SlideShare une entreprise Scribd logo
Analyse Convexe 1 Jaouad DABOUNOU-FSTS
Projection d’un point sur un ensemble
Définition (Projection d’un point sur un ensemble): Soit A un ensemble non vide de R
n
et xR
n
,
on appelle projection euclidienne de x sur A, l’ensemble noté PA(x) et défini par :
PA(x) = {yA | ||x - y|| = dA(x)}.
Proposition : Soit A un ensemble fermé non vide de R
n
, alors pour tout xR
n
, PA(x) est non vide.
Démonstration :
Pour tout kN*, ykA tel que
dA(x)  ||x - yk|| < dA(x) +
1
k
Tous les termes de la suite (yk) appartiennent à la boule B(x , dA(x)+1). Donc on peut extraire de
cette suite une sous-suite convergente (ykl), qui converge vers un élément y. A est fermé donc yA.
Si on passe à la limite la relation
dA(x)  ||x - ykl|| < dA(x) +
1
k
on obtient:
||x - y|| = dA(x). Donc y PA(x).
x̅2 - x̅1 , x̅2 - x̅1>  0. Donc nécessairement x̅2 = x̅1.

Contenu connexe

Tendances

analyse numerique
analyse numeriqueanalyse numerique
analyse numerique
homme00
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiares
bilal001
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
Yessin Abdelhedi
 
05 exos fonction_exponentielle
05 exos fonction_exponentielle05 exos fonction_exponentielle
05 exos fonction_exponentielle
wanderful hyppolite
 
Exercice continuité et limites
Exercice continuité et limitesExercice continuité et limites
Exercice continuité et limites
Yessin Abdelhedi
 
Cours dérivabilité
Cours dérivabilitéCours dérivabilité
Cours dérivabilité
Yessin Abdelhedi
 
Tableaux derivees
Tableaux deriveesTableaux derivees
Tableaux derivees
Manar Sefiane
 
Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)
vauzelle
 
Ts cours derivation_formulaire 6
Ts cours derivation_formulaire 6Ts cours derivation_formulaire 6
Ts cours derivation_formulaire 6
Mohamedlemine Sarr
 
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTITD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
soufiane merabti
 
Cours intégrales
Cours intégralesCours intégrales
Cours intégrales
Yessin Abdelhedi
 
Cours espace
Cours espaceCours espace
Cours espace
Yessin Abdelhedi
 
Une formule de dérivation pour les fonctions exponentielles
Une formule de dérivation pour les fonctions exponentiellesUne formule de dérivation pour les fonctions exponentielles
Une formule de dérivation pour les fonctions exponentielles
Clément Boulonne
 
Formulaire derivees
Formulaire deriveesFormulaire derivees
Formulaire derivees
HASSANSABRA4
 
Rappels math - www.coursdefsjes.com
Rappels math - www.coursdefsjes.comRappels math - www.coursdefsjes.com
Rappels math - www.coursdefsjes.com
cours fsjes
 
CAPES maths 2019 composition 2
CAPES maths 2019 composition 2CAPES maths 2019 composition 2
CAPES maths 2019 composition 2
Dany-Jack Mercier
 
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTITD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
soufiane merabti
 
Cours continuité et limites
Cours continuité et limitesCours continuité et limites
Cours continuité et limites
Yessin Abdelhedi
 

Tendances (19)

analyse numerique
analyse numeriqueanalyse numerique
analyse numerique
 
Analyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non LinéiaresAnalyse Numérique Chapitre 1: Équations Non Linéiares
Analyse Numérique Chapitre 1: Équations Non Linéiares
 
Cours integrale riemann
Cours integrale riemannCours integrale riemann
Cours integrale riemann
 
Exercice fonctions réciproques
Exercice fonctions réciproquesExercice fonctions réciproques
Exercice fonctions réciproques
 
05 exos fonction_exponentielle
05 exos fonction_exponentielle05 exos fonction_exponentielle
05 exos fonction_exponentielle
 
Exercice continuité et limites
Exercice continuité et limitesExercice continuité et limites
Exercice continuité et limites
 
Cours dérivabilité
Cours dérivabilitéCours dérivabilité
Cours dérivabilité
 
Tableaux derivees
Tableaux deriveesTableaux derivees
Tableaux derivees
 
Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)Cours sur les fonctions de référence (chapitre 6)
Cours sur les fonctions de référence (chapitre 6)
 
Ts cours derivation_formulaire 6
Ts cours derivation_formulaire 6Ts cours derivation_formulaire 6
Ts cours derivation_formulaire 6
 
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTITD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
TD - travaux dirigé limite de fonction ( exercice ) SOUFIANE MERABTI
 
Cours intégrales
Cours intégralesCours intégrales
Cours intégrales
 
Cours espace
Cours espaceCours espace
Cours espace
 
Une formule de dérivation pour les fonctions exponentielles
Une formule de dérivation pour les fonctions exponentiellesUne formule de dérivation pour les fonctions exponentielles
Une formule de dérivation pour les fonctions exponentielles
 
Formulaire derivees
Formulaire deriveesFormulaire derivees
Formulaire derivees
 
Rappels math - www.coursdefsjes.com
Rappels math - www.coursdefsjes.comRappels math - www.coursdefsjes.com
Rappels math - www.coursdefsjes.com
 
CAPES maths 2019 composition 2
CAPES maths 2019 composition 2CAPES maths 2019 composition 2
CAPES maths 2019 composition 2
 
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTITD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
TD - travaux dirigé la fonction exponentielle ( exercice ) - soufiane MERABTI
 
Cours continuité et limites
Cours continuité et limitesCours continuité et limites
Cours continuité et limites
 

Similaire à Projection d’un point sur un ensemble

Formalisation de la théorie des ensembles
Formalisation de la théorie des ensemblesFormalisation de la théorie des ensembles
Formalisation de la théorie des ensembles
Isomorphisme
 
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
tuxette
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limites
hassan1488
 
Sommation séries entières
Sommation séries entièresSommation séries entières
Sommation séries entières
Loïc Dilly
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1
Dany-Jack Mercier
 
M1_exercices_corriges.pdf
M1_exercices_corriges.pdfM1_exercices_corriges.pdf
M1_exercices_corriges.pdf
DurelDonfack
 
espaces vectoriels et applications linéaires
espaces vectoriels et applications linéairesespaces vectoriels et applications linéaires
espaces vectoriels et applications linéaires
AhmedELYAHYAOUI
 
L'essentiel du programme de l'agrégation de mathématiques
L'essentiel du programme de l'agrégation de mathématiquesL'essentiel du programme de l'agrégation de mathématiques
L'essentiel du programme de l'agrégation de mathématiques
CharvetXavier
 
Aates ch08 lois-a-densite
Aates ch08 lois-a-densiteAates ch08 lois-a-densite
Aates ch08 lois-a-densite
Manar Sefiane
 
IMC100_Analyse vectorielle - version annotée.pdf
IMC100_Analyse vectorielle -  version annotée.pdfIMC100_Analyse vectorielle -  version annotée.pdf
IMC100_Analyse vectorielle - version annotée.pdf
AlexandreLessard7
 
Mathématiques Générales.pdf
Mathématiques Générales.pdfMathématiques Générales.pdf
Mathématiques Générales.pdf
KarimBara2
 
Nbr complexes
Nbr complexesNbr complexes
Nbr complexes
bades12
 
Cours d'Analyse - FI-GL-SID
Cours d'Analyse - FI-GL-SIDCours d'Analyse - FI-GL-SID
Cours d'Analyse - FI-GL-SID
FATIHA AKEF
 
intégrale triple
intégrale tripleintégrale triple
intégrale triple
Kum Visal
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
ismailkziadi
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
Mehdi Maroun
 

Similaire à Projection d’un point sur un ensemble (20)

Formalisation de la théorie des ensembles
Formalisation de la théorie des ensemblesFormalisation de la théorie des ensembles
Formalisation de la théorie des ensembles
 
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
Théorie de l’apprentissage et SVM : présentation rapide et premières idées da...
 
Cours developpements limites
Cours   developpements limitesCours   developpements limites
Cours developpements limites
 
Sommation séries entières
Sommation séries entièresSommation séries entières
Sommation séries entières
 
CAPES maths 2019 composition 1
CAPES maths 2019 composition 1CAPES maths 2019 composition 1
CAPES maths 2019 composition 1
 
M1_exercices_corriges.pdf
M1_exercices_corriges.pdfM1_exercices_corriges.pdf
M1_exercices_corriges.pdf
 
Fic00126
Fic00126Fic00126
Fic00126
 
espaces vectoriels et applications linéaires
espaces vectoriels et applications linéairesespaces vectoriels et applications linéaires
espaces vectoriels et applications linéaires
 
L'essentiel du programme de l'agrégation de mathématiques
L'essentiel du programme de l'agrégation de mathématiquesL'essentiel du programme de l'agrégation de mathématiques
L'essentiel du programme de l'agrégation de mathématiques
 
Arithmetique
ArithmetiqueArithmetique
Arithmetique
 
Aates ch08 lois-a-densite
Aates ch08 lois-a-densiteAates ch08 lois-a-densite
Aates ch08 lois-a-densite
 
IMC100_Analyse vectorielle - version annotée.pdf
IMC100_Analyse vectorielle -  version annotée.pdfIMC100_Analyse vectorielle -  version annotée.pdf
IMC100_Analyse vectorielle - version annotée.pdf
 
Mathématiques Générales.pdf
Mathématiques Générales.pdfMathématiques Générales.pdf
Mathématiques Générales.pdf
 
Nbr complexes
Nbr complexesNbr complexes
Nbr complexes
 
Cours d'Analyse - FI-GL-SID
Cours d'Analyse - FI-GL-SIDCours d'Analyse - FI-GL-SID
Cours d'Analyse - FI-GL-SID
 
Espacesvec
EspacesvecEspacesvec
Espacesvec
 
intégrale triple
intégrale tripleintégrale triple
intégrale triple
 
Ben Arous2
Ben Arous2Ben Arous2
Ben Arous2
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 
Cours series fourier
Cours series fourierCours series fourier
Cours series fourier
 

Plus de Jaouad Dabounou

اللغة والذكاء الاصطناعي.pdf
اللغة والذكاء الاصطناعي.pdfاللغة والذكاء الاصطناعي.pdf
اللغة والذكاء الاصطناعي.pdf
Jaouad Dabounou
 
Mrbml004 : Introduction to Information Theory for Machine Learning
Mrbml004 : Introduction to Information Theory for Machine LearningMrbml004 : Introduction to Information Theory for Machine Learning
Mrbml004 : Introduction to Information Theory for Machine Learning
Jaouad Dabounou
 
RNN avec mécanisme d'attention
RNN avec mécanisme d'attentionRNN avec mécanisme d'attention
RNN avec mécanisme d'attention
Jaouad Dabounou
 
Réseaux de neurones récurrents et LSTM
Réseaux de neurones récurrents et LSTMRéseaux de neurones récurrents et LSTM
Réseaux de neurones récurrents et LSTM
Jaouad Dabounou
 
Modèles de langue : Ngrammes
Modèles de langue : NgrammesModèles de langue : Ngrammes
Modèles de langue : Ngrammes
Jaouad Dabounou
 
Analyse Factorielle des Correspondances
Analyse Factorielle des CorrespondancesAnalyse Factorielle des Correspondances
Analyse Factorielle des Correspondances
Jaouad Dabounou
 
Analyse en Composantes Principales
Analyse en Composantes PrincipalesAnalyse en Composantes Principales
Analyse en Composantes Principales
Jaouad Dabounou
 
W2 vec001
W2 vec001W2 vec001
W2 vec001
Jaouad Dabounou
 
Analyse en Composantes Principales
Analyse en Composantes PrincipalesAnalyse en Composantes Principales
Analyse en Composantes Principales
Jaouad Dabounou
 
Polycopie Analyse Numérique
Polycopie Analyse NumériquePolycopie Analyse Numérique
Polycopie Analyse Numérique
Jaouad Dabounou
 
Sélection de contrôles avec correction
Sélection de contrôles avec correctionSélection de contrôles avec correction
Sélection de contrôles avec correction
Jaouad Dabounou
 

Plus de Jaouad Dabounou (11)

اللغة والذكاء الاصطناعي.pdf
اللغة والذكاء الاصطناعي.pdfاللغة والذكاء الاصطناعي.pdf
اللغة والذكاء الاصطناعي.pdf
 
Mrbml004 : Introduction to Information Theory for Machine Learning
Mrbml004 : Introduction to Information Theory for Machine LearningMrbml004 : Introduction to Information Theory for Machine Learning
Mrbml004 : Introduction to Information Theory for Machine Learning
 
RNN avec mécanisme d'attention
RNN avec mécanisme d'attentionRNN avec mécanisme d'attention
RNN avec mécanisme d'attention
 
Réseaux de neurones récurrents et LSTM
Réseaux de neurones récurrents et LSTMRéseaux de neurones récurrents et LSTM
Réseaux de neurones récurrents et LSTM
 
Modèles de langue : Ngrammes
Modèles de langue : NgrammesModèles de langue : Ngrammes
Modèles de langue : Ngrammes
 
Analyse Factorielle des Correspondances
Analyse Factorielle des CorrespondancesAnalyse Factorielle des Correspondances
Analyse Factorielle des Correspondances
 
Analyse en Composantes Principales
Analyse en Composantes PrincipalesAnalyse en Composantes Principales
Analyse en Composantes Principales
 
W2 vec001
W2 vec001W2 vec001
W2 vec001
 
Analyse en Composantes Principales
Analyse en Composantes PrincipalesAnalyse en Composantes Principales
Analyse en Composantes Principales
 
Polycopie Analyse Numérique
Polycopie Analyse NumériquePolycopie Analyse Numérique
Polycopie Analyse Numérique
 
Sélection de contrôles avec correction
Sélection de contrôles avec correctionSélection de contrôles avec correction
Sélection de contrôles avec correction
 

Dernier

MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certificationMS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
OlivierLumeau1
 
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
Editions La Dondaine
 
Auguste Herbin.pptx Peintre français
Auguste   Herbin.pptx Peintre   françaisAuguste   Herbin.pptx Peintre   français
Auguste Herbin.pptx Peintre français
Txaruka
 
apprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdfapprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdf
kamouzou878
 
Zineb Mekouar.pptx Écrivaine marocaine
Zineb Mekouar.pptx   Écrivaine  marocaineZineb Mekouar.pptx   Écrivaine  marocaine
Zineb Mekouar.pptx Écrivaine marocaine
Txaruka
 
Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024
Friends of African Village Libraries
 
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptxMARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
Martin M Flynn
 
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
mcevapi3
 
Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.
MahouwetinJacquesGBO
 
1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire
NadineHG
 
Chap1 Généralités sur les réseaux informatiques.pdf
Chap1 Généralités sur les réseaux informatiques.pdfChap1 Généralités sur les réseaux informatiques.pdf
Chap1 Généralités sur les réseaux informatiques.pdf
TimogoTRAORE
 

Dernier (11)

MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certificationMS-203 Microsoft 365 Messaging Study Guide to prepare the certification
MS-203 Microsoft 365 Messaging Study Guide to prepare the certification
 
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
La Révolution Bénédictine Casadéenne du Livradois-Forez: De Charlemagne à Fra...
 
Auguste Herbin.pptx Peintre français
Auguste   Herbin.pptx Peintre   françaisAuguste   Herbin.pptx Peintre   français
Auguste Herbin.pptx Peintre français
 
apprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdfapprendre-a-programmer-avec-python-3.pdf
apprendre-a-programmer-avec-python-3.pdf
 
Zineb Mekouar.pptx Écrivaine marocaine
Zineb Mekouar.pptx   Écrivaine  marocaineZineb Mekouar.pptx   Écrivaine  marocaine
Zineb Mekouar.pptx Écrivaine marocaine
 
Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024Burkina Faso libraries newsletter for June 2024
Burkina Faso libraries newsletter for June 2024
 
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptxMARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
MARTYRS DE HOLLANDE - La révolte hollandaise et les guerres de religion..pptx
 
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
[218_phot_d'Autriche-Hongrie_et_des_[...]Vaffier_Hubert_btv1b8594559c.pdf
 
Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.Microbiologie: le monde microbien et les techniques de mise en évidence.
Microbiologie: le monde microbien et les techniques de mise en évidence.
 
1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire1eT Revolutions Empire Revolution Empire
1eT Revolutions Empire Revolution Empire
 
Chap1 Généralités sur les réseaux informatiques.pdf
Chap1 Généralités sur les réseaux informatiques.pdfChap1 Généralités sur les réseaux informatiques.pdf
Chap1 Généralités sur les réseaux informatiques.pdf
 

Projection d’un point sur un ensemble

  • 1. Analyse Convexe 1 Jaouad DABOUNOU-FSTS Projection d’un point sur un ensemble Définition (Projection d’un point sur un ensemble): Soit A un ensemble non vide de R n et xR n , on appelle projection euclidienne de x sur A, l’ensemble noté PA(x) et défini par : PA(x) = {yA | ||x - y|| = dA(x)}. Proposition : Soit A un ensemble fermé non vide de R n , alors pour tout xR n , PA(x) est non vide. Démonstration : Pour tout kN*, ykA tel que dA(x)  ||x - yk|| < dA(x) + 1 k Tous les termes de la suite (yk) appartiennent à la boule B(x , dA(x)+1). Donc on peut extraire de cette suite une sous-suite convergente (ykl), qui converge vers un élément y. A est fermé donc yA. Si on passe à la limite la relation dA(x)  ||x - ykl|| < dA(x) + 1 k on obtient: ||x - y|| = dA(x). Donc y PA(x). x̅2 - x̅1 , x̅2 - x̅1>  0. Donc nécessairement x̅2 = x̅1.