlle Herbelin.pptx Peintre française
Nathanaëlle Herbelin.pptx Peintre française
 
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
PLANNING HEBDO ET CR LYCEE COUDON 21 MAI2024
 
rapport de stage gros oeuvre_compressed.pdf
rapport de stage gros oeuvre_compressed.pdfrapport de stage gros oeuvre_compressed.pdf
rapport de stage gros oeuvre_compressed.pdf
 
Fiche - Accompagnement du travail coopératif au sein d’une équipe d’enseignan...
Fiche - Accompagnement du travail coopératif au sein d’une équipe d’enseignan...Fiche - Accompagnement du travail coopératif au sein d’une équipe d’enseignan...
Fiche - Accompagnement du travail coopératif au sein d’une équipe d’enseignan...
 
Webinaire Technologia | DAX : nouvelles fonctions
Webinaire Technologia | DAX : nouvelles fonctionsWebinaire Technologia | DAX : nouvelles fonctions
Webinaire Technologia | DAX : nouvelles fonctions
 
Les débuts de la collection "Le livre de poche"
Les débuts de la collection "Le livre de poche"Les débuts de la collection "Le livre de poche"
Les débuts de la collection "Le livre de poche"
 
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLSCours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
Cours-Sur-l'-IP-Multiprotocol-Label-SwitchingMPLS
 
Un petit coin etwinning- Au fil des cultures urbaines
Un petit coin  etwinning- Au fil des cultures urbainesUn petit coin  etwinning- Au fil des cultures urbaines
Un petit coin etwinning- Au fil des cultures urbaines
 
Bonnes pratiques biomédicales en établissement de soins : Guide
Bonnes pratiques biomédicales en établissement de soins  : GuideBonnes pratiques biomédicales en établissement de soins  : Guide
Bonnes pratiques biomédicales en établissement de soins : Guide
 

Nbr complexes

  • 1. Exercices rédigés sur les nombres complexes Page 1 G. COSTANTINI http://bacamaths.net/ EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES Exercice 1 Valeur exacte du cosinus et du sinus de p/12 On considère les deux nombres complexes suivants : z1 = e i p 3 et z2 = 4 p -i e 1. Écrire z1 et z2 sous forme algébrique. 2. Déterminer les écritures sous formes algébrique, exponentielle et trigonométrique de z1z2. 3. En déduire la valeur exacte du cosinus et sinus suivants : cos p 12 et sin p 12 Exercice 2 Des pistes pour démontrer qu'un complexe est réel ou imaginaire pur Démontrer les équivalences suivantes : Z réel Û Z = Z Z Î  Û ( Z = 0 ou arg(Z) = 0 [p] ) Z imaginaire pur Û Z + Z = 0 Z Î i Û ( Z = 0 ou arg(Z) = p 2 [p] ) Applications : 1. Comment choisir le nombre complexe z pour que Z = z2 + 2z - 3 soit réel ? Soit E l'ensemble des points M du plan complexe d'affixe z tels que Z soit réel. Déterminer E. 2. On considère les points A et B d'affixes respectives i et 1. Soit M un point du plan d'affixe z distinct de A. On pose Z = 1- - z zi Déterminer l'ensemble E des points M tels que Z soit réel. Déterminer l'ensemble F des points M tels que Z soit imaginaire pur. Exercice 3 Écriture complexe de transformations 1. Soit ¦ la transformation du plan complexe qui à M(z) associe M'(z') tel que : z' = az + 3i Déterminer la nature et les éléments caractéristiques de ¦ lorsque a = 2, puis lorsque a = -i 2. On donne A(1), B(2 + i), A'(2i) et B'(1 + i). Vérifier que AB = A'B'. Démontrer qu'il existe une unique rotation r telle que r(A) = A' et r(B) = B'. La déterminer. Exercice 4 Lieux de points Soit z un nombre complexe différent de 1. On note M le point du plan complexe d'affixe z. On pose Z = 1 z z + - i . Déterminer l'ensemble : 1. E des points M tels que Z soit réel. 2. F des points M tels que |Z| = 1. 3. G des points M tels que arg(Z) = p 2 [2p].
  • 2. Exercices rédigés sur les nombres complexes Page 2 G. COSTANTINI http://bacamaths.net/ Exercice 5 Utilisation des nombres complexes pour établir une propriété algébrique Soient a, b Î . On suppose que a et b sont la somme de deux carrés : il existe x, y Î  tels que a = x y2 2 + et il existe z, t Î  tels que b = z t2 2 + Démontrer que le produit ab est encore la somme de deux carrés. (Idée : écrire ( )x y2 2 + = x y+ i 2 etc...) Exercice 6 Identité du parallélogramme Démontrer que pour tous nombres complexes Z et Z', on a : |Z + Z'|2 + |Z - Z'|2 = 2|Z|2 + 2|Z'|2 (Indication : utiliser la relation : Z 2 = Z Z ) Interpréter géométriquement. Exercice 7 Racines de l'unité. Applications Soit n Î * . On appelle racine nème de l'unité tout nombre complexe z tel que : n z = 1 On note n l'ensemble des racines nèmes de l'unité. Par exemple, 2 = {-1, 1}. 1. Démontrer que : n = 2 , {0, 1, ... , 1} k n k n p ì üï ï Î -í ý ï ïî þ i e Démontrer que la somme des racines nèmes de l'unité est nulle. Démontrer que, dans repère orthonormal direct ( )1 2, ,O e e ur uur , les images Ak (0  k  n - 1) des nombres wk = 2 k n pi e sont les sommets d'un polygone régulier. 2. Applications : a) Soit Z Î . On appelle racine nème de Z tout nombre complexe tel que : n z = Z Soit R = |Z| et Q un argument de Z. Démontrer que Z admet les n racines nèmes suivantes : 2k n n n R Q pæ ö+ç ÷ è ø i e , 0  k  n - 1 b) Soit ¦ la fonction polynôme définie par : ¦(x) = x4 + 1 Déterminer les racines quatrièmes de -1 puis en déduire que ¦ peut s'écrire comme un produit de deux fonctions polynômes de degré 2 à coefficients réels. c) Soit z un nombre complexe tel que : 1 + z4 + z8 = 0 Démontrer que z est une racine 12ème de l'unité.
  • 3. Exercices rédigés sur les nombres complexes Page 3 G. COSTANTINI http://bacamaths.net/ Exercice 8 Transformation de a cos x + b sin x Soient a et b deux réels. Démontrer qu'il existe deux réels R et q tels que pour tout x Î  : a cos x + b sin x = R cos(x - q) Application : résoudre, sur , l'équation : cos x + sin x = 1 Exercice 9 Calcul de la valeur exacte de cos(2p/5) et cos(4p/5) Pour connaître le but de cet exercice, se reporter à la question 5. 1. Résoudre, dans  ´ , le système suivant : u v uv + = - = - ì í ï î ï 1 2 1 4 2. On pose w = e i 2 5 p . Démontrer que : w0 + w1 + w2 + w3 + w4 = 0 En déduire (à l'aide des formules d'Euler) que : cos 2 5 pæ ö ç ÷ è ø + cos 4 5 pæ ö ç ÷ è ø = - 1 2 3. Démontrer que : cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø + sin 2 5 pæ ö ç ÷ è ø sin 4 5 pæ ö ç ÷ è ø = cos 2 5 pæ ö ç ÷ è ø et cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø - sin 2 5 pæ ö ç ÷ è ø sin 4 5 pæ ö ç ÷ è ø = cos 4 5 pæ ö ç ÷ è ø 4. En déduire que : cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø = - 1 4 5. Démontrer que : cos 2 5 pæ ö ç ÷ è ø = - +1 5 4 et cos 4 5 pæ ö ç ÷ è ø = - -1 5 4 Exercice 10 Carrés et parallélogramme ABC est un triangle de sens direct. DBA est un triangle isocèle et rectangle en D de sens direct. ACE est un triangle isocèle et rectangle en E de sens direct. On construit le point L tel que CL ® = DB ® . 1. Faire une figure. 2. Démontrer que EDL est un triangle rectangle isocèle en E de sens direct.
  • 4. Exercices rédigés sur les nombres complexes Page 4 G. COSTANTINI http://bacamaths.net/ Exercice 11 Des carrés autour d'un quadrilatère (Théorème de Von Aubel) On considère un quadrilatère ABCD de sens direct. On construit quatre carrés de centres respectifs P, Q, R et S qui s'appuient extérieurement sur les côtés [AB], [BC], [CD] et [DA] du quadrilatère ABCD. (Voir figure) Le but du problème est de démontrer que les diagonales du quadrilatère PQRS sont perpendiculaires et de même longueur. On notre a, b, c, d, p, q, r et s les affixes respectives des points A, B, C, D, P, Q, R et S dans un repère orthonormé ( )1 2, ,O e e ur uur de sens direct. 1. Démontrer que dans le carré construit sur [AB], on a : p = 1 a b- - i i Établir des relations analogues pour q, r et s en raisonnant dans les trois autres carrés. 2. Calculer : s q r p - - Conclure. R DS Q A C B P
  • 5. Exercices rédigés sur les nombres complexes Page 5 G. COSTANTINI http://bacamaths.net/ Exercice 12 Des carrés autour d'un triangle (Point de Vecten) On considère un triangle ABC de sens direct. On construit trois carrés de centres respectifs P, Q et R qui s'appuient extérieurement sur les côtés [AB], [BC] et [CA] du triangle ABC. (Voir figure) On notre a, b, c, p, q et r les affixes respectives des points A, B, C, P, Q et R dans un repère orthonormé ( )1 2, ,O e e ur uur de sens direct. 1. Démontrer que les triangles ABC et PQR ont le même centre de gravité. 2. Démontrer que dans le carré construit sur [AB], on a : p = 1 a b- - i i Établir des relations analogues pour q et r en raisonnant dans les deux autres carrés. 3. Démontrer que les droites (AQ) et (PR) sont perpendiculaires En déduire que les droites (AQ), (BR) et (CP) sont concourantes. Information : ce point de concours s'appelle "point de Vecten" du triangle ABC. P R Q CB A
  • 6. Exercices rédigés sur les nombres complexes Page 6 G. COSTANTINI http://bacamaths.net/ Exercice 13 Théorème de Napoléon On munit le plan d'un repère orthonormé ( )1 2, ,O e e ur uur de sens direct. PARTIE A : des caractérisations du triangle équilatéral On note j = 2 3 pi e . Soient U, V et W trois points du plan d'affixes respectives u, v et w. 1. Démontrer l'équivalence suivante : UVW est équilatéral de sens direct Û u - v = -j2 (w - v) 2. Démontrer l'équivalence suivante : UVW est équilatéral de sens direct Û u + jv + j2 w = 0 PARTIE B : démonstration du théorème de Napoléon ABC est un triangle quelconque de sens direct. On construit les points P, Q et R tels que BPC, CQA et ARB soient des triangles équilatéraux de sens direct. On note U, V et W les centres de gravité de BPC, CQA et ARB respectivement. Démontrer que UVW est équilatéral de même centre de gravité que ABC. W V U R Q P CB A
  • 7. Exercices rédigés sur les nombres complexes Page 7 G. COSTANTINI http://bacamaths.net/ Exercice 14 Nombres complexes et suites Le but de cet exercice est l'étude de la suite (Sn) définie, pour n  2, par : Sn = 0 sin n k k n= pæ ö ç ÷ è øå 1. On pose, pour n  2 : z = n pi e Calculer la somme 1 0 n k k z - = å 2. Montrer que, pour n  2 : 2 1 z- = 1 + i 1 tan 2n pæ ö ç ÷ è ø 3. En déduire que, pour n  2 : Sn = 1 tan 2n pæ ö ç ÷ è ø 4. Étudier la limite de la suite (un) définie, pour n  2, par : un = nS n
  • 8. Exercices rédigés sur les nombres complexes Page 8 G. COSTANTINI http://bacamaths.net/ EXERCICES RÉDIGÉS SUR LES NOMBRES COMPLEXES : SOLUTIONS Exercice 1 Valeur exacte du cosinus et du sinus de p/12 1. On a : z1 = 1 2 + i 3 2 et z2 = 2 2 - i 2 2 2. Forme algébrique de z1z2 : z1z2 = 1 3 2 2 æ ö +ç ÷ è ø i 2 2 2 2 æ ö -ç ÷ è ø i = 6 2 4 + + i 6 2 4 - Forme exponentielle de z1z2 : z1z2 = e i p 3 4 p -i e = 12 p i e Forme trigonométrique de z1z2 : z1z2 = cos p 12 + i sin p 12 3. En identifiant la forme trigonométrique avec la forme algébrique de z1z2, il vient : cos p 12 = 6 2 4 + et sin p 12 = 6 2 4 - Exercice 2 Des pistes pour démontrer qu'un complexe est réel ou imaginaire pur D'une part : Z est réel Û Im(Z) = 0 Û Z - Z = 0 Û Z = Z Z est imaginaire pur Û Re(Z) = 0 Û Z + Z = 0 D'autre part : Z Î  Û ( Z = 0 ou arg(Z) = 0 [2p] ou arg(Z) = p [2p] ) Û ( Z = 0 ou arg(Z) = 0 [p] ) Z Î i Û ( Z = 0 ou arg(Z) = p 2 [2p] ou arg(Z) = - p 2 [2p] ) Û ( Z = 0 ou arg(Z) = p 2 [p] ) Applications : 1. D'après ce qui précède et d'après les propriétés de la conjugaison : Z réel Û Z = Z Û z2 + 2z - 3 = 2 z + 2 z - 3 Û (z - z )[(z + z ) + 2] = 0 Z réel Û (z = z ou 2Re(z) = -2) Û (z réel ou Re(z) = -1) L'ensemble E recherché est l'union des deux droites d'équations respectives y = 0 et x = -1. 2. Détermination de E : On rappelle que z ¹ i. Autrement dit M est distinct de A. On a alors : Z Î  Û (Z = 0 ou arg Z = 0 [p]) Û (z = 1 ou arg B A z z z z -æ ö ç ÷-è ø = 0 [p]) Û (M = B ou ( AM ® , BM ® ) = 0 [p]) Z Î  Û A, M et B alignés, M ¹ A On en déduit : E est la droite (AB) privée du point A Détermination de F : On rappelle que z ¹ i. On a alors : Z Î i Û (Z = 0 ou arg(Z) = p 2 [p]) Û (z = 1 ou arg B A z z z z -æ ö ç ÷-è ø = p 2 [p]) Z Î i Û (M = B ou ( AM ® , BM ® ) = p 2 [p]) D'où : F est le cercle de diamètre [AB] privé du point A
  • 9. Exercices rédigés sur les nombres complexes Page 9 G. COSTANTINI http://bacamaths.net/ Exercice 3 Écriture complexe de transformations 1. a = 2 Montrons que ¦ admet un unique point invariant. Pour cela on résout l'équation : ¦(w) = w w = 2w + 3i w = -3i La transformation ¦ admet un unique point invariant W d'affixe w = -3i. Pour déterminer la nature de ¦ on exprime z' - w en fonction de z - w . On a : ' 2 3 2 3 z z= +ì í w = w+î i i En soustrayant, membre à membre, ces deux égalités, on obtient : z' - w = 2(z - w) On en déduit, grâce à son écriture complexe, que ¦ est l'homothétie de centre W(-3i) et de rapport k = 2. a = -i Montrons que ¦ admet un unique point invariant. Pour cela on résout l'équation : ¦(w) = w w = -iw + 3i w = 3 1+ i i = 3 3 2 + i La transformation ¦ admet un unique point invariant W d'affixe w = 3 3 2 + i . Pour déterminer la nature de ¦ on exprime z' - w en fonction de z - w . On a : ' 3 3 z z= - +ì í w = w+î i i i i En soustrayant, membre à membre, ces deux égalités, on obtient : z' - w = -i(z - w) On en déduit, grâce à son écriture complexe, que ¦ est rotation de centre W et d'angle - p 2 . 2. On a : AB = A'B' = 2 Soit r une rotation de centre W et d'angle q. Son écriture complexe est : z' - w = qi e (z - w) Montrons que l'on peut choisir, de manière unique, w Î  et q Î [0, 2p[ tels que r(A) = A' et r(B) = B'. La condition r(A) = A' donne : 2i - w = qi e (1 - w) La condition r(B) = B' donne : 1 + i - w = qi e (2 + i - w) En soustrayant membre à membre : i - 1 = qi e (-1 - i) D'où : qi e = -i q = - p 2 [2p] On en déduit : 2i - w = -i(1 - w) w = 3 3 2 + i La transformation cherchée est la rotation de centre W d'affixe 3 3 2 + i et d'angle - p 2 .
  • 10. Exercices rédigés sur les nombres complexes Page 10 G. COSTANTINI http://bacamaths.net/ Exercice 4 Lieux de points L'idée est de se ramener à une expression du type Z = A B z z z z - - afin de pouvoir l'interpréter géométriquement. Introduisons pour y parvenir le point A d'affixe -i et le point B d'affixe 1. 1. On a ainsi : Z réel Û (Z = 0 ou arg(Z) = 0 [p]) Û (z = zA ou ( BM ® , AM ® ) = 0 [p]) Or, ( BM ® , AM ® ) = 0 [p] Û M appartient à la droite (AB) privée de A et B On en déduit finalement : E est la droite (AB) privée de B 2. |Z| = 2 Û |z - zA| = |z - zB| Û AM = BM Û M appartient à la médiatrice de [AB] F est la médiatrice de [AB] 3. arg(Z) = p 2 [2p] Û ( BM ® , AM ® ) = p 2 [2p] G est le demi-cercle de diamètre [AB], privé de B, tel que le triangle AMB soit direct Exercice 5 Utilisation des nombres complexes pour établir une propriété algébrique On a : ab = x y+ i 2 2 z t+ i Et d'après les propriétés des modules : ab = 2 ( )( )x y z t+ +i i ab = 2 ( ) ( )xz yt yz xt- + +i ab = (xz - yt)2 + (yz + xt)2 Or, xz - yt Î  et yz + xt Î , donc ab est aussi la somme de deux carrés. Exercice 6 Identité du parallélogramme On a : |Z + Z'|2 + |Z - Z'|2 = (Z + Z') ( )Z Z¢+ + (Z - Z') ( )Z Z¢- = Z Z + Z Z¢ + Z' Z + Z' Z¢ + Z Z - Z Z¢ - Z' Z + Z' Z¢ |Z + Z'|2 + |Z - Z'|2 = 2|Z|2 + 2|Z'|2 Interprétation : Soit ABCD un parallélogramme. Notons Z l'affixe de AB ® et Z' l'affixe de AD ® . On a donc : AC2 + BD2 = 2AB2 + 2AD2 Autrement dit : dans un parallélogramme, la somme des carrés des diagonales est égale à la somme des carrés des côtés D |Z'| |Z - Z'| |Z + Z'| |Z| C B A
  • 11. Exercices rédigés sur les nombres complexes Page 11 G. COSTANTINI http://bacamaths.net/ Exercice 7 Racines de l'unité. Applications 1. Déjà, pour tout nombre complexe wk défini pour k Î {0, 1, ..., n - 1} par wk = 2 k n pi e , on a : n kw = 2 kpi e = 1 Les éléments de n sont bien des racines nèmes de l'unité. Réciproquement, soit z une racine nème de l'unité : n z = 1 Notons r le module de z et q l'argument de z situé dans [0, 2p[. Ainsi, on a : n n r qi e = 1 = 0i e Or, deux nombres complexes égaux ont même module et des arguments égaux (modulo 2p), d'où : n r = 1 et nq º 0 [2p] Comme r est un réel positif, on a nécessairement r = 1. D'autre part, l'égalité nq º 0 [2p] signifie qu'il existe un entier relatif k tel que : nq = 2kp q = 2k n p Et comme on a choisi q Î [0, 2p[, il vient : 0  k < n Et comme k est un entier : 0  k  n - 1 Il y a donc exactement n racines nème de l'unité qui sont les nombres wk pour 0  k  n - 1 : n = 2 , {0, 1, ... , 1} k n k n p ì üï ï Î -í ý ï ïî þ i e Avec les notations précédentes, et en notant w = w1, on constate que : wk = wk La formule de sommation de termes consécutifs d'une suite géométrique donne alors : 1 0 n k k - = wå = 1 1 n - w - w = 0 puisque wn = 1 De plus, pour tout k Î 0, n - 1, on a : ( kOA uuuur , 1kOA + uuuuuuur ) = arg 1k k +wæ ö ç ÷wè ø = 2 n pi e [2p] On en déduit que A0A1... An-1 est un polygone régulier. 2. Applications : a) On procède comme pour les racines de l'unité. Soit z = r qi e Î . On a : n z = Z Û n r nqi e = R Qi e Û [2 ] n r R n ì = í q º Q pî Û 2 n r R n n ì = ï í Q pé ùq ºï ê úî ë û Û 2 il existe tel que n r R k k n n ì = ï í Q p Î q = +ïî ¢ On a noté, par commodité : wn = w0 = 1 et An = A0
  • 12. Exercices rédigés sur les nombres complexes Page 12 G. COSTANTINI http://bacamaths.net/ Et comme on peut toujours choisir q Î , 2 n n Q Qé é+ pê êë ë , il vient : 0  k  n - 1 Les racines nèmes de Z sont donc les n nombres complexes suivants : 2k n n n R Q pæ ö+ç ÷ è ø i e , 0  k  n - 1 Remarque : si on connaît déjà une racine nème particulière z0 de Z, on peut en déduire toutes les autres en multipliant z0 par les racines nèmes de l'unité. En effet : ( 0 n z = Z et n z = Z) Û 0 n z z æ ö ç ÷ è ø = 1 Û il existe k Î 0, n - 1 tel que 0 z z = wk D'où : ( 0 n z = Z et n z = Z) Û il existe k Î 0, n - 1 tel que z = wkz0 b) Les racines quatrièmes de l'unité sont : 1, -1, i et -i On connaît une racine quatrième particulière de -1 : 4 p i e Les racines quatrièmes de -1 sont donc : 4 p i e , - 4 p i e , i 4 p i e et - i 4 p i e C'est-à-dire : 4 p i e , 3 4 p - i e , 3 4 pi e et 4 p -i e Or, les racines de x4 + 1 sont précisément les racines quatrièmes de -1. On a donc la factorisation : ¦(x) = x4 + 1 = 4x p æ ö -ç ÷ ç ÷ è ø i e 4x - p æ ö -ç ÷ ç ÷ è ø i e 3 4x p æ ö -ç ÷ ç ÷ è ø i e 3 4x p -æ ö -ç ÷ ç ÷ è ø i e En regroupant les racines deux par deux (en choisissant celles qui sont conjuguées), on obtient : ¦(x) = 2 2 cos 1 4 x x pæ ö- +ç ÷ è ø 2 3 2 cos 1 4 x x pæ ö- +ç ÷ è ø ¦(x) = ( )2 2 1x x- + ( )2 2 1x x+ + Nota : les amateurs de forme canonique peuvent retrouver ce résultat sans passer par les complexes : x4 + 1 = ( ) 22 1x + - 2 x2 = ( )2 2 1x x- + ( )2 2 1x x+ + c) On sait que : 1 + z4 + z8 = 0 En multipliant par z : z + z5 + z9 = 0 Puis encore : z2 + z6 + z10 = 0 z3 + z7 + z11 = 0 En sommant les quatre égalités, membre à membre : 11 0 k k z = å = 0 Il est clair que z ne peut pas être égal à 1. La formule de sommation de termes consécutifs d'une suite géométrique donne alors :
  • 13. Exercices rédigés sur les nombres complexes Page 13 G. COSTANTINI http://bacamaths.net/ 12 1 1 z z - - = 0 D'où : z12 = 1 Donc z est une racine douzième de l'unité. Exercice 8 Transformation de a cos x + b sin x Si a = b = 0, il suffit de choisir R = 0 et q quelconque. Supposons (a, b) ¹ (0, 0) et posons Z = a + ib. On a donc Z ¹ 0. Notons : R = |Z| et q un argument de Z. On sait qu'alors : a = |Z| cos q et b = |Z| sin q On a ainsi, pour tout x Î  : a cos x + b sin x = R(cos q cos x + sin q sin x) Et d'après les formules d'additions : a cos x + b sin x = R cos(x - q) Application : En utilisant ce qui précède en posant Z = 1 + i (R = 2 et q = p 4 [2p]), l'équation proposée s'écrit : 2 cos 4 x pæ ö-ç ÷ è ø = 1 cos 4 x pæ ö-ç ÷ è ø = 2 2 = cos p 4 D'où : x - p 4 = p 4 [2p] ou x - p 4 = - p 4 [2p] x = p 2 [2p] ou x = 0 [2p] Exercice 9 Calcul de la valeur exacte de cos(2p/5) et cos(4p/5) 1. On procède par substitution. La première équation donne : v = -u - 1 2 En remplaçant v par -u - 1 2 dans la seconde équation, il vient : u 1 2 uæ ö- -ç ÷ è ø = - 1 4 En multipliant par -4 et en développant : 4u2 + 2u - 1 = 0 On obtient une équation du second degré. Son discriminant est : D = b2 - 4ac = 20 Comme D > 0, il y a donc deux racines réelles distinctes : u1 = 2 b a - - D = 1 5 4 - - et u2 = 2 b a - + D = 1 5 4 - +
  • 14. Exercices rédigés sur les nombres complexes Page 14 G. COSTANTINI http://bacamaths.net/ On en déduit les valeurs de v correspondantes : v1 = -u1 - 1 2 = 1 5 4 - + et v2 = -u2 - 1 2 = 1 5 4 - - Conclusion : le système admet deux couples de solutions : S = 1 5 1 5 1 5 1 5 , ; , 4 4 4 4 ìæ ö æ öü- - - + - + - - í ýç ÷ ç ÷ îè ø è øþ 2. Il s'agit de la somme de cinq termes consécutifs d'une suite géométrique de raison e i 2 5 p . On a donc : w0 + w1 + w2 + w3 + w4 = 5 1 1 - w - w = 0 car w5 = 1 D'où : 1 + e i 2 5 p + 4 5 p i e + 6 5 p i e + 8 5 p i e = 0 Or : 6 5 p º - 4 5 p [2p] et 8 5 p º - 2 5 p [2p] On peut donc écrire : 1 + e i 2 5 p + 4 5 p i e + 4 5 p -i e + 2 5 p -i e = 0 Et d'après les formules d'Euler : 1 + 2 cos 2 5 pæ ö ç ÷ è ø + 2 cos 4 5 pæ ö ç ÷ è ø = 0 cos 2 5 pæ ö ç ÷ è ø + cos 4 5 pæ ö ç ÷ è ø = - 1 2 3. D'après les formules d'additions : cos 2 5 pæ ö ç ÷ è ø = cos 4 2 5 5 p pæ ö-ç ÷ è ø = cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø + sin 2 5 pæ ö ç ÷ è ø sin 4 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø = cos 4 5 pæ ö-ç ÷ è ø = cos 6 5 pæ ö ç ÷ è ø = cos 4 2 5 5 p pæ ö+ç ÷ è ø = cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø - sin 2 5 pæ ö ç ÷ è ø sin 4 5 pæ ö ç ÷ è ø 4. En additionnant, membre à membre, les deux égalités ci-dessus et en utilisant la question 2. : - 1 2 = 2 cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø cos 2 5 pæ ö ç ÷ è ø cos 4 5 pæ ö ç ÷ è ø = - 1 4 5. Posons u = cos 2 5 pæ ö ç ÷ è ø et v = cos 4 5 pæ ö ç ÷ è ø . On constate que : u v uv + = - = - ì í ï î ï 1 2 1 4 Or, cos 2 5 pæ ö ç ÷ è ø > 0 car 2 5 p Î 0, 2 pé ù ê úë û et cos 4 5 pæ ö ç ÷ è ø < 0 car 4 5 p Î , 2 pé ùpê úë û . D'après la question 1, on en déduit : cos 2 5 pæ ö ç ÷ è ø = - +1 5 4 et cos 4 5 pæ ö ç ÷ è ø = - -1 5 4
  • 15. Exercices rédigés sur les nombres complexes Page 15 G. COSTANTINI http://bacamaths.net/ Exercice 10 Carrés et parallélogramme 1. Figure 2. Munissons le plan d'un repère orthonormal direct ( )1 2, ,O e e ur uur . Notons a, b, c, d, e et l les affixes respectives des points A, B, C, D, E et L. Comme A est l'image de B par la rotation de centre D et d'angle p 2 : a - d = i(b - d) De même dans ACE : c - e = i(a - e) Enfin, puisque L est l'image de C par la translation de vecteur DB ® : l = c + b - d Exprimons l - e en fonction de d - e : l - e = c - e + b - d = i(a - e) - i(a - d) = i(d - e) Donc L est l'image de D par la rotation de centre E et d'angle p 2 . Le triangle EDL est bien rectangle isocèle en E de sens direct. E A D I L CB
  • 16. Exercices rédigés sur les nombres complexes Page 16 G. COSTANTINI http://bacamaths.net/ Exercice 11 Des carrés autour d'un quadrilatère (Théorème de Von Aubel) 1. Puisque ABCD est de sens direct et que P est le centre du carré construit extérieurement sur [AB], on peut affirmer que A est l'image de B par la rotation de centre P et d'angle p 2 : a - p = i(b - p) a - ib = p - ip D'où : p = 1 a b- - i i On obtient de même : q = 1 b c- - i i , r = 1 c d- - i i et s = 1 d a- - i i 2. On a alors : s q r p - - = ( ) ( ) d b c a c a b d - + - - + - i i = i On en déduit, d'une part, que les droites (PR) et (QS) sont perpendiculaires. De plus, comme s q r p - - = 1, on a : PR = QS Les diagonales du quadrilatère PQRS sont donc perpendiculaires et de même longueur. R DS Q A C B P
  • 17. Exercices rédigés sur les nombres complexes Page 17 G. COSTANTINI http://bacamaths.net/ Exercice 12 Des carrés autour d'un triangle (Point de Vecten) 1. Comme A est l'image de B par la rotation de centre P et d'angle p 2 : a - p = i(b - p) De même : b - q = i(c - q) c - r = i(a - r) En additionnant membre à membre ces trois égalités : a + b + c - (p + q + r) = i(a + b + c - (p + q + r)) D'où : a + b + c = p + q + r 2. De la relation a - p = i(b - p) on déduit : p = 1 a b- - i i De même : q = 1 b c- - i i et r = 1 c a- - i i P R Q CB A
  • 18. Exercices rédigés sur les nombres complexes Page 18 G. COSTANTINI http://bacamaths.net/ 3. On a : r p q a - - = ( ) ( ) c a b a b a a c - + - - + - i i = i On en déduit que les droites (PR) et (AQ) sont perpendiculaires. Autrement dit : (AQ) est la hauteur issue de A dans le triangle PQR En raisonnant de même par rapport aux autres côtés, on constate que (BR) et (CP) sont les deux autres hauteurs du triangle PQR. Les droites (AQ), (BR) et (CP) sont donc concourantes. Exercice 13 Théorème de Napoléon PARTIE A : des caractérisations du triangle équilatéral 1. Si UVW est équilatéral de sens direct, alors U est l'image de W par la rotation de centre V et d'angle p 3 : u - v = 3 pi e (w - v) Or : -j2 = - 4 3 pi e = - 2 3 p - i e = pi e 2 3 p - i e = 3 pi e D'où : u - v = -j2 (w - v) Réciproquement, supposons : u - v = -j2 (w - v) = 3 pi e (w - v) Alors, U est l'image de W par la rotation de centre V et d'angle p 3 donc UVW est équilatéral de sens direct. 2. Supposons UVW équilatéral de sens direct. D'après ce qui précède, on a : u - v = -j2 (w - v) u + (-1 -j2 )v + j2 w = 0 Or, 1 + j + j2 = 0 donc : u + jv + j2 w = 0 Réciproquement, supposons : u + jv + j2 w = 0 Alors, par le même calcul : u - v = -j2 (w - v) Et d'après la question 1. : UVW équilatéral de sens direct W VU
  • 19. Exercices rédigés sur les nombres complexes Page 19 G. COSTANTINI http://bacamaths.net/ PARTIE B : démonstration du théorème de Napoléon Par hypothèse, on a : a - w = j(b - w) (E1) b - u = j(c - u) (E2) c - v = j(a - v) (E3) En additionnant, membre à membre, les trois égalités, il vient : a + b + c - (u + v + w) = j(a + b + c - (u + v + w)) D'où : a + b + c = u + v + w Ce qui prouve déjà que UVW a le même centre de gravité que ABC. De (E1) on déduit : w = 1 a b- - j j De même avec (E2) et (E3) : u = 1 b c- - j j v = 1 c a- - j j On calcule maintenant : u + jv + j2 w = 2 2 1 a b b c c a- + - + - - j j j j j = 0 Donc : UVW est équilatéral de sens direct W V U R Q P CB A
  • 20. Exercices rédigés sur les nombres complexes Page 20 G. COSTANTINI http://bacamaths.net/ Remarque : pour aller plus loin avec cette configuration, on peut aussi démontrer que les droites (AP), (BQ) et (CR) sont concourantes en un point T appelé "point de Torricelli". Ce point T possède de belles propriétés : il est le point de concours des cercles circonscrits aux triangles ABC, ABR, ACQ et BCP, c'est aussi le point qui rend minimal la distance MA + MB + MC (lorsque les angles du triangle sont inférieurs à 120°). W V U R Q T P CB A
  • 21. Exercices rédigés sur les nombres complexes Page 21 G. COSTANTINI http://bacamaths.net/ Exercice 14 Nombres complexes et suites 1. Il s'agit d'une somme de termes consécutifs d'une suite géométrique de raison z ¹ 1, donc : 1 0 n k k z - = å = 1 1 n z z - - = 2 1 z- car zn = pi e = - 1 2. On a, pour tout n  2 : 1 - z = 1 - n pi e = 2n pi e 2 2n n p p -æ ö -ç ÷ ç ÷ è ø i i e e = -2i 2n pi e sin 2n pæ ö ç ÷ è ø D'où : 2 1 z- = 2 sin 2 n n p - pæ ö ç ÷ è ø i i e = cos sin 2 2 sin 2 n n n p pæ æ ö æ öö-ç ç ÷ ç ÷÷ è è ø è øø pæ ö ç ÷ è ø i i = 1 + i 1 tan 2n pæ ö ç ÷ è ø 3. En identifiant les parties imaginaires, on obtient : Sn = Im 2 1 z æ ö ç ÷ -è ø = 1 tan 2n pæ ö ç ÷ è ø 4. On a, pour tout n  2 : un = 1 tan 2 n n pæ ö ç ÷ è ø = cos 2 sin 2 n n n pæ ö ç ÷ è ø pæ ö ç ÷ è ø un = 2 p 2 sin 2 n n p pæ ö ç ÷ è ø cos 2n pæ ö ç ÷ è ø Or, on sait que : lim n®+¥ 2 sin 2 n n p pæ ö ç ÷ è ø = 1 (Car lim x®0 sin x x = 1) Et comme lim n®+¥ cos 2n pæ ö ç ÷ è ø = 1, il vient finalement : lim n®+¥ un = 2 p On dit que la suite (Sn) converge "en moyenne" vers 2 p .